

© Deimos Space S.L.U., 2021

1 of 155

DEG-CMS-SUPTR09-SUM-10-E

SYSTEM USER MANUAL

Open Simulation Framework

openSF

 Approval Signature:

Prepared by: openSF Team

Reviewed by: Javier Martin Ávila / Technical Responsible

Approved by: Federico Letterio / Project Manager

Code: OPENSF-DMS-TEC-SUM01

Issue: 4.1

Approval Date: 24/06/2021

Confidentiality Level: Unclassified

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

2 of 155

 DEG-CMS-SUPTR09-SUM-10-E

This page intentionally left blank

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

3 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Document Status Log

Issue Change description Date

1.0 First issue of this document 21/12/09

1.1 Version of this document after openSF AR1

❑ Installation details section completed

❑ New chapter describing the openSF web page.

❑ New chapter 7 tutorial for defining an E2E simulation in openSF

❑ Product tools section updated, with a list of popular product tools (section
4.5.4)

15/03/10

1.2 New version in response to ESA assessment for openSF version 1.1

❑ Section 3.5.1.1 updated clarifying that the openSF installation mechanism for
Linux platforms is the same as the Windows one. Installation of JRE under
Linux completed.

❑ Bin folder reference removed. OSFI folder added

❑ Section 4.5.4 updated. Tools for MacOS issue.

❑ Added Annex A detailing how to build openSF from sources files.

❑ Updated chapter 5 with latest changes for the web site.

❑ Updated chapter 6. Folder structure guidelines.

20/04/10

1.3 Minor corrections:

❑ Clarifications on section 5.2

❑ typos in Annex A

26/04/10

1.4 New version for the openSF v2 acceptance

❑ Section added: Management of databases

22/09/10

1.5 Added Annex B detailing Parameter Editor functionality. 15/10/10

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

4 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Issue Change description Date

1.6 Update after openSF AR 2 meeting:

❑ Added IDL and Matlab windows for the Linux installation

❑ Updated functioning of databases in the multi-repository: Independence
between databases.

❑ Added IDL requirements for Linux installation: Problems with installation path
and different types of licenses

❑ Added Matlab requirements for Linux installation: licenses

❑ Updated introduction sentence in Annex A, section 8. Instructions to build the
framework.

❑ Removed import capabilities in Simulation creation

❑ Updated obsolete screenshots.

❑ Added new section for module developers.

12/11/10

2.0 New version including extended capabilities for openSF 2.2:

❑ Parameter Perturbation plug-in (from SEPSO)

❑ Parameter Editor integration

❑ Tool management extension

❑ Check output generation

❑ MATLAB errors inclusion

❑ Import/Export capability

❑ Extended log capabilities

❑ Keyboard shortcuts

❑ HMI Isolation

16/02/12

2.1 New version after version 2.2 acceptance meeting

❑ Added IDL version selection to openSF installer (section 3.5.1.1)

❑ Plot perturbation capabilities

02/03/12

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

5 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Issue Change description Date

3.0 New version including extended capabilities for openSF V3:

❑ Updated framework pre-requisites (section 3.3.3);

❑ Updated installation instructions, leaving only references to the supported
operating system – Linux (section 3.4.1.1);

❑ Added references to OSFEG libraries;

❑ Added section on migration from previous versions to V3 (section 3.5);

❑ Updated framework figures throughout section 4;

❑ Added reference to new system configuration parameter to control module
parallelisation (section 4.5.1);

❑ Added section on importing an XML database definition (section 4.5.2.5);

❑ Added section on the CPU core usage view that supports module parallelisation
(section 4.5.6);

❑ Added copy capabilities for several openSF elements (from section 4.7 to

4.11);

❑ Updated the module chain management in a simulation according to the
openSF framework revision (section 4.11);

❑ Added capability for removal of intermediate output files (section 4.11.2.8.1);

❑ Added capabilities for simplified module management:

❑ Switching a module version (section 4.11.5.1);

❑ Bypass/Switch-off module execution (section 4.11.5.2);

❑ Run from a given point in the module chain (section 4.11.5.3);

❑ Added capabilities for parallelisation of module execution (section 4.6);

❑ Added capability for exporting/importing module of an executed simulations
(sections 4.11.9.3 and 4.11.9.4);

22/11/13

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

6 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Issue Change description Date

3.1 New version answering the comments generated by ESA on the openSF V3 AR
documentation package.

Implementation of the following RIDs:

❑ OSF-AR3-05: Update semantics of maximum number of threads parameter
with associated warning message (section 4.5.1);

❑ OSF-AR3-06: Updates database view related figures 4-14 and 4-20 (section

4.5.2);

❑ OSF-AR3-07: Added clarification on the log functionality in the case of module
parallelisation (section 4.11.6.1);

❑ OSF-AR3-10: Clarification on simplification of simulation directory name
(section 4.13).

❑ OSF-AR3-11: Renamed section 4.19 to “Table of keyboard shortcuts”;

❑ OSF-AR3-RF-01: Updated change log to list sections changed for openSF v3;

❑ OSF-AR3-RF-02: Updated Applicable and Reference documents (section 2.1
and 2.2) including also document versions; added section 1.1.1 identifying the
changes from openSF V2.2 to V3;

❑ OSF-AR3-RF-03: Revised Tutorial (section 6) according to openSF V3 and
added a reference to the training material (course handouts);

❑ OSF-AR3-CE-01: Corrected the supported IDL versions (section 3.3.3.3);

❑ OSF-AR3-CE-02: updated pre-requisites section to appear chronologically

before framework installation (section 3.3.3).

❑ OSF-AR3-CE-03: Updated section to clarify typical definition of OPENSF_HOME;

❑ OSF-AR3-CE-04: Added a clarification regarding the installation an execution of
openSF in the appropriate machine architecture (section 3.5.1.1).

The implementation of these RIDs closes action ACT-AR3-03 from the AR3.

15/01/14

3.2 New version including the integration of Python modules in openSF. 04/04/14

3.3 Updated after review comments from ESA: implemented RIDS OPENSF_v3.2_RID_01
and OPENSF_v3.2_RID_07 by updating section 3.3.3.5.

30/04/14

3.4 New version with updated installation procedure including also the porting to OSX. 03/06/15

3.5 New version including extended capabilities for openSF V3.4: Time Based Scenario
Orchestration.

Included special conditions for installation in OSX.

02/12/15

3.6 OPENSF-AN-004: The “iterate parameters” functionality is able to import parameter
iteration definitions from file

OPENSF-AN-017: Updated SUM to use "modules" instead of "models".

Added section on execution of script modules and special conditions applicable to OSX
10.11.

16/03/16

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

7 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Issue Change description Date

3.7 Updated with extended capabilities for openSF V3.5:

❑ OPENSF-AN-003: Remote orchestration;

❑ OPENSF-AN-019: Automatic openSF version checking;

❑ OPENSF-AN-030: Select subset of parameters to monitor;

❑ Miscellanea HMI corrections and simplifications.

❑ Descriptor syntax clarifications.

16/05/16

3.8 Overall review based on ESA comments 06/06/16

3.9 Updated installation requirements. 20/01/17

3.10 Updated with HMI revamping for Eclipse RCP. 09/06/17

3.11 Updated with COTS requirement (Table 3-1 and Sec 3.3.2) 28/08/17

3.12 Remove OSFI from framework pre-requisites

Update MySQL tools path configuration during installation

Database created during installation selected by the user

Update folder structure

Small updates on database connection, deletion and backup due to bug fixes

OpenSF log messages moved to simulation dedicated log files

Move ParameterEditor appendix to dedicated SUM

15/12/17

3.13 Update for openSF version 3.7.2

❑ §3: Removal of the V2 upgrade path.

❑ §0 and §3.4: Update of the supported platforms.

❑ Reorganization of §3.4.3, splitting off the module-specific requirements into
§6.3.

❑ §3.6: Update of the command line arguments section.

❑ §4.9.6: New dialog for missing configuration files.

❑ §4.9.6.9: Update simulation export/import files, dialog

❑ §4.12, §4.17: add per-module log files.

❑ §8: Update of build instructions

15/06/18

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

8 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Issue Change description Date

3.14 Update for openSF version 3.7.3:

❑ §3 and §4: Added Windows as a supported platform.

❑ §3.4.2: Updated the folder structure of the OpenSF installation folder.

❑ §3.4.2, §4.11.5.4 and §4.13: Documented new feature for grouping timeline
and iteration/perturbation simulations.

❑ §3.3, §3.4, $4.5, §4.18: Updated the dependency from MySQL, since starting

on v3.7.3 the client tools are not necessary.

❑ §4.5.1: XSD Validation and other changes in Preferences dialog.

❑ §All sections: Updated several images to comply with the newly delivered
version.

❑ §3.4.3: updated licencing scheme

❑ Various minor changes

14/12/18

3.15 Update for openSF version 3.8.0:

❑ General revision and update of the document.

❑ §2: Update the description of the installation process.

❑ §4.9.3.2: New section on iterations on parameter sets.

❑ §4.13: Include the concept of the “User Roles” and explain them.

❑ §4.14 Addition of some guidelines on how to implement a Monte Carlo study in
openSF.

06/06/19

3.16 Update for openSF version 3.8.1:

❑ §3.4.3.1 Modification of supported versions to align them with the pre-
requisites listed under §3.4.3.

❑ Added description of the new preferences added to the Application Settings
preferences page.

17/07/19

3.17 Update for openSF version 3.9.0:

❑ Removal of the Stage and Simulation concepts.

❑ Renaming of the previous “Session” concept to “Simulation”.

❑ Clarify the setup of the $INSTALL4J_JAVA_HOME environment variable.

❑ Update all images to the latest openSF HMI.

❑ Removed “product” concept.

27/11/19

3.18 Update for openSF version 3.9.2

❑ New feature: Python-like format for parameter value edition.

12/03/20

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

9 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Issue Change description Date

3.19 Update for openSF version 3.9.3

❑ Added preference “Symlink handling mode”

❑ New section Parameter Series

❑ Sub-sections 4.9.2 renumbered

❑ Update images in §4.9.2

❑ New conditions for inline editing

❑ Introduction of E2E_HOME variable and new meaning for OPENSF_HOME

❑ Moved Perturbations explanation to 4.9.3

03/07/20

4.0 Update for openSF version 3.9.5

❑ Overall review of the document

❑ Added Sec. 4.5.4

❑ Added Sec. 6.3.1

17/12/20

4.1 Update for openSF version 3.10

❑ Added Sec. 3.6.2

❑ Updated Sec. 3.5.1, 3.5.2 and 4.6.1

❑ Updated Sec 3.4.3

❑ Updated Sec. 4.2.1

❑ Added Annex E

24/06/21

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

10 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Table of Contents

1. INTRODUCTION __ 20

1.1. Purpose ___ 20

1.2. Scope ___ 20

1.3. Acronyms and Abbreviations ___ 20

1.4. Definitions ___ 21

2. RELATED DOCUMENTS ___ 23

2.1. Applicable Documents __ 23

2.2. Reference Documents __ 23

2.3. Standards ___ 23

3. GETTING STARTED __ 24

3.1. Introduction ___ 24

3.2. openSF User Profiles and Roles ___ 24

3.2.1. User profiles definition and quick-start guide _____________________________________ 24

3.2.1.1. Scientific modules developer __ 24

3.2.1.2. E2E processing chains integrator ___ 25

3.2.1.3. E2E performance engineer __ 25

3.2.1.4. E2E performance analyst ___ 26

3.2.2. openSF user roles __ 26

3.3. Conventions __ 28

3.3.1. <OPENSF_INSTDIR> ___ 28

3.3.2. $E2E_HOME __ 28

3.3.3. Data types ___ 29

3.4. System Requirements __ 29

3.4.1. Hardware requirements ___ 29

3.4.2. Operating system requirements ___ 29

3.4.3. Framework pre-requisites __ 29

3.4.3.1. MySQL/MariaDB installation ___ 30

3.4.3.2. JRE installation ___ 30

3.4.3.3. Remote execution installation ___ 31

3.4.3.3.1. Linux installation __ 31

3.4.3.3.2. macOS installation ___ 31

3.4.3.3.3. SSH access permission configuration_____________________________________ 31

3.5. How to Install the Framework __ 31

3.5.1. Installer guide setup __ 31

3.5.1.1. Linux installation ___ 32

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

11 of 155

 DEG-CMS-SUPTR09-SUM-10-E

3.5.1.2. macOS and Windows installation ___ 34

3.5.1.3. Uninstalling openSF ___ 35

3.5.1.4. Folder structure __ 35

3.5.2. Licensing scheme __ 36

3.6. Running openSF ___ 36

3.6.1. How to start the application __ 36

3.6.2. First start-up __ 37

3.6.3. Check for updates __ 38

3.6.4. Exit the system __ 38

4. REFERENCE MANUAL __ 39

4.1. HMI Description ___ 39

4.1.1. Main window __ 39

4.1.1.1. Side bar __ 41

4.1.2. Frame management __ 44

4.1.3. Generic functionalities, dialogues and displays ____________________________________ 45

4.2. Data Structure __ 46

4.2.1. Databases __ 47

4.2.1.1. Connect to a database ___ 47

4.2.1.2. Create a new database ___ 48

4.2.1.3. Delete a database __ 49

4.2.1.4. Import and Export a database ___ 50

4.2.1.5. Refresh database list __ 51

4.2.1.6. Database maintenance ___ 51

4.2.2. Simulation Results Naming Conventions ___ 51

4.3. Framework Elements ___ 53

4.3.1. Descriptors ___ 53

4.3.1.1. Descriptor list __ 54

4.3.1.2. Descriptor creation __ 55

4.3.1.3. Descriptor modification __ 56

4.3.1.4. Descriptor deletion __ 56

4.3.1.5. Descriptor copy __ 56

4.3.2. Modules __ 57

4.3.2.1. Module list __ 58

4.3.2.2. Module creation __ 59

4.3.2.2.1. General data ___ 59

4.3.2.2.2. Configuration ___ 60

4.3.2.2.3. IO descriptors __ 60

4.3.2.3. Module modification ___ 61

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

12 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4.3.2.3.1. Module upgrade - New version ___ 61

4.3.2.4. Module deletion __ 62

4.3.2.5. Module copy ___ 62

4.3.3. Simulations ___ 62

4.3.3.1. Simulation list ___ 63

4.3.3.2. Simulation creation ___ 63

4.3.3.3. Simulation deletion __ 63

4.3.3.4. Simulation copy __ 64

4.3.3.5. Simulation modification __ 64

4.3.3.6. Settings in a simulation __ 64

4.3.3.6.1. Simulation definition ___ 64

4.3.3.6.2. Input files ___ 66

4.3.3.6.3. Configuration files ___ 67

4.3.3.6.4. Output files __ 68

4.3.3.6.5. Parameters configuration __ 68

4.3.4. Results __ 71

4.3.4.1. Result view __ 71

4.3.4.1.1. Modules execution time ___ 73

4.3.4.2. Continuing or repeating the execution of an existing simulation ___________________ 75

4.3.4.3. Report generation __ 75

4.3.4.4. Result deletion ___ 76

4.3.5. Product tools __ 76

4.3.5.1. New tool __ 77

4.3.5.2. Edit tool __ 77

4.3.5.3. Delete tool __ 77

4.3.5.4. Tool execution ___ 77

4.3.5.5. Popular product tools __ 78

4.3.5.6. Specification of final product tools __ 80

4.4. Executing a Simulation ___ 82

4.4.1. Execution settings __ 82

4.4.1.1. Switch module version ___ 83

4.4.1.2. Bypass/Switch-off module execution __ 83

4.4.1.3. Run from a given point in the module chain __________________________________ 85

4.4.1.3.1. Run from a given module using previous data _____________________________ 86

4.4.1.4. Removal of intermediate output files __ 87

4.4.1.5. Breakpoint scheduling ___ 87

4.4.1.6. Remote execution___ 88

4.4.2. Series of simulations with parameters variation ___________________________________ 88

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

13 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4.4.2.1. Parameters iteration ___ 89

4.4.2.1.1. Saving parameter iteration definitions ____________________________________ 91

4.4.2.2. Batch simulation __ 91

4.4.2.3. Parameter perturbations ___ 92

4.4.2.3.1. Parameter perturbation interface __ 92

4.4.2.3.2. Defining a new perturbation ___ 93

4.4.2.3.3. Statistical and combined perturbed execution modes ________________________ 98

4.4.2.3.4. Perturbations functions __ 101

4.4.2.3.4.1. Deterministic functions ___ 101

4.4.2.3.4.2. Sampling functions __ 102

4.4.2.3.4.3. Non-deterministic functions _______________________________________ 103

4.4.2.3.4.4. Binary and composite operations ___________________________________ 103

4.4.2.4. Time-based scenario orchestration __ 104

4.4.2.4.1. Time-based orchestration interface _____________________________________ 105

4.4.2.5. Monte Carlo simulations ___ 108

4.4.2.5.1. One module MC with local parameter ___________________________________ 108

4.4.2.5.2. Multiple modules MC with local parameter(s) _____________________________ 110

4.4.2.5.3. Multiple modules MC with global parameter ______________________________ 111

4.4.3. Simulation run ___ 111

4.4.3.1. Parallelisation of module execution __ 115

4.4.3.1.1. Parallel execution ___ 115

4.4.3.2. Simulation Resuming ___ 116

4.4.3.3. Logs __ 116

4.4.3.4. Simulation groups ___ 117

4.4.4. Import and export simulations ___ 118

4.4.4.1. Export simulation __ 119

4.4.4.2. Import simulation __ 120

4.4.4.3. Export module of a simulation __ 121

4.4.4.4. Import module of a simulation __ 122

4.4.5. Simulation script generation ___ 122

4.4.6. Multi-node simulation __ 122

4.4.6.1. Remote machine management __ 123

4.4.6.2. Connect to a remote machine __ 124

4.4.6.3. Disconnect from a remote machine __ 124

4.4.6.4. Configure a new remote machine __ 124

4.4.6.5. Delete a remote machine __ 125

4.4.6.6. Refresh remote machine list __ 125

4.5. Preferences ___ 125

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

14 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4.5.1. Environment variables ___ 126

4.5.2. Application settings __ 127

4.5.3. Application folders __ 128

4.5.4. Interpreters Definition ___ 129

4.6. Miscellaneous ___ 132

4.6.1. About openSF __ 132

4.6.2. Embedded documents __ 132

4.6.3. CPU usage ___ 133

4.6.3.1. Linux ___ 133

4.6.3.2. macOS __ 133

4.6.3.3. Windows ___ 133

5. ANNEX A: ERROR MESSAGES ___ 134

6. ANNEX B: DEVELOPING MODULES FOR OPENSF ________________________________ 136

6.1. Precautions to ensure safe module parallelization ___________________________ 136

6.2. Environment variables ___ 138

6.3. Module pre-requisites ___ 138

6.3.1. Modules not compliant with E2E Generic ICD ____________________________________ 138

6.3.2. IDL __ 139

6.3.3. MATLAB ___ 139

6.3.4. Python and other scripts __ 139

6.3.5. Python scripts execution in Windows __ 140

7. ANNEX C: TUTORIAL - CREATING AN E2E SIMULATION __________________________ 141

7.1. Scenario Description __ 141

7.1.1. Descriptors – Input and Output Files __ 142

7.1.2. Modules ___ 143

7.2. Framework Structure Definition ___ 143

7.2.1. Folder Structure Guidelines __ 143

7.3. Product Tools Specification ___ 145

7.3.1. Simulation Products Exploitation __ 145

7.3.2. Closing the Loop in an E2E Simulation ___ 145

8. ANNEX D: INSTRUCTIONS TO BUILD THE FRAMEWORK __________________________ 147

8.1. Pre-requisites to Build the Framework ____________________________________ 147

8.2. How to Build the openSF Platform __ 147

8.2.1. Simplified procedure ___ 148

8.2.2. Detailed procedure __ 148

8.3. How to Build the Installer Packages ______________________________________ 148

9. ANNEX E: USING DOCKER IN OPENSF SIMULATIONS ____________________________ 150

9.1. Concepts and Requirements __ 150

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

15 of 155

 DEG-CMS-SUPTR09-SUM-10-E

9.2. Example __ 151

9.2.1. Create Docker Image __ 151

9.2.2. Invoke Module in Docker container __ 152

9.2.3. Setup Module in OpenSF __ 153

List of Figures

Figure 3-1: User role selection toolbar ... 27

Figure 3-2: Executions tab and color code based on results replicability ... 28

Figure 3-3: openSF web page ... 32

Figure 3-4: Installation confirmation screen ... 33

Figure 3-5: Installer folder selection window .. 33

Figure 3-6: Installation icon window .. 34

Figure 3-7: Installation successful screen .. 34

Figure 3-8: Uninstall confirmation screen under Linux ... 35

Figure 3-9: First start dialog .. 37

Figure 4-1: Main window appearance .. 39

Figure 4-2: Main window appearance showing internal frames and scroll bars 40

Figure 4-3: Detail of main menu bar ... 40

Figure 4-4: Detail of a menu, showing menu items ... 41

Figure 4-5: Detail of a contextual menu ... 41

Figure 4-6: Side bar .. 42

Figure 4-7: Repository view ... 43

Figure 4-8: File system view with the simulations directory inside (left) and outside (right) of the the
openSF installation directory .. 44

Figure 4-9: Frame management menu .. 45

Figure 4-10: Internal frame header ... 45

Figure 4-11: File chooser dialog .. 45

Figure 4-12: Dialog example .. 46

Figure 4-13: Database management window .. 47

Figure 4-14: Connect to a database .. 48

Figure 4-15: Create new database .. 48

Figure 4-16: DB creation error message (wrong name) ... 49

Figure 4-17: Delete a database .. 49

Figure 4-18: Confirm deletion operation .. 49

Figure 4-19: Database import .. 50

Figure 4-20: Database import file error ... 50

Figure 4-21: Database import XML definition error .. 51

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

16 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-22: Grouping of iteration/perturbation (left) and timeline (right) simulations 52

Figure 4-23: File system in the side bar, including symbolic link to last simulation 53

Figure 4-24: Descriptors in the side bar ... 54

Figure 4-25: Descriptors list view ... 54

Figure 4-26: Create a new descriptor .. 55

Figure 4-27: Copy of a descriptor ... 57

Figure 4-28: Repository view: modules ... 57

Figure 4-29: Repository menu .. 58

Figure 4-30: Module pop-up menu .. 58

Figure 4-31: Module list view ... 58

Figure 4-32: Module general data ... 59

Figure 4-33: Module configuration .. 60

Figure 4-34: Module input/output specification ... 61

Figure 4-35: Module copy .. 62

Figure 4-36: Simulations pop-up menu .. 62

Figure 4-37: Simulation list view .. 63

Figure 4-38: Simulation copy ... 64

Figure 4-39: Simulation general properties .. 65

Figure 4-40: Module specification ... 66

Figure 4-41: Simulation inputs definition ... 66

Figure 4-42: Configuration files definition .. 67

Figure 4-43: Simulation output definition ... 68

Figure 4-44: Simulation parameters definition .. 69

Figure 4-45: Simulation execution warning message ... 70

Figure 4-46: Parameter visibility view ... 70

Figure 4-47: Execution results .. 71

Figure 4-48: Results menu ... 72

Figure 4-49: Results pop-up menu .. 72

Figure 4-50: Executions view in the side bar .. 73

Figure 4-51: Bar graph showing module times ... 74

Figure 4-52: Pie chart showing the percentage of time .. 74

Figure 4-53: Table showing module times .. 75

Figure 4-54: Result. Re-run ... 75

Figure 4-55: Execution report... 76

Figure 4-56: Confirmation dialog to delete execution(s) from database and file system 76

Figure 4-57: Tools list view .. 76

Figure 4-58: Tool editor view ... 77

Figure 4-59: Tool Execution/Schedule from Simulation Edition View .. 78

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

17 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-60: IO file pop-up menu ... 78

Figure 4-61: Web browser as openSF product tool .. 80

Figure 4-62: Product tools specification ... 81

Figure 4-63: File contextual menu. ... 81

Figure 4-64: Tool parameters specification ... 82

Figure 4-65: Module chain with different module versions .. 83

Figure 4-66: Switch module version .. 83

Figure 4-67: Bypass/Switch-off module ... 84

Figure 4-68: Bypass/Switch-off module missing files ... 84

Figure 4-69: Switch-on module .. 85

Figure 4-70: Run simulation from Module B ... 85

Figure 4-71: Run simulation from a given module ... 86

Figure 4-72: Reset IO descriptor option ... 86

Figure 4-73: Reset IO descriptor setup .. 87

Figure 4-74: Use previous setup IO descriptor options ... 87

Figure 4-75: Breakpoint scheduling interface.. 88

Figure 4-76: Iterating parameters .. 89

Figure 4-77: Editing numeric sequences .. 89

Figure 4-78: Simulation with iterated parameters ... 90

Figure 4-79: Successful batch configurated simulation message ... 91

Figure 4-80: Simulation with overridden parameters through the batch option 92

Figure 4-81: Perturbation system main window .. 93

Figure 4-82: No valid parameters selected ... 93

Figure 4-83: Selection of parameters for perturbation ... 94

Figure 4-84: Adding a perturbation function to a module parameter .. 94

Figure 4-85: Complex perturbation function ... 95

Figure 4-86: Random perturbation properties ... 95

Figure 4-87: Preview of statistical mode execution scheme .. 96

Figure 4-88: Complex perturbation for a parameter .. 96

Figure 4-89: Time series line for a parameter perturbation .. 97

Figure 4-90: Histogram chart for a random parameter perturbation .. 97

Figure 4-91: Loading an external error file ... 97

Figure 4-92: Function with variable number of properties (points) .. 98

Figure 4-93: Editing a value of the Perturbation Tree .. 98

Figure 4-94: Statistical mode execution scheme ... 99

Figure 4-95: Combined mode execution scheme ... 100

Figure 4-96: Execution mode selector ... 100

Figure 4-97: Statistical mode iterations log message ... 101

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

18 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-98: Example instrument operational mode scenario.. 104

Figure 4-99: Module parameters folder organization on a per-mode basis .. 105

Figure 4-100: Module categorization by Mode... 106

Figure 4-101: Timeline management view ... 106

Figure 4-102: Timeline preferences ... 108

Figure 4-103: Monte Carlo chain in statistical mode .. 109

Figure 4-104: Monte Carlo chain in combined mode .. 110

Figure 4-105: MC with a global parameter ... 111

Figure 4-106: Execution prevented due to missing configuration files .. 112

Figure 4-107: Modules redundancy in simulation execution .. 113

Figure 4-108: Simulation execution progress ... 114

Figure 4-109: Execution log showing an error message ... 114

Figure 4-110: Simulation execution showing parallel module execution ... 116

Figure 4-111: Parallelization option dialogue .. 116

Figure 4-112: Logs menu ... 117

Figure 4-113: Logs list view ... 117

Figure 4-114: Grouping of simulations for the Time-Driven execution .. 118

Figure 4-115: Grouping of simulations for the Iteration/Perturbation execution 118

Figure 4-116: Export from the repository menu .. 119

Figure 4-117: Export from the executions menu ... 119

Figure 4-118: Successful execution of the export .. 120

Figure 4-119: Inputs requested for the import.. 121

Figure 4-120: Successful execution of the import.. 121

Figure 4-121: Export module from the Simulation Result view .. 121

Figure 4-122: Import module from the Simulation edition view .. 122

Figure 4-123: Outline of a simulation scenario .. 123

Figure 4-124: Remote machines management window .. 123

Figure 4-125: Create new remote machine .. 124

Figure 4-126: Remote machine is unreachable ... 125

Figure 4-127: Confirm deletion operation... 125

Figure 4-128: System Menu ... 126

Figure 4-129: Environment variables ... 126

Figure 4-130: System Applications settings .. 127

Figure 4-131: Application folders .. 129

Figure 4-132 Interpreters definition .. 130

Figure 4-133 Built-in interpreter path definition .. 130

Figure 4-134 User-defined interpreter definition ... 131

Figure 4-135 Interpreter argument definition ... 131

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

19 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-136: openSF About View ... 132

Figure 4-137: Help documents tree view ... 132

Figure 4-138: CPU Core Usage view .. 133

Figure 7-1: Outline of a test simulation scenario ... 141

Figure 7-2: Product file example ... 142

Figure 7-3: E2E tutorial folder structure .. 145

Figure 8-1: External components .. 149

Figure 8-2: Generated installers (one release and one development build) 149

Figure 9-1: Simple Dockerfile ... 151

Figure 9-2: Simple adapter .. 152

Figure 9-3: Example container module configured and running in openSF .. 154

List of Tables

Table 2-1: Applicable documents .. 23

Table 2-2: Reference documents .. 23

Table 2-3: Standards .. 23

Table 4-1: openSF information management system ... 46

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

20 of 155

 DEG-CMS-SUPTR09-SUM-10-E

1. INTRODUCTION

This document has been produced by DEIMOS within the frame of different openSF contracts and it
represents the System User Manual for the openSF platform.

OpenSF is a software framework aimed at supporting a standardised end-to-end simulation capability

(AD-E2E) allowing the assessment of the science and engineering goals with respect to the mission
requirements. Scientific models and product exploitation tools can be plugged in the system platform with
ease using a well-defined integration process.

OpenSF has been conceived to support concept and feasibility studies for the ESA Earth Observation
Programs (EOP) activities, where the mission performance up to the final data products needs to be
predicted by means of end-to-end (E2E) simulators; in later development phases, openSF becomes a
coherent test bed for L1PP and L2PP, and to support the verification of space segment performance and

associated sensitivity analysis.

Nevertheless, openSF has been designed and developed in a generic way, allowing its use as a simulation
framework for any E2E processing chain in domains different from EO E2E performance simulators.

The openSF framework is released frequently, making updates and bugs fixes available to users multiple
times a year.

1.1. Purpose

This document is aimed at providing a clear description of all the openSF functionalities, and also an

operational guide for developing and integrating an E2E simulation processing chain.

The document has been conceived for four different intended audiences, according to the different
possible user profiles of the application: scientific module developers, E2E processing chains integrators,

E2E performance analysts and E2E performance engineers. For more details please refer to Sec. 3.2.1.

1.2. Scope

This document applies to openSF v4.0 and its contents are organised as follows:

❑ Chapter 1, the present chapter, describes this document and sets the basis for its understanding.

❑ Chapter 2 collects the references to this SUM.

❑ Chapter 3 details the procedures for installing and setting up openSF.

❑ Chapter 4 describes all the different functionalities of openSF.

❑ Appendix A describes the openSF error messages

❑ Appendix B contains some guidelines for module developers.

❑ Appendix C presents a tutorial of the generation of an E2E simulation.

❑ Appendix D explains how to build the application.

1.3. Acronyms and Abbreviations

Acronym Description

AD Applicable Document

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

21 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Acronym Description

API Application Programming Interface

CFI Customer Furnished Item

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

DB Database

DBMS Database Management System

DMS DEIMOS Space

E2E End to end simulation

EOP Earth Observation Programmes

ESA European Space Agency

GCF Global Configuration File

GUI Graphical User Interface

HMI Human-Machine Interface

IO Input/Output

ICD Interface Control Document

IDL Interactive Data Language

JRE Java Runtime Environment

L1PP Level 1 Processor Prototype

L2PP Level 2 Processor Prototype

LCF Local Configuration File

MC Monte Carlo

OS Operating System

OSFI OpenSF Integration Library

RD Reference Document

SEPSO Statistical E2E Performance Simulator for Optical Imaging Sensors

SUM System User Manual

TBC To Be Confirmed

TBD To Be Defined / Decided

TN Technical Note

UML Unified Modelling Language

1.4. Definitions

Definition Meaning

Batch mode It is the capability of the simulator to perform consecutive runs without a continuous
interaction with the user. Batch mode assesses between the output of a given module and

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

22 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Definition Meaning

the input by the next one in the sequence of the simulation. Several modes of executions can
be performed:

❑ Iteratively, executing one or more simulations

❑ Iteratively, executing the same simulation several times depending on the

parameters’ configuration

❑ Same as above but by executing a batch script.

See Section 3.6 for further details.

Configuration File

An XML file that contains parameters necessary to execute a module. A configuration file
instance must comply with the corresponding XML schema defined at module creation time. A
special case is the global configuration file that defines the configuration parameters that
may be common to different modules.

Descriptor

The descriptors define the set of input and output files used to connect modules in simulation
runs. Each module has two descriptors associated, one for the inputs and the other for the
outputs. They define the number and location of each of the IO files. Descriptors are
thoroughly described in Section 4.3.1.

Framework
Software infrastructure designed to support and control the simulation definition and
execution. It includes the GUI, and persistence capabilities that enable to perform all the
functionality of the simulator.

Module

Executable entity that can take part in a simulation. A module can be understood, broadly
speaking, also as an “algorithm”. Basically, it contains the recipe to produce products as a
function of inputs. A module contains also several rules to define the input, output and
associated formats. Furthermore, its behaviour is controlled by one configuration file.
Overall, the architecture of a module consists of:

❑ The source code and its binary compiled counterpart (or interpretable script)

❑ A configuration file with its parameters

❑ An input descriptor that characterizes its inputs (number and their default names)

❑ An output descriptor that characterizes its outputs

Further details about modules are given in Section 4.3.2.

Parameter
An element of the system whose value characterizes a given aspect of a module, and is given
in the configuration files. Parameters are user-editable, they can represent system constants
or initial values of simulation variables.

Simulation

A simulation is defined as an execution of a set of modules (either a unique execution or an
iterative one with different parameter values). The restriction of how to concatenate these
modules and the order on which they are executed is based on the logic imposed by the
relation between their descriptors. For further details see Section 4.3.3.

Time-Based
Execution

The Time-Based scenario execution implements the notion of time driven execution of a
simulation whereby each simulation module is invoked in a sequence of time segments. See
Section 4.4.2.4 for further details.

Tool

A tool is an external program that performs a given action taking as input a certain group of

files. openSF can associate tools to a certain file extension. These tools can be automatically
invoked to perform operations taking as input the output of a simulation. Tools are described
in Section 4.3.5.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

23 of 155

 DEG-CMS-SUPTR09-SUM-10-E

2. RELATED DOCUMENTS

This section details the list of applicable and reference documents used for the generation of this
document, as well as the standards that have been applied. Note that the latest issue and dates of the
documents can be found on the openSF website (http://eop-cfi.esa.int/index.php/opensf).

2.1. Applicable Documents

The following table specifies the applicable documents that were compiled during the project
development.

Table 2-1: Applicable documents

Reference Code Title Issue

[AD-ICD] OPENSF-DMS-ICD-001 openSF Interface Control Document 3.0.1

[AD-ADD] OPENSF-DMS-ADD-001 openSF Architecture Design Document 2.2

[AD-E2E] PE-ID-ESA-GS-464 ESA generic E2E simulator Interface Control
Document

1.4.0

2.2. Reference Documents

The following table specifies the reference documents that shall be taken into account during the project
development.

Table 2-2: Reference documents

Reference Code Title Issue

[RD-OSFI-DM] OPENSF-DMS-OSFI-DM openSF Integration Libraries Developers Manual 1.20

[RD-OSFEG-DM] OPENSF-DMS-OSFEG-DM openSF Error Generation Libraries Developers Manual 1.3

[RD-TM] OPENSF-DMS-PMD-HAO-WS1 openSF Training Workshop 2018 1.0

[RD-PE] OPENSF-DMS-PE-SUM ParameterEditor Software User’s Manual 1.5

2.3. Standards

The following table specifies the standards that shall be complied with during project development.

Table 2-3: Standards

Reference Code Title Issue

[E40C] ECSS-E-ST-40C Software Engineering Standard 06/03/09

[XML] www.w3.org/TR/xml11/ Extensible Markup Language (XML) 1.1

http://eop-cfi.esa.int/index.php/opensf

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

24 of 155

 DEG-CMS-SUPTR09-SUM-10-E

3. GETTING STARTED

3.1. Introduction

During the concept and feasibility studies for the ESA Earth Observation activities, the mission
performance up to the final scientific products data needs to be predicted by means of end-to-end (E2E)
simulators. The observing system characteristics that impact data quality need to be determined in order

to achieve the scientific goals. On subsequent implementation phases, these mission E2E simulators
become a coherent test bed for L1PP and L2PP and to support the verification of space segment
performance and associated sensitivity analysis.

A mission E2E simulator is able to reproduce all significant processes, design and steps that impact the
mission performance as well as output simulated data products.

Commonalities in the structure of these E2E simulators highlighted the need for a common modular
framework. openSF is an open software framework to support a standardised set of E2E mission
simulation capabilities allowing the assessment of the science goals and engineering requirements with
respect to the mission objectives.

Scientific models and product exploitation tools can be plugged in the system platform with ease using a

well-defined integration process.

For the installation, detailed System Requirements are presented in section 3.4. For a quick installation
strategy, the recommended base system is the following:

❑ Ubuntu 18.04 LTS (or higher), macOS 10.14 or higher, or Windows 10;

❑ Oracle Java 8;

3.2. openSF User Profiles and Roles

openSF is designed to accommodate different use cases for different kind of users. This section
introduces the different openSF user profiles according to the intended use of openSF; and how this
manual has been tailored to each of them.

3.2.1. User profiles definition and quick-start guide

Four possible user profiles have been identified for openSF, and for each of them a quick-start guide is

made available. Throughout the manual, specific tags indicate which users is a certain section addressing

to. To increase readability, a tag assigned to a given section applies in cascade to all its sub-sections (if
not differently specified).

The reader, once identified with one of the profiles, has the possibility to:

❑ Quickly scan through the quick-start guide and jump to the referenced section of interest.
❑ Read the manual thoroughly, skipping all the sections that do not contain the tag associated to

the profile of interest.

Note that the user is free to read the manual to taste and that the current section only serves as a
general recommendation.

3.2.1.1. Scientific modules developer

The first openSF user identified is the module developer. This user has the objective to develop the
executable scientific processing modules that will compose the E2E processing chain meant to be
integrated into openSF. The module developer is not mainly interested in the functioning of the

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

25 of 155

 DEG-CMS-SUPTR09-SUM-10-E

integration framework itself, but only in the interfaces between openSF and the module(s) under
development.

The module developer’s tag used in this manual is:

The sections of this manual tagged for the module developer user are:

❑ The manual’s conventions, useful to understand the rest of the manual (Section 3.3)

❑ The modules’ pre-requisites in order to run openSF (Section 6.3)
❑ The modules creation process (Sections 4.3.2.2, 4.3.2.3)
❑ The parallelization techniques employed by openSF (Section 4.4.3.1)
❑ The dedicated guide to develop modules for openSF (Section 6)

If the module developer wishes to perform tests on the modules created, the reading of the sections
reserved to the E2E performance analyst and processing chain integrator profiles is recommended, with
special attention to the processes to create descriptors (Section 4.3.1) and simulations (Sections 4.3.3.2,

4.3.3.6).

3.2.1.2. E2E processing chains integrator

The End to End processing chain integrator is interested in setting up the simulation environment,
integrating the modules into a simulation and delivering an E2E simulator to the user.

The E2E integrator’s tag used in this manual is:

The sections of this manual tagged for the E2E Integrator user are:

❑ The conventions used in this manual and the system requirements (Sections 3.3, 3.4)
❑ The procedure to install and run the framework (Sections 3.5, 3.6)

❑ The general UI elements of openSF (Section 4.1)
❑ The data structure of openSF (Section 4.2)

❑ The elements composing the core of openSF:
o The descriptors (Section 4.3.1)
o The modules (Section 4.3.2)
o The simulations:

▪ How to list the available simulations (Section 4.3.3.1)
▪ How to create a simulation (Sections 4.3.3.2, 4.3.3.6)
▪ How to modify, copy and delete a simulation (Sections 4.3.3.2, 4.3.3.4 and

4.3.3.3)
▪ How to access other functionalities for a simulation run (Section 4.4.1)
▪ How the parallelization of module execution mechanism works (Section 4.4.3.1)
▪ How to export a simulation and generate a script from it (Sections 4.4.4, 4.4.5)

❑ The preferences settings of openSF (Section 4.5)
❑ Meta-data about openSF:

o The openSF license information (Section 4.6.1)

o The external documents linked to openSF (Section 4.6.2)
❑ The tutorial that explains how to generate and run a simulation from scratch (Section 7)
❑ How to build the framework (Section 8)
❑ How the environment variables are exported by openSF to the modules (Section 6.2)

3.2.1.3. E2E performance engineer

The E2E performance engineer is interested in running simulations with openSF like the E2E performance
analyst, but wants to also be able to finely control the simulation, exploiting openSF at its best.

The E2E performance engineer’s tag used in this manual is:

The E2E performance engineer is an extension of the E2E performance analyst, hence the great majority
of the sections of interest are already included in those of the E2E performance analyst.

M

I

E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

26 of 155

 DEG-CMS-SUPTR09-SUM-10-E

The sections of this manual tagged for the E2E performance engineer are the same for the E2E
performance analyst (Section 3.2.1.4) plus the following ones:

❑ The elements composing the core of openSF:

o The simulations:
▪ How to create a simulation (Sections 4.3.3.2, 4.3.3.6)
▪ How to modify, copy and delete a simulation (Sections 4.3.3.2, 4.3.3.4 and

4.3.3.3)
▪ How to apply parameters variation methods to a simulation (Section 4.4.2)
▪ How to access other functionalities for a simulation run (Section 4.4.1)

▪ How the parallelization of module execution mechanism works (Section 4.4.3.1)
▪ How to export a simulation and generate a script from it (Sections 4.4.4, 4.4.5)

o The external tools applicable to openSF’ results (Section 4.3.5)
❑ How to perform a multi-node simulation (Section 4.4.6)
❑ Meta-data about openSF:

o How to monitor the CPU usage (Section 4.6.3)
❑ The tutorial that explains how to generate and run a simulation from scratch (Section 7)

❑ How to build the framework (Section 8)
❑ How the environment variables are exported by openSF to the modules (Section 6.2)

3.2.1.4. E2E performance analyst

The E2E performance analyst wants to run simulations already integrated in openSF, getting acquainted
with all the steps that this would require.

The E2E performance analyst’s tag used in this manual is:

The sections of this manual tagged for the E2E performance analyst are:

❑ The conventions used in this manual and the system requirements (Sections 3.3, 3.4)
❑ The procedure to install and run the framework (Sections 3.5, 3.6)
❑ The general UI elements of openSF (Section 4.1)

❑ The data structure of openSF (Section 4.2)
❑ The elements composing the core of openSF:

o The descriptors (Section 4.3.1)
o The modules (Section 4.3.2.1)
o The simulations:

▪ How to list the available simulations (Section 4.3.3.1)
▪ How to apply parameters variation methods to a simulation (Section 4.4.2)

▪ How to resume a simulation (Section 4.4.3.2)
▪ How to read the logs generated by openSF (Section 4.4.3.3)
▪ How simulations are grouped (Section 4.4.3.4)

o The results (Section 4.3.4)
❑ The preferences settings of openSF (Section 4.5)

❑ Meta-data about openSF:
o The openSF license information (Section 4.6.1)

o The external documents linked to openSF (Section 4.6.2)
❑ The error message list (Section 5)

3.2.2. openSF user roles

openSF, as a simulator integration framework, intends to support different types of users whose goals are
clearly distinct. Each such type of user requires a different set of features for their typical use of the tool.

On the one hand, there is the user responsible for the development of the simulator modules and their
integration into openSF to compose the simulator. This user is expected to have a deep understanding of

openSF, its capacities and limitations. Typically, the work of this user unfolds during the development
phase of the simulator, and it is expected that a significant number of modifications to the openSF
simulation elements (i.e. descriptors, modules and simulations) will be needed until a state of maturity is

reached and the simulator can be considered production ready. For these users, openSF provides the

A

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

27 of 155

 DEG-CMS-SUPTR09-SUM-10-E

features enabled by “Developer” role. According to the definition of openSF user profiles (Sec. 3.2.1), the
“Developer” role is targeted to the Module Developer and E2E Integrator profile.

On the other hand, there is the user of the E2E simulators integrated in openSF. This user is not expected

to understand openSF in detail, as their goal is to use the fully integrated simulator. This type of user is
typically interested in modifying simulation inputs, executing the pre-defined simulations and collecting
the results. In order to ensure reliable and repeatable results, this type of user should be not required
(and eventually denied) to modify the openSF simulation elements. openSF provides a restricted set of
features for these users, known as “Normal” role. According to the definition of openSF User Roles (Sec.
3.2.1), the “Normal” role is targeted to both E2E performance analyst and engineer profiles.

By default, openSF is configured in “Normal” role and the user role selection toolbar is hidden. If the user
desires to create or modify any openSF simulation element, the “Enable user role selection” option can be

enabled in the Application Settings (see Section 4.5) to display the user role toolbar, and thus select the
“Developer” role.

Figure 3-1: User role selection toolbar

The main differences between these two roles are the following:

❑ Developer:

o The user can create new simulation elements (e.g. descriptors, modules, simulations).

o The user can modify previously created simulation elements.

o The user can execute simulations.

o The repeatable production of the results is not guaranteed as simulation elements can be

modified between two simulation executions.

❑ Normal:

o The user can view the previously created simulation element.

o The user can create, modify and execute simulations.

o The reliable and repeatable production of the results is guaranteed.

In both cases the user can delete the existing simulation elements, potentially resulting in cascading
deletions of any related element which depends on deleted elements (e.g. deleting a descriptor will cause
the deletion of all modules that refer to it, and of all simulations that refers to those deleted modules,
eventually reaching all the results of those simulations).

Therefore, if during the development stage of the simulator, one of its module’s inputs get modified and a

created descriptor is no longer needed but it is desired to keep the rest of the simulator unchanged, the
user cannot directly delete it. Instead, while in “Developer” role, the affected modules shall be first
modified to remove that descriptor from its inputs/outputs and only then it can be safely removed. As it
might be expected, this kind of practices break the replicability of the results, that’s why they can only be
performed in “Developer” role.

openSF applies a simulation fingerprint to keep track of the simulation results whose reliability is not
assured. Unreliable results are displayed in the Executions tab of the Navigation pane with a light red

background. Replicable results are shown on a white background (see Figure 3-2). At the end of the
simulator development stage and before entering in production stage, all the results with an unassured
replicability should be removed.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

28 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 3-2: Executions tab and color code based on results replicability

A result is considered as potentially not reliable if any of the following criteria applies:

❑ The result was obtained while in “Developer” role.

❑ The computed fingerprint of the simulation, or any of its components, at calculation’s time does
not match the current fingerprint of that simulation and its current components.

3.3. Conventions

This chapter lists all the conventions used throughout this System User Manual.

3.3.1. <OPENSF_INSTDIR>

The installation directory of openSF is represented by <OPENSF_INSTDIR>. This path is fixed and it is
determined at installation time (See Figure 3-5). In previous versions of the framework, $OPENSF_HOME
was used to signify the installation directory as well as the user work directory. The user work directory is
now represented by $E2E_HOME as detailed in section 3.3.2.

3.3.2. $E2E_HOME

$E2E_HOME is an environment variable that indicates the path to the user work directory, that is, the
folder where the user stores their working files. openSF uses it internally to resolve any relative paths in
descriptors, modules and simulations e.g. to find a configuration or input file. This variable is also

exported to the environment of running modules.

Like other environment variables, its value is set through the system preferences window (see Section
4.5.1). If it is not defined, openSF will use the value of $OPENSF_HOME to maintain backward
compatibility. If $OPENSF_HOME is also undefined, then $E2E_HOME is set to <OPENSF_INSTDIR>. By

M I A E

Results with unassured
replicability

Results with assured
replicability

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

29 of 155

 DEG-CMS-SUPTR09-SUM-10-E

default, the setup sets it to the root folder of the openSF installation, which would be similar to this (in a
UNIX-like operating system):

/home/<user>/openSF

The user is recommended to tailor this value to their preferred path in the user’s directory.

Before version 3.9.3, this variable was $OPENSF_HOME. This variable was serving the dual purpose of
installation directory and user’s work folder. $OPENSF_HOME will still be supported for backwards
compatibility but $E2E_HOME should be used, in line with the specification in [AD-E2E].

3.3.3. Data types

The data types supported by openSF configuration files are described in [AD-E2E].

3.4. System Requirements

The openSF framework is developed and runs on the Eclipse Rich Client Platform (RCP). The current
version of openSF is based on Eclipse 2019-03 (4.11), for which the target platforms officially supported
by the Eclipse project can be found in the Eclipse project plan page.

3.4.1. Hardware requirements

Hardware must at least fulfil the following requirements:

❑ x86-64 processor

❑ 4 GB of RAM memory installed

❑ 200MB of free space to install.

3.4.2. Operating system requirements

Not all the platforms targeted by the Eclipse platform are officially supported by openSF. Binary
distributions are currently provided for the following platforms:

❑ Linux: any sufficiently recent glibc-based distribution. In particular, openSF has been tested with

Ubuntu 18.04 and 20.04.

❑ macOS, version 10.14 or higher.

❑ Windows 10

3.4.3. Framework pre-requisites

It is recommended to use a Java Runtime Environment from Oracle, although the corresponding IBM or
openJDK versions should work as well. All the openSF software pre-requisites are freely downloadable,
the links for them can be found in the openSF website.

M I A E

I A E

M I A E

I A E

https://www.eclipse.org/projects/project-plan.php?planurl=http://www.eclipse.org/eclipse/development/plans/eclipse_project_plan_4_11.xml#target_environments
https://eop-cfi.esa.int/index.php/opensf

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

30 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Pre-requisite Purpose Licensing Distribution site

Oracle Java (TM) Runtime
Environment, Standard
Edition 1.8 (64-bit)

openSF runs within this
execution environment.

GNU GPL / Java
Community Process

http://www.java.com/en/d
ownload/

For server-based
databases only: MariaDB
server 10.5.2 or newer;
MySQL server 5.7.x or 8.01

openSF stores information
in this relational database

GPL or Proprietary License

http://dev.mysql.com/dow
nloads/mysql (MySQL)

https://mariadb.org/downl
oad/ (MariaDB)

For server-based
databases only: DB user
with database creation and
modification privileges

openSF needs DB
creation/modification
privileges

GTK+ v3.20 or higher

(Linux only)

openSF uses GTK+ as the
graphics library in Linux

Note: GTK known bug with
Table/Tree editing that
affects versions < 3.20.

GNU LGPL
https://www.gtk.org/downl
oad/index.php

mpstat (Linux only)
openSF uses this library to
assess the CPU core usage
statistics

GNU GPL
https://linux.die.net/man/1
/mpstat

sshfs
openSF uses this library for
remote execution

GNU GPL

https://osxfuse.github.io/
(OSX)

https://github.com/libfuse/
sshfs (Linux)

3.4.3.1. MySQL/MariaDB installation

If using server-based databases (versus file-based databases), the current openSF version ensures full
compatibility with MySQL server v5.7.x and MariaDB server 10.5.2 (and higher). MySQL server version
8.0 is tentatively supported, but has not been tested extensively with openSF.

Most common Linux distributions include either MySQL or MariaDB in their default repositories, so it can
normally be installed with the distribution default tools. Windows and macOS users may download either
database server from either project’s webpage. Documentation related to the installation of the database
servers can be found in:

❑ MariaDB: https://mariadb.com/kb/en/binary-packages/

❑ MySQL: https://dev.mysql.com/doc/refman/5.7/en/installing.html

Refer to Section 4.2.1 for further details on databases.

3.4.3.2. JRE installation

Any fully compliant Java 8 runtime environment should be able to run openSF, but if a runtime needs to
be installed, this manual recommends obtaining it from AdoptOpenJDK at adoptopenjdk.net.

Specifically in Linux, most popular distributions include a Java Runtime Environment as part of its default
package or in the distribution repositories. Usually this JRE is a custom build of the OpenJDK sources,
which is generally compatible with Eclipse and thus openSF. However, in case of any problems, do refer
to the recommended binaries at AdoptOpenJDK.

Note that after the installation of a different runtime it may be necessary to alter environment variables
like PATH or the JAVA_HOME environment variable must point to the folder location of the JRE (e.g.
export JAVA_HOME=/usr/lib/java/jdk1.8.0_131).

1 The DB server can accessed over the network; it does not need to run in the same computer as openSF

http://www.java.com/en/download/
http://www.java.com/en/download/
http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/mysql/
https://mariadb.org/download/
https://mariadb.org/download/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=548874
https://www.gtk.org/download/index.php
https://www.gtk.org/download/index.php
https://linux.die.net/man/1/mpstat
https://linux.die.net/man/1/mpstat
https://osxfuse.github.io/
https://github.com/libfuse/sshfs
https://github.com/libfuse/sshfs
https://mariadb.com/kb/en/binary-packages/
https://dev.mysql.com/doc/refman/5.7/en/installing.html
https://adoptopenjdk.net/

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

31 of 155

 DEG-CMS-SUPTR09-SUM-10-E

3.4.3.3. Remote execution installation

Remote execution in openSF relies on mounting a remote file system through sshfs. To enable this,
solution some pre-requisite software needs to be installed before openSF remote execution orchestration.
Note that the Windows version of openSF does not support remote execution.

3.4.3.3.1. Linux installation

The sshfs installation method in case the Linux distribution provides a software package manager consists
of installing the following packages: sshfs, fuse-utils. In case the Linux distribution does not provide an

online package manager it is suggested to visit sshfs website (https://github.com/libfuse/sshfs) and look
for alternative installation methods.

3.4.3.3.2. macOS installation

Sshfs installation package for macOS can be obtained from OXS Fuse official website
(https://osxfuse.github.io/). It is recommended to download the DMG archive. The stable releases of
both OSXFuse and SSHFS should be installed. Installation is based on a GUI installer with default
configuration.

3.4.3.3.3. SSH access permission configuration

To ease the access to remote file system through sshfs it is required to enable access by sharing ssh keys
(so that it is not required writing the password every time the connection is established).

The following commands implement the sharing of ssh keys between the participating computers:

~/$> ssh-keygen -t dsa

followed by:

~/$> ssh-copy-id -i .ssh/id_rsa.pub <user>@<machine>

For the above configuration the following packages are required: ssh-keygen, ssh-copy-id. Note that ssh-
copy-id is not an officially OSX supported package so either an unofficial installer can be used (e.g. brew)
or the public key needs to be copied manually.

3.5. How to Install the Framework

Provided that every pre-requisite is fulfilled, users can now proceed to install the application.

The openSF distribution package consists of an installer for each target platform. The installer will be in
charge of the system deployment and the pre-requisites checking.

The system pre-requisites checks performed by the installer are the following:

❑ Java JRE 1.8: the installer checks the presence of the Java Runtime Environment 1.8.

3.5.1. Installer guide setup

openSF is installed via a multi-platform GUI installer. To download the openSF software and
documentation perform the following steps:

1. If not already done, register as a user on http://eop-cfi.esa.int/ (see “Create an account” link in right
pane). The registration is free;

2. If not already done, register as openSF user at http://eop-cfi.esa.int/index.php/openSF/openSF-

registration (see Figure 3-3);

3. Download the Software at http://eop-cfi.esa.int/index.php/openSF/download-installation-packages

I A E

https://github.com/libfuse/sshfs
https://osxfuse.github.io/
http://eop-cfi.esa.int/
http://eop-cfi.esa.int/index.php/opensf/opensf-registration
http://eop-cfi.esa.int/index.php/opensf/opensf-registration
http://eop-cfi.esa.int/index.php/opensf/download-installation-packages

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

32 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 3-3: openSF web page

3.5.1.1. Linux installation

openSF software is available for all the Linux distributions. After downloading the installer corresponding
to the machine architecture, users will execute it (either by double clicking on it or by opening a terminal

window and executing it) and follow the instructions that appear on the screen.

If the system pre-requisite Java is not met the following error message will be shown.

$./openSF_linux64_<version>.sh

No suitable Java Virtual Machine could be found on your system.

The version of the JVM must be at least 1.8.

Please define INSTALL4J_JAVA_HOME to point to a suitable JVM.

The installer checks the presence of an adequate Java Virtual Machine in the PATH, or in the location
defined by the environment variable mentioned in the message. Therefore, this error could be fixed by
setting the variable to the correct location of the JVM in the system with the export command and then
running the installer

$ export INSTALL4J_JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

$./openSF_linux64_<version>.sh

Starting Installer ...

or by ensuring that “java” is available in the PATH when invoking the installer execution command.

$ PATH=$PATH:/usr/lib/jvm/java-8-openjdk-amd64/ ./openSF_linux64_<version>.sh

Starting Installer ...

If the JVM location is correctly set, the initial window will open when running the installer. The program
first checks if openSF is already installed, offering to update the existing version (Figure 3-4). Otherwise,
the first screen merely contains a welcome message.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

33 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 3-4: Installation confirmation screen

If an upgrade is possible and the user chooses to update the current installation, the installer will try to
read the existing openSF configuration file, in order to keep the current settings in the updated system.
This is normally automatic and transparent to the user. However, if the configuration cannot be read, a

dialog warns the user and allows the installation to be cancelled before any changes are made. If the user
nevertheless decides to continue with the upgrade, the new openSF will have default settings.

Once the installer has checked the system pre-requisites the user shall select the destination folder to

hold the openSF software (Figure 3-5). The default installation folder is under the user home, so that the
installation does not require any administrative privileges.

Figure 3-5: Installer folder selection window

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

34 of 155

 DEG-CMS-SUPTR09-SUM-10-E

In the next window users shall check that the information is correct and click next to proceed with the
software installation (Figure 3-6).

Figure 3-6: Installation icon window

If the installation process has been successful an “Install Complete” dialog will appear allowing to
automatically launch the openSF software (Figure 3-7). To launch openSF at a later time, users may
either user the openSF desktop icon2, or open a terminal window, go to the openSF installation folder and
run openSF manually. For further details on launching openSF refer to section 3.6.

Figure 3-7: Installation successful screen

3.5.1.2. macOS and Windows installation

The installation package for macOS and Windows is also provided with a GUI installer, which in the case
of macOS is inside a DMG archive. After launching the installer file, the procedure to follow in the
installation is the same as for Linux, described in section 3.5.1.1 just above.

2 The openSF desktop icon is only available if the user so chooses during the installation process

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

35 of 155

 DEG-CMS-SUPTR09-SUM-10-E

3.5.1.3. Uninstalling openSF

The installation process places an uninstaller application in the application’s root folder.

Note that the uninstall mechanism removes the application files, while the database is not and user
simulation folders are removed only if they are in the <OPENSF_INSTDIR> directory.

Figure 3-8: Uninstall confirmation screen under Linux

3.5.1.4. Folder structure

This section provides a general description of the openSF folder structure and its contents.

Folder name (indented) Contents

<OPENSF_INSTDIR>

openSF home root

❑ “openSF”. Starting-up script/executable.

❑ “openSF_updater”. Script that updates openSF

❑ “uninstall”. Uninstaller

❑ “openSF.properties”. The configuration file.

❑ “LICENCE”. The licence file.

❑ Only in Windows distribution: eclipsec.exe, openSF.ini, artifacts.xml.

configuration Folder that contains Eclipse related files with fixed configuration

data

Folder with a global configuration file template as well as a database template.
Inside xml/import folder there are xsl files intended to transform old formatted XML
files into OpenSF databases.

features, plugins, p2 Folders that contain Eclipse related files

ParameterEditor Folder that contains the ParameterEditor executable (see Section 4.3.3.6.3)

workspace Eclipse related folder with user configuration

simulations

openSF simulations root folder. This folder will contain the output of all executions
run. During installation this path is set by default to $E2E_HOME/simulations (with
$E2E_HOME set to the <OPENSF_INSTDIR>), but it is user configurable (see Sec.
3.3.2).

simulations/<ID> Simulation folder. Every simulation, once executed, has one directory structured as

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

36 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Folder name (indented) Contents

this one. However, if the execution is of type Timeline, Iteration, Perturbation or
Batch, there will be a parent folder with several sub-simulation executions located
under it.

Each normal simulation folder (or timeline/iteration subfolder) will have the
simulation script and, if generated, the simulation report. This folder will also have
the input and configuration files used by the modules and their outputs.

resources/documentation Default folder for framework documentation.

test

Test folder for openSF validation scenario. This folder contains the modules binaries
for running the test simulation.

❑ lib: shared libraries

❑ bin: modules binaries

❑ data: files used in the examples of the validation database.

o batch: example of configuration file for batch simulations.

o conf: examples of configuration files. This includes local configuration files
and a template for the global configuration file the user needs to
mandatorily supply manually.

o database: validation database in XML format.

o perturbations: sample input files of parameters’ perturbations.

o simulations: the configuration and input files used by each of the
simulations provided in the validation database. The files are arranged in
subfolders with the same name as the simulation that uses them.

o timeline: example timeline scenario file.

Note that on macOS, all Eclipse related files are not deployed in the root directory; they are in the app's

contents package.

Users can also find useful the guidelines about how to organize the folder structure of a simulation
project integrated in openSF. These guidelines are described in section 7.2.

3.5.2. Licensing scheme

openSF uses a licensing scheme that allows integrating it in any kind of third-party developments. It is

distributed under the terms of the “ESA Software Community Licence Permissive” as published by the
European Space Agency; either version 2.4 of the License, or (at your option) any later version.

A copy of the “ESA Software Community Licence Permissive - v2.4” is distributed with openSF, or can be
found at http://eop-cfi.esa.int/index.php/docs-and-mission-data/licensing-documents.

3.6. Running openSF

3.6.1. How to start the application

The openSF system can be launched (under Windows, macOS and Linux) by: (a) double clicking on the
openSF desktop icon3 or (b) using a command line interface and executing the following command.

<OPENSF_INSTDIR>/openSF (Linux)

open -a <OPENSF_INSTDIR>/openSF.app (macOS)

<OPENSF_INSTDIR>\openSF.exe (Windows)

3 The openSF desktop icon is only available if the user so chooses during the installation process

I A E

http://eop-cfi.esa.int/index.php/docs-and-mission-data/licensing-documents

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

37 of 155

 DEG-CMS-SUPTR09-SUM-10-E

If openSF is launched with no parameters, the GUI will show up normally. This behaviour can be modified
providing the following parameters:

❑ --execute <simulation_identifier>. The framework will launch the execution of a previously

defined simulation with the stored parameter values. For example, to run in batch mode a
simulation named “Radar”, use the following command arguments:

<OPENSF_INSTDIR>/openSF --execute Radar

This form will execute openSF, find a simulation named “Radar” and execute it, intercepting all
the events and storing the results in the database. Then, the system will stop.

❑ --dbCfg <db_config>. Use the given database settings, in the same format that is stored in the
configuration file4. If absent, openSF will use the connection that was last used successfully.

For example, the following will run openSF with a file-based database named “filedb” directly
under $E2E_HOME:

<OPENSF_INSTDIR>/openSF --dbCfg 'h2$$filedb'

Note that command-line options must use double dashes. Since openSF is built on the Eclipse RCP
technology, options with a single dash may be intercepted by the Eclipse launcher code, not reaching the
openSF application code at all.

3.6.2. First start-up

The framework needs to be always connected to a valid database in order to function. For this purpose,
when the user first starts the application, or if no “last used database” is defined in the configuration,

openSF is opened in a temporary state that allows the user to quickly create a database with a default
name. This is offered via the first-start welcome dialog depicted in Figure 3-9.

Figure 3-9: First start dialog

The first two options create the described default database, directly under $E2E_HOME, either fully
empty or using an example dataset with predefined modules and simulations. The last option instead

4 Note that the shell syntax may require escaping certain characters in this string, e.g. in Linux or macOS
it may be necessary to escape “$” characters, or quote the entire string.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

38 of 155

 DEG-CMS-SUPTR09-SUM-10-E

opens the “databases” dialog, allowing the full range of settings (name, location, initial dataset) to be
used. See section 4.2.1 for more details on the advanced procedure.

3.6.3. Check for updates

openSF performs an automatic check for new versions by connecting to a remote server. In case a new

version is identified the user is given the choice of downloading the software. Afterwards the user can
upgrade the software version following the standard installation procedure for openSF software.

Note that for versions of openSF before 3.10, this will erase the contents of the program folder, so any
simulation data stored there may be lost.

3.6.4. Exit the system

Upon the selection of this function, openSF will inform the user whenever a simulation is executing. Upon
user confirmation, openSF will stop every internal process (including on-going external modules) and will

end its execution. This is the recommended way of ending the application.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

39 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4. REFERENCE MANUAL

This section provides a detailed description of all the elements that conforms the openSF graphical user-
interaction.

4.1. HMI Description

In this section the look-and-feel, operational behaviour and design features of openSF HMI are presented.

4.1.1. Main window

The HMI accepts inputs via devices such as the computer keyboard and mouse and provides articulated
graphical output on the display. The HMI has been designed to be flexible, to let users organize the
layout of the information as desired, showing only relevant windows and in the way users want. The

layout consists of a main container that can host inside several internal frames. These internal frames are
intended to present independent modules of openSF. For example, each time the user wishes to perform
operations with the list of modules in the repository, a module manager frame will pop-up inside the
bounds of the main window listing the list of modules currently available within openSF.

Figure 4-1: Main window appearance

M I A E

I A E

Auxiliary panel

Working area

Side bar

Menu bar Tool bar

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

40 of 155

 DEG-CMS-SUPTR09-SUM-10-E

All the windows have common operations to help their usability: main window, internal frames or
dialogues can be closed, resized, maximized or minimized to fit the user’s needs.

This main window shown in Figure 4-1 includes a menu bar to provide keyboard and mouse access to the

simulator main functions as well as functions regarding frames management and application basis.

Occupying the central and main region there is a working area. This area is where all internal frames are
going to be created and the main interaction with the user is held. On its side, this working area
implements a “scrollable” panel in order to easily navigate through frames surpassing its bounds.

At the left side of the working area there is the system objects navigator, a “side bar” aiming to provide a
quick access handler to every item defined in the system: repository of descriptors, modules and

simulations, the list of simulation execution results and also a file system browser to navigate through

the contents of the application’s directory. Section 4.1.1.1 deeply describes this part.

The main window’s footer area shows application status information.

Figure 4-2: Main window appearance showing internal frames and scroll bars

The HMI provides a menu bar (Figure 4-4) at the upper side of the main frame to show some capabilities

of the system. Below the menu bar there is also a toolbar to quick access critical functionalities (Figure
4-3).

Figure 4-3: Detail of main menu bar

Available frames
toolbar

Internal frame

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

41 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-4: Detail of a menu, showing menu items

Figure 4-4 shows that a menu item is composed of the name of the function and a quick access key
combination. Users can quickly access this functionality pressing this key combination or the first letter in

the function name while the menu is rolled down.

There are also some contextual or pop-up menus that users can access by clicking the right button of the
mouse while over certain controls5. These pop-up menus have the same appearance of the menus rolling
down from the menu bar. Here, icons are added at the left of the function names that graphically
describe them.

Figure 4-5: Detail of a contextual menu

It can be seen in Figure 4-5 that a pop-up menu acts exactly like a menu at the main frame. They also
provide mouse and keyboard access to certain capabilities.

4.1.1.1. Side bar

On the left side of the main frame there is the side bar, grouping different views of the openSF areas:
Repository, Executions, and File system.

As can be seen at the right-upper corner of Figure 4-6, standard buttons are available to minimize or

maximize the side bar. The side bar can also be dragged to dynamically change its width.

5 In macOS the contextual menu behaviour may depend on setting the correct gesture for Bluetooth
mouse and track pad: the "Secondary click" gesture (e.g. "Click with two fingers" in track pad or 'Click on
right side" in Bluetooth mouse) should be applied to allow using the options in the contextual menus.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

42 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-6: Side bar

Into the Repository tab of the side bar, users can find a tree-like structure containing all the known
modules, descriptors and simulations.

This tree-like structure can be collapsed or expanded by clicking in the arrow-shaped icon.

The repository will show only the elements
containing a given substring of characters written in
this text box.

Elements are structured into the repository by
element type (descriptors, modules and
simulations).

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

43 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-7: Repository view

Every row marked with an arrow-shaped icon represents and element definition of the repository. Every
row without icon represents an element instance. Right-clicking over both of them, a menu pops up
containing some associated commands. These menus are context-sensitive, meaning that different types

of elements have their own associated commands. These commands are going to be explained in detail in
each element’s section (Sections 4.3.1, 4.3.2, 4.3.3).

A left double click over the elements will activate the first associated command of the menu (typically,
editing).

The last tab in the side-bar (i.e. File system) is a browser to easily access both the folder structure under
the openSF installation directory and the simulations execution directory.

Organized in the tree-like structure, the user can easily locate every needed file. This structure is
refreshed every time an operation involving files is performed or when the user presses the “refresh”
button.

Element
definition

Tree node
arrow

Element
instance

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

44 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-8: File system view with the simulations directory inside (left) and outside (right) of the the
openSF installation directory

The contents displayed in the File System tree change depending whether the simulations executions
directory is located inside the openSF installation directory (default behaviour after a clean installation) or
outside of it (custom defined by the user from the preferences page, see Section 4.5).

In the first case, the openSF workspace is added as root node of the File System tree and the selection
and focus is set to the location of the simulations directory, expanding as many nodes as required to do

so. In the second case, both the openSF workspace and the custom location of the simulations executions

directory are added to a dummy “File System” node, expanding and focusing the simulations node as
done before. See Figure 4-8.

The File System tree uses a colour code to ease finding the resulting files of the executions. Therefore, if
a tree node represents a folder containing the results of an execution which is also present in the
currently selected database, that node, its parents and all its children are rendered in black.

By contrast, if a tree node represents either a file or a folder which is not part of an execution result, or
which has been computed while connected to a different database than the currently selected one, the
tree node is rendered in light grey.

4.1.2. Frame management

Accessing the “View” menu of the main menu bar the user can find all the functionality provided for the
frame management. Option ‘Reset Views’ allows restoring the original window properties (as defined
when installing openSF)

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

45 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-9: Frame management menu

Other frame management functionalities can be found in the header of every main frame (hence not in
dialogues).

Figure 4-10: Internal frame header

Note the two little icons at the right border of the header (Figure 4-10), to “minimize” and “maximize”
the frame.

If the user minimizes a frame, it disappears from the working area but it can be restored from the
“available frames toolbar” visible at the side of the main frame.

4.1.3. Generic functionalities, dialogues and displays

This section is meant to describe the design of HMI generic functionalities, dialogs and displays.

There are some functionalities of the HMI that show a “file chooser” dialog as shown in Figure 4-11.

Figure 4-11: File chooser dialog

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

46 of 155

 DEG-CMS-SUPTR09-SUM-10-E

This dialog allows the user to browse the system directory to select a certain file or list of files. It
provides sorting, filtering and file operations.

Throughout the openSF HMI some functionalities may show information to the user and might ask for

some input in response to a specific question. The HMI will present modal dialogs that will get the system
focus until the user provides an answer. These modal dialogs will block the input to other areas of the
application until a response is given.

Figure 4-12: Dialog example

These dialogs will typically provide a message with an “OK” button or give a yes-or-no question, or
another question with different options. The dialogs will provide information with a clear description of
the event.

4.2. Data Structure

Most information systems must store information in a persistent way. openSF trusts a relational database
to store structural information and the file system to store the input/output/configuration files. The
following table shows which openSF elements are stored in the database and which into the file system.

Table 4-1: openSF information management system

Element Storage

System.Configuration File system. <OPENSF_INSTDIR> /openSF.properties

System.Tools Database

Repository.Descriptors Database

Repository.Modules Database

Repository.Simulations Database

Repository.Simulation script
File system. <simulations_folder>/<sim_id> /<name>.sh, where the
simulations folder is that defined in 4.5.3.

Executions.Results Database

Executions.Logs

File system: <simulations_folder>/openSF.log (global)

File system: <simulations_folder>/<sim_id>/log/simulation.log (for
each simulation)

File system: <simulations_folder>/<sim_id>/log/MODULE.log (for
each simulation and module, only if enabled in application settings)

Execution.Dumped log simulation File system

Execution.Input/output/configuration files
File system

<simulations_folder>/<sim_id>/<filename>

The folder structure of openSF has already been presented in Section 3.5.1.4.

In the openSF database, the following string types are used:

I A E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

47 of 155

 DEG-CMS-SUPTR09-SUM-10-E

• Short string: 25 characters
• Normal string: 75 characters
• Medium string: 255 characters

4.2.1. Databases

openSF has the ability of working with multiple repositories. This implies that users can create different
databases, so that all of them are independent and do not share any table. Users can work with different
input data by selecting only the corresponding database in the repository. If the user changes input data,
only the database that is loaded in that moment is modified, as all databases are independent. Thus,
openSF can hold more than one database in one single instance.

Databases may be either server-based or file-based.

When the user selects the “Databases” option from the menu “System”, the window presented in Figure
4-13 will show up.

Figure 4-13: Database management window

At the bottom of the window there are seven buttons, which allow users to perform different actions over

the databases. Users can connect to an existing database, create a new database, delete an existing
database, import database definitions specified in XML format, export database definitions in the same
format or add databases residing in the same server/folder to the list.

The central area of the window shows a list with the stored databases. Along with the database name,
this area shows the database location and engine. The location could be either a system path (in case of
a file-based database) or a set of address and user (in case of a server-based database).

The bottom of the window shows a label with the database currently in use by openSF. In this case, the

application is connected to the ‘testDB’ database, so all configuration associated with its descriptors,
modules and simulations is loaded by the system.

Finally, there is a “Close” button to return to the main window of the application.

4.2.1.1. Connect to a database

Users can switch between the different databases located in the DB server. For this, the user has to
select a database from the list, and click on the “Connect” button. Automatically the system is connected
to it, and then, the name of the selected database is shown beside the label “Connected to”. An example
of this procedure is shown below:

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

48 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-14: Connect to a database

The window shows that the system is connected to the “testDB” database. If the user selects the “opensf”
database from the list, and clicks on the “Connect” button, the system automatically connects to this
database, as it is shown in the corresponding label. If an error occurs during the procedure and the

connection cannot be performed, openSF shows a message reporting the error.

4.2.1.2. Create a new database

If the user wants to create a new database, he has to click on the ‘New’ button, and a dialog will be
shown by the application, as it can be seen in Figure 4-15.

Figure 4-15: Create new database

The user can now choose the database name and type. Depending on the type, the user shall fill the
remaining fields. For a server-based database (as shown in Figure 4-15) the fields are:

❑ User and password: Credentials for the user that connects to the databases server (requires
privileges to create a database);

❑ Address: Hostname (and optionally port) where the database server is located;

For a file-based database, the only field is:

❑ Folder: The system folder in which the database file is going to be saved. Folders located inside
E2E_HOME will be stored as relative to it.

Some fields are presented with a default value e.g. if the system is currently connected to a server-based
database, the default is to create a new server-based database using the same server and credentials.

All fields are mandatory except the server-based password, which may be empty.

In the lower part of the window, the user can choose the initial contents of the database:

❑ Empty database: no elements, just the basic structure

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

49 of 155

 DEG-CMS-SUPTR09-SUM-10-E

❑ Example database: containing example modules and simulations

❑ Importing another database XML representation

When the user enters all the information correctly and clicks on the ‘OK’ button, the new database is

created, and openSF is automatically connected to it.

In case some field has been entered incorrectly (as for example an already existing database name, or
the user or password to connect with the server are incorrect) openSF shows a message reporting the
error as shown in Figure 4-16, and force the user to enter the correct information.

Figure 4-16: DB creation error message (wrong name)

If the user clicks on the ‘Cancel’ button on the new database window, no action is performed.

4.2.1.3. Delete a database

To remove a database from the databases server, the user has to select the database to remove from the
list, and click on the ‘Delete’ button, as shown in Figure 4-17.

Figure 4-17: Delete a database

A new dialog is shown to confirm the action. If the user clicks on ‘OK’, the database is deleted.

Figure 4-18: Confirm deletion operation

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

50 of 155

 DEG-CMS-SUPTR09-SUM-10-E

openSF needs to be always connected to an existing database. Thus, the user cannot delete the
connected database otherwise the system will send an error message. Therefore, the user must connect
to another database to delete the current one.

4.2.1.4. Import and Export a database

The capability to import and export elements definition specified using XML (refer to [AD-ICD] for the

definition of the expected XML format) is accessible from the Database Management window, presented
in Section 4.2.1.

To import a database, the user shall click on the “Import” button appearing at the bottom of the window
and select the XML file containing the database definitions.

Figure 4-19: Database import

In case the specified file is invalid, a warning message is given and the import is cancelled.

Figure 4-20: Database import file error

If the file is valid but contains invalid definitions (e.g. non unique entities) a warning message is given
and the import is cancelled.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

51 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-21: Database import XML definition error

The outcome of the operation is that the elements included in the XML file have been created as a new
DB in the DB server.

To export a database, the user shall select a database from the list and press on the “Export” button. The

user can now select the desired file path and confirm.

4.2.1.5. Refresh database list

The database management dialog provides the capability to refresh the list of openSF databases available
in the server or folder to which openSF is connected to. This functionality identifies among the available
databases the ones that are compatible with openSF. This capability is applicable in situations as manual
migration of openSF database or automatic database upgrade, both occurring typically when upgrading to
a more recent version of openSF.

4.2.1.6. Database maintenance

Currently, openSF can connect to a local or remote server. If the last database to which openSF was
connected is not accessible during openSF initialization, openSF will start in a temporary state described
in Section 3.6.2 that will allow the user to connect to a valid database.

The user (or the database server administrator) is responsible to regularly back up, de-fragment, clean
and perform similar maintenance operations to guarantee the database integrity. In case of a MySQL or
MariaDB database, users can execute the following script to perform a manual backup of the openSF
database, which can later be restored using the same utilities:

~/openSF$ mysqldump --user=openSF --password=openSF openSF > openSFdb.bk.sql

4.2.2. Simulation Results Naming Conventions

openSF naming convention for simulation execution directories, as well as their relative supporting files,
involves the use of names with a timestamp. The use of a timestamp is meant to ensure a unique
identification of the simulation folder and files.

In case of a nominal simulation (single execution) the execution result (whether it was successful or not)
is stored in a <simulations> folder, named as “<simulation_id>.<starting_time>”. Starting time is coded

as “YYYYMMDDTHHmmSSdsss”6 in local time – see the format in Figure 4-22.

In case of timeline-based and iteration/perturbation-based simulations, openSF groups related
simulations execution results into separate output folders (since these two types of executions can end
up to hundreds of simulations). Also, in these two cases, in order to uniquely identify the executions, a
timestamp is appended to the execution identifier, as shown in Figure 4-22.

Note that the prefix “exec#” is used for each iteration folder as a way of facilitating the user’s distinction

between Timeline and Iteration/Perturbation executions.

6 “sss” denotes milliseconds

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

52 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Summarising, the naming scheme for simulation result folders is as follows:

❑ Nominal simulation (single execution)

o <simulation_id>.<start_time>, where

▪ simulation_id is the simulation name (as seen in the “Repository” view)

▪ start_time is the simulation execution start time, formatted as YYYYMMDDTHHmmSSdsss

❑ Iteration/perturbation-based simulation (multiple executions, based on the combination of
iterations/perturbations)

o <simulation_id><start_time>/exec#.<start_time2>, where

▪ simulation_id is the parent simulation name (as seen in the “Repository” view)

▪ start_time is the simulation execution start time, formatted as YYYYMMDDTHHmmSSdsss

▪ # is an incremental integer defining the order of execution of the multiple executions

▪ start_time2 is the iterated execution start time, formatted as YYYYMMDDTHHmmSSdsss

❑ Timeline-based simulation (multiple executions, based on time segments specified)

o <simulation_id><start_time>/<time_segment_start>.<start_time2>

▪ simulation_id is the parent simulation name (as seen in the “Repository” view)

▪ start_time is the simulation execution start time, formatted as YYYYMMDDTHHmmSSdsss

▪ time_segment_start is the time segment start time (as defined by the user)

▪ start_time2 is the time segment execution start time, formatted as

YYYYMMDDTHHmmSSdsss

Figure 4-22: Grouping of iteration/perturbation (left) and timeline (right) simulations

In order to simplify simulation results directory names, symbolic links are used. Each time a simulation is

executed a symbolic link is generated in the file system with the name of the simulation being executed
(appended by “.last”) and pointing to the corresponding simulation execution directory. Each time a
simulation is re-run the symbolic link is re-generated pointing to the latest simulation execution (the one
with the latest timestamp). Keep in mind that these symbolic links are not generated in Windows without
administrator permissions. The contents of openSF installation directory and the simulation execution
ones can be reviewed in the File System tab of the side bar, see Section 4.1.1.1.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

53 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-23: File system in the side bar, including symbolic link to last simulation

4.3. Framework Elements

In this section the elements at the base of openSF are described. They are collectively called the
“domain” elements of openSF.

4.3.1. Descriptors

openSF has the possibility to define the set of input and output files (called descriptors) used to connect

different modules in simulation runs.

Users can access the list of nominal descriptors (those provided in the default distribution) inside the
repository view of the side bar, as seen in Figure 4-24.

Accessing the corresponding menu of the main menu bar (Edit → Elements → Descriptors… or Edit → New
Elements → Descriptors…) or the context-menu of the side bar, users can activate the following
functionalities:

❑ List – presents the list of existing descriptors;

❑ Creation – creates a new descriptor into the system;

❑ View – displays the contents of an existing descriptor

❑ Modification – edits an existing descriptor to enter changes;

❑ Deletion – deletes a descriptor from the system;

❑ Copy – creates a copy of an existing descriptor.

M I A E

M I A E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

54 of 155

 DEG-CMS-SUPTR09-SUM-10-E

The options availability depends on the active user role as explained in Section 3.2.2.

Figure 4-24: Descriptors in the side bar

Users can access operations in the menu bar of the main window (Edit → Elements → Descriptors… or

Edit → New Elements → Descriptors…) or through the corresponding context-menu of the repository
view.

4.3.1.1. Descriptor list

Users can access to a window that provides a tree-like structure with the list of descriptors known by the
system, just as in the side bar but with the additional information of its description and the number of
associated files.

Figure 4-25: Descriptors list view

I A E

Every descriptor defines

a set of files

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

55 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4.3.1.2. Descriptor creation

Users can define new descriptors in case they want to accommodate third-party modules that cannot
make use of any of the nominal descriptors.

The frame shown in Figure 4-26 is responsible to define the descriptor’s characteristics:

Figure 4-26: Create a new descriptor

The attributes that identify the descriptor and that shall be set by the user are the following:

Attribute name Format Purpose Example

Identifier Short string Descriptor’s unique name. LIDAR In

Description Medium string
A brief description of its composition or

the purpose of the set of files.

Orbit information and

radiative transfer information

It is possible to alter the set of files that integrates the descriptor. Users can edit, add or remove files.
Each individual file must be described by these two parameters:

M I

right-clicking here, a file
browser dialog will
appear. Users can now
select the default file
name.

“Up” and “down” buttons.
Users can alter the order of
the files as they wish.

“Add” and “remove” buttons. A
descriptor must have a
minimum of one file.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

56 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Attribute name Format Purpose Sample

Default file Medium string

The default location and name of the file.
This is the file that is going to be
suggested during the simulation definition
(see section 4.3.3).

orbit.xml

Description Medium string
Brief description of the file’s composition,
its purpose or its type (XML, TIFF,
NETCDF, etc.).

XML file with Orbital
information

It is important to note that the default file name is the way to know if two modules are compatible and to

connect them in the simulation definition. A descriptor could also have zero files. Multiple descriptors with
zero files could be created, but they are all equivalent to openSF.

The order that the files occupy in the descriptor list is significant. The order must fulfil the directives of
the command line specification of the simulation module because the way in which the files are arranged

will define the order of the input and output files in the command line of the module execution (see [AD

ICD]). This order can be altered with the “up” and “down” buttons that move the selected file through

the list.

Upon creating a descriptor its default file field is considered as a template name, i.e., this definition may
be used as-is during simulation execution or it can be changed in the simulation edition window. When
changing the actual file descriptor in simulation edition the file location can be set to any path, either an
absolute one (in the local machine) or a relative one. By default, the descriptor is considered as a
relative path. It may be relative to (a) the user’s work folder (as per $E2E_HOME), or (b) the simulation
execution folder:

(a) It will be relative to the user’s work folder when the descriptor is used for input only (e.g. the

input descriptor of the first module of a processing chain).

(b) It will be relative to the simulation folder when the descriptor is used both as input descriptor and
output descriptor (e.g. a folder generated during processing and later on used as input to a next
module).

4.3.1.3. Descriptor modification

Users can select a certain descriptor and choose the option to edit it. Note that any modifications
performed on the descriptor will also affect all the modules and simulations that use it.

4.3.1.4. Descriptor deletion

Users can also select a descriptor and delete it. Once users confirm the operation the descriptor is erased
from the repository. Note that for consistency purposes, every module or simulation (and its
results) that make use of this descriptor will also be deleted from the system.

4.3.1.5. Descriptor copy

Users can select a certain descriptor and choose the option to copy it. The user needs to specify a new
name for the descriptor, unique with respect to the existing descriptors.

I

I

I

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

57 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-27: Copy of a descriptor

4.3.2. Modules

According to the definition given in Section 1.4, a module is an executable entity that can take part in a
simulation. Users are able to manage all modules that take part in openSF simulations. The operations
upon modules, which vary depending on the active user role (see Section 3.2.2), are:

❑ List – present the list of existing modules;

❑ Creation – capability to create a new module into the system;

❑ View – displays the contents of an existing descriptor

❑ New version – create a new version of an existing module;

❑ Modification – edit an existing module to enter changes;

❑ Deletion – delete a module from the system;

❑ Copy – creates a copy of an existing module.

Figure 4-28: Repository view: modules

M I A E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

58 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-29: Repository menu

Users can access some of these operations at the modules’ menu in the menu bar of the main window or

in the correspondent context-menu of the repository view.

Figure 4-30: Module pop-up menu

4.3.2.1. Module list

Accessing to this functionality from the main menu or from the repository, the system will show a list of
modules known by the system. Figure 4-31 shows an example of the window that appears upon its
selection. Users can select a certain version of a module and perform the operations in the toolbar.

Data attributes shown in this tree-table are module ID, version number, description and the name of the

author.

Figure 4-31: Module list view

I A E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

59 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4.3.2.2. Module creation

Users can add a new module accessing this functionality from the main menu or alternatively clicking
over the “New” button in the module manager.

This frame contains the components needed to introduce all data to define a new module in the system.

These data (module attributes) are grouped with the following structure:

❑ General

❑ Configuration

❑ Input / Output

Each category is analysed in the following sub-sections.

4.3.2.2.1. General data

In this group (Figure 4-32) users must define general information about the module to create.

Figure 4-32: Module general data

The fields to be defined are the following:

Attribute Name Format Purpose Example

Identifier Short string Unique module identification. LIDAR

Module version Float
In a new module this field will be filled
with a default value.

1.0

Description Medium string
Free writing area where to briefly
describe the module.

State-of-the-art LIDAR
instrument module

Author Short string
Text field where to write the author’s

name.
DMS

M I

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

60 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Attribute Name Format Purpose Example

Source file Medium string
Optional field for a file name7
representing the source code of the
module.

modules/LIDAR/src/lidar.f90

Executable Medium string
The executable8 file (either a binary
executable or script) to be invoked when
performing a simulation.

module/LIDAR/bin/lidar

4.3.2.2.2. Configuration

Selecting the “Configuration” tab (Figure 4-33), users can select the XML configuration file and its

correspondent XSD schema file using file-browser dialogues. Text areas are also provided to preview the
XML code.

Figure 4-33: Module configuration

The XSD schema file will validate the respective configuration file and report any found inconsistencies.

By default, as indicated in Section 4.5, openSF is set to skip said validation. However, the user can select

within the Preferences window to allow the validation and generate either warnings or errors.

4.3.2.2.3. IO descriptors

The “Input/Output” tab (Figure 4-34) from the Module properties window enable users to specify,

respectively, the contents of the input files expected for the module, and the output files the module
produces as output. Thus, within this tab users can select the input and output descriptors for this
module. The default file identifiers of the IO descriptors allow the module connection when defining
simulations.

7 Codes in general will have several routines, so the “source file” could be the file containing its “main”
routine, or the packaged sources (e.g. module-src.tar.gz). The sources field is merely informative and

has no effect on the execution of the module.

8 The compilation of the modules is a process outside the scope of openSF.

These areas are only
meant to preview the
XML code.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

61 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Each IO descriptor has an identifier that uniquely identifies the descriptor among the system. It may
happen that an IO descriptor for a new module may exist already in the system, that is, this module uses
the same type of files and file contents as another module. Therefore, a combo-box component is

presented with the list of known IO descriptors in case the user desires to select an existing one.

Figure 4-34: Module input/output specification

4.3.2.3. Module modification

When editing a module from the repository view or from the modules list, openSF will present the same
window as in the previous section with all known data already filled. The window presents in write-mode
only the data fields that are susceptible to be modified. If users want to change more attributes of a
certain module, other operations must be used (“module creation” or “new module version”).

This frame is intended to let users modify data of a certain module. Once they have finished with the

editing, they can accept or cancel the changes made with the buttons at the bottom-side toolbar.

4.3.2.3.1. Module upgrade - New version

A new version of a module represents an upgrade of the implementation of a given module. This means

that users can define a new module by altering any of the elements defined in the module creation, like
for example the executable file of the module, the configuration file or the input and output files.

Users can create a new module version selecting the correspondent action from the context-menu of the
repository view or alternatively clicking over the “New module version” button in the module list.

The system will automatically perform a “minor version upgrade” (for example, from 1.0 to 1.1), but this
numbering can be manually modified by the user.

This way, users can have two versions of the same module with modifications between them.

M I E

Users can consult the
files that this module will
request and generate.

It is suggested to have every
descriptor already defined when
creating a module.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

62 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4.3.2.4. Module deletion

Users can select a certain module and choose the option to delete it. Once users confirm the operation
the module is erased from the repository and the file system. Note that also every simulation (and its
results) that uses this module will be erased from the system for consistency purposes.

4.3.2.5. Module copy

Users can select a certain module and choose the option to copy it. The user needs to specify a new
name for the module, unique with respect to the existing modules. All module definitions are thus copied
to the new module instance.

Figure 4-35: Module copy

4.3.3. Simulations

According to Section 1.4, a simulation is defined as either an execution of a set of modules (possibly
obtained from the ordered set of modules of a simulation) or an iterative execution of a set of modules

with different parameter values.

Users can access to the list of simulations existing in the system in the “repository view” (Figure 4-7) of
the side bar or via the “repository menu” (Figure 4-29) from the main menu.

Figure 4-36: Simulations pop-up menu

I

I

I A E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

63 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Operations involving simulations include the following:

❑ List – present the list of existing simulations;

❑ Creation – capability to create a new simulation into the system;

❑ Modification – edit an existing simulation to enter changes;

❑ Deletion – delete a simulation from the system;

❑ Run – Starts a new simulation execution;

❑ Script generation – creates and stores a script describing the simulation;

❑ Exportation – Exports the entire simulation definition;

❑ Copy – Creates a copy of an existing simulation.

4.3.3.1. Simulation list

Users can access the simulation list via the menu bar “Edit”→“Elements”→“Simulations”.

Figure 4-37 shows an example of the simulation list window that is presented upon selection. Below the
table including the simulations existing in the system, there is a tool-bar with buttons to access the
different functions listed previously. Users can thus select a certain simulation and perform the operations
shown in the toolbar.

Data attributes shown in the simulation list table are simulation ID, description and the name of the
author that created the simulation.

Figure 4-37: Simulation list view

4.3.3.2. Simulation creation

Users can create a new simulation definition by clicking on the corresponding action from the Simulation
menu in the menu bar (Edit → New Elements → Simulation…) or by right clicking on the “Simulations”
node in the repository side bar. The user is then guided through the steps of creating a simulation. These

steps are described in Section 4.3.3.6.

4.3.3.3. Simulation deletion

Users can select a certain simulation and choose the option to delete it. Once the operation is confirmed
the simulation is deleted from the repository and the file system. It is to be noticed that for
consistency reasons, the simulation deletion causes the removal of all results generated from
that simulation from the system.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

64 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4.3.3.4. Simulation copy

Users can select a certain simulation and choose the option to copy it. The user needs to specify a new
name for the simulation, unique with respect to the existing simulations. All simulation definitions thus
copied to a new simulation instance.

Figure 4-38: Simulation copy

4.3.3.5. Simulation modification

It is possible to edit a given simulation and create a different one altering the information previously
stored. Consequently, changes made to the simulation will not alter the previous one but will create
another simulation.

When editing a simulation, the system will show the same window as shown in the simulation creation.
But this time, all the information concerning this simulation will fill every data field.

Once finished, the user can cancel the changes or execute this new simulation pressing the “Run” button.

4.3.3.6. Settings in a simulation

When a simulation is created, a number of properties have to be specified. These properties are grouped
into different tabbed panels. Note that in order to fully define a simulation the running settings have also
to be specified. These are described throughout Section 4.4.

4.3.3.6.1. Simulation definition

Figure 4-39 shows a blank simulation creation window.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

65 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-39: Simulation general properties

First thing, the user must fill the following general properties:

Attribute name Format Purpose Example

Identifier
Medium string.

No blank spaces allowed.

Uniquely identifies this simulation
definition into the system.

E2E

Description Medium string
Brief remarks about the goals and
characteristics of the simulation

This is a full end-to-end
simulation for the
EarthCARE mission

Author Normal string
Name of person or group
responsible of the simulation
definition

DMS

Then, modules to be executed need to be included by selecting them from a list of available modules.

Users just need to click on the desired row at the simulation list (Figure 4-40) and press the “Ok” button.

These are the “Modules set”
buttons to “add”, “remove” and
alter their execution order

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

66 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-40: Module specification

Users can also remove a desired module from the simulation’s modules set by selecting it and pressing
the “remove” button.

It is also possible to modify the modules visualization order, in order to reflect the user preference. A
selected module can be moved up or down in the order by using the “arrow up” and “arrow down”
buttons.

4.3.3.6.2. Input files

Selecting the first tab under the simulation setup (Figure 4-41), the system will ask for the location of the
input file list needed to start the simulation.

Figure 4-41: Simulation inputs definition

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

67 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Double-clicking on the “file instance” column gives the possibility of writing the file path. Note that at the
time of defining the modules (see Section 4.3.2.2.3), input files are defined in an abstract way (i.e.
specifying that the given module shall require a certain input file). It is in this step where the user can

select the instance of each file (i.e. selecting in the file system the instance of the file specified at
descriptor level).

The “Status” column will show one of three different options for each file:

❑ Available (green) – the file instance is present, so the file is ready to be used for the module
executions;

❑ Pending (blue) – the file is not present but it will be generated for the module executions before

needed;

❑ Missing (red) – the file is not present and is not scheduled to be generated before needed. Edit
the file instance and change it so that it appears as an existing file.

File instance locations can be specified using absolute paths or relative to $E2E_HOME.

4.3.3.6.3. Configuration files

As it is done in the “Input” tab, the simulation needs to be provided with the location of configuration files
needed by all the modules involved in the simulation (Figure 4-42). An extra configuration file is needed
for this step, called global configuration file. This contains the general parameters characterizing a
simulation, not bounded to a specific module.

Figure 4-42: Configuration files definition

This window will present the list of modules present in the simulation and will ask for the location of each
needed configuration file. At this stage, the modules cannot be changed nor deleted.

Double-right-clicking on a file row, the system will show a file browser to locate a specific configuration
file. Providing an existing file will update the status to “Available”.

The configuration file panel has two buttons providing the following capabilities:

❑ ParameterEditor button - located at the top of the configuration files list launches the
ParameterEditor application with the selected configuration files already loaded. See [RD-PE].

❑ Refresh button - reloads all configuration files, reading them from the file system and updating
the simulation parameters. It is recommended to do this after editing configuration files with

ParameterEditor start button

Refresh
configuration files

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

68 of 155

 DEG-CMS-SUPTR09-SUM-10-E

another tool. Caution: All changes in parameter values made from openSF interface will
be lost.

Note that the configuration files for all active modules, plus the global configuration file for the

simulation, must be available in order for a simulation to run.

As it has been seen in the previous section about input files, it is possible to provide the location of
configuration files. With the same action it is possible to specify where the global configuration file is
located. Global configuration file location can be edited every time the user creates a new simulation and
can be found in the “Configuration” tab of the “Simulation Setup” panel.

4.3.3.6.4. Output files

Users can change the name and location of the output files that will be generated by execution of
modules. Selecting the “Output” tab, the system will show a list of output files grouped by modules, and
following the execution order.

By default, these files will have a “Pending” status, meaning that they will be produced by the action of
the module’s execution. Once a simulation has been executed and output files generated, file instance
column will show the absolute path of the generated file and the status will be “Available”.

Figure 4-43: Simulation output definition

4.3.3.6.5. Parameters configuration

In this tab, the user is able to alter the contents of the configuration files to change the behaviour of the
module. Assuming that the module has been correctly integrated into the system and a valid
configuration file is reported, this tab shown in Figure 4-44 will present the list of module parameter (and
values) grouped by modules (sorted in execution order).

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

69 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-44: Simulation parameters definition

Users can consult the following list of attributes:

Attribute
name

Format Purpose Sample

Parameter
identifier

Medium string

Complete name of the parameter. A
parameter identifier is formed by its
path into the file structure (dot
separated) and its parameter name.

parameters.execution_mode

Description Medium string
Brief description of the parameter
purposes and values

USER or CFI orbit

Type

Options: INTEGER,
FLOAT, STRING,
BOOLEAN, FILE, TIME

and FOLDER

Parameter values type. Used to present
different editor when editing the
parameter value. See AD-E2E.

STRING

Values (Different types)
Parameter value. A unique value for
each parameter is needed

CFI

Complex Type
Options: SCALAR,
ARRAY, MATRIX

Parameter structured type. Used to
indicate the multidimensional type of
the parameter. See AD-E2E.

ARRAY

Dimensions [cols x rows x layers]
Size of the dimensions. Layers are only
displayed if applicable.

[3x2x3]

Units Short string
Physical units of measurements if
applicable.

m/s

Validity

Options:

OK, Unknown,

TypeMismatch,

DimsMismatch,

OutOfRange.

Status of the parameter value integrity.
openSF checks the parameter validity
anytime its value is updated.

OK

Parameter
operations buttons

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

70 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Only the “values” column is editable to the user, the others just present useful information describing
each parameter. openSF checks the parameter validity anytime a run simulation is initiated, if any
parameter is not valid the system shows a warning message.

Figure 4-45: Simulation execution warning message

Note that changing the value of these variables will not affect the “template” configuration files specified

in the “Configuration” tab. The variables involved in a simulation definition are stored in the database
with the chosen values, meaning that the simulation will use them during the execution.

The specific format used for the single-line representation is the same as in ParameterEditor. The current
representation (for non-scalars) is designed to be copied into Python. The same operation can occur in
the other direction, from Python to the application, as long as the following conditions hold:

❑ All elements are literals. For example, [1, 2, 3] works but [1, sum(range(1,3))] does not

❑ Elements are homogeneous. Thus, ["a", 2, True] is not valid input for a parameter.

❑ ARRAY parameters may have staggered dimensions. ARRAYs support fully empty rows and layers

but not fully empty columns. By extension, fully empty ARRAYs are not valid.

Note that this representation may change in future versions, and interoperability with Python (or any
specific version or library) is not guaranteed in general.

The user can filter the parameters that are displayed in the HMI and modified for a simulation execution.
The ‘Parameter Visibility’ functionality allows marking each parameter as visible or not. In this way, those

parameters that are configured seldom can be hidden to present to the user a leaner list of input
configuration items, avoiding an overcrowded parameters tab. This setting can be triggered at parameter
level, at module level or at the whole simulation level. To do so, the user can open the Visibility view
through the dedicated button and toggle the visibility of each parameter with a double left-click over it or
by selecting the desired option from the context menu that can be opened with right-click. Green
parameters are visible, red ones are not.

Figure 4-46: Parameter visibility view

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

71 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Once the parameter visibility has been set it can be switched on/off through the ‘eye’ icon in the
simulation → Parameters tab (see Figure 4-44).

4.3.4. Results

Once a simulation has run, its results and settings are stored in the file system. A series of operations
can now be performed, ranging from reviewing the simulations to post-processing the results. These
operations are presented in this section.

4.3.4.1. Result view

Users can inspect the results view of any executed simulation by opening it and selecting the “Results”
tab. This view is similar to the simulation editor but including more information (see Figure 4-47).
Accessing this functionality, users can consult the result of a simulation execution.

Some simulation data is presented in a “general properties” area (upper part of the tab) showing these

attributes:

❑ Date / Time – this is the local computer date and time of when the execution began. This date
and time can also be part of the simulation identifier to distinguish this simulation execution from
others;

❑ Duration – the time (in minutes and seconds) elapsed from the starting time until the execution
was finished or interrupted;

❑ Status – the overall status of the execution. The possible values are “Failed, “Successful” and
“Aborted”;

❑ Last module – This is the number and identifier of the last module successfully executed. In case
of a successful execution, this module must coincide with the very last module of the simulation.
This information is useful for the user to know which module was erroneous.

Below this area, the Results tab reports the log messages generated by the simulation execution. Users
can access all these messages to check its performance.

Figure 4-47: Execution results

A E

Modules time view

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

72 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Executions represent the dynamic view of the system. Here the executed simulations are stored with
their input and output data. Users can consult their results and log messages generated, as well as re-run

simulations as needed.

The list of all the executed simulations stored in the database can be accessed through the executions
view of the side bar or via the “Executions → Manage” menu (Figure 4-48) from the main menu.

Figure 4-48: Results menu

Figure 4-49: Results pop-up menu

The Executions tab of the side view uses a colour code to provide information about the differences
between the connected database and the File System. If a result is present in the system, the execution
is displayed in black, whereas if the result is present in the database but not in the system the item is
displayed in light grey (Figure 4-50).

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

73 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-50: Executions view in the side bar

For each of the results of the “Executions” tree, a number of operations can be performed. These
operations can be performed for a single result or for multiple ones simultaneously, by selecting more
than one result with the Ctrl or Shift keys. Operations involving results include the following:

❑ List – present the list of existing execution results;

❑ View – consult the data of an existing execution result;

❑ Re-run – starts a new simulation execution. This new simulation is a replica of the former, but it

is created in a new simulation folder.

❑ Report generation – shows a text report describing the execution.

❑ Exportation - exports the entire execution definition;

❑ Go to files – show the files of the selected execution in the File System tree of the side bar.

❑ Deletion – delete an execution result from the system. A dialog is prompt to the user to confirm
the execution deletion from the database and, if desired, also from the file system.

4.3.4.1.1. Modules execution time

In Figure 4-47 the simulation results view is presented. Within this panel there is a clock icon button in
the mid-right side that presents the time consumed by each module involved in a simulation run.

Module execution time is presented in a new window with three tabs:

❑ Module Times tab: presents the module execution time in a bar chart graph9. See Figure 4-51.

9 Users can zoom within bar chart graph in order to better visualize module times

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

74 of 155

 DEG-CMS-SUPTR09-SUM-10-E

❑ Time Statistics tab: shows a pie with the simulation time percentage consumed by each module.
In case there is more than one Simulation involving one Module, time is divided by the number of
module repetitions. See Figure 4-52.

❑ Module Times Table tab: shows the same information that the bar chart graph but in a table. See
Figure 4-53.

Figure 4-51: Bar graph showing module times

Figure 4-52: Pie chart showing the percentage of time

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

75 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-53: Table showing module times

4.3.4.2. Continuing or repeating the execution of an existing simulation

Accessing the “re-run” functionality, users can repeat the execution of a previously executed simulation.
If the simulation execution was successful, the system just creates another execution (changing the
starting date and time) but, if the previous execution was aborted or failed, the system will inform the
user with the dialog shown below.

Figure 4-54: Result. Re-run

Users can now choose to restart the execution from the beginning or try to resume the execution, that is,
to continue the execution from the last valid module. So, the execution will continue provided that the
outer conditions that made the previous run fail have been corrected.

4.3.4.3. Report generation

Clicking on the “Generate report” option from the “Executions” context menu accesses this functionality.

A window similar to the one shown in Figure 4-55 is presented to the user.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

76 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-55: Execution report

This execution report consists in a textual description of the same data that users can access with the
“Result View” functionality. The only difference resides in that this textual information can be copied and
pasted into another application outside the openSF system.

4.3.4.4. Result deletion

Users can select a certain execution result and choose the option to delete it. Once users confirm the
operation the execution result is erased from the repository and the file system. Log messages associated
with this simulation execution result will also be erased.

Figure 4-56: Confirmation dialog to delete execution(s) from database and file system

4.3.5. Product tools

As explained in Section 1.4, a tool is an external program that performs a given action to a certain group
of files. Used as part of the openSF framework and associated to a certain file extension, these tools can
be called to perform a posteriori operations to products involved in simulations.

Tools are classified as “internal”, if they are part of the openSF distribution and are located in the tools’

directory, or “external” in other cases. Currently openSF distribution package does not include any tool so
all the product tools considered within this document are external and consequently there is no tools
directory in the openSF installation directory.

To access this functionality, the user can use the toolbar or the menu bar (under Edit → Product Tools…).

Figure 4-57: Tools list view

A list of tools, showing its identifier, action, executable and parameters is given. Tools are definable by
the user. Thus, new tools can be added by clicking the “New tool” button.

E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

77 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4.3.5.1. New tool

Accessing to this functionality, a new window appears to let the user create a new tool.

Figure 4-58: Tool editor view

Users can define the following attributes:

Attribute name Format Purpose Sample

Identifier Normal string This is a unique identifier of the tool. XML editor

Description Medium string
A brief description of what this tool will do and
need.

This tool will open an
XML file for editing

Action Normal string What the tool is going to do. edit

Extension Short string
The type of files that this tool is going to be
applied to.

xml

Executable Medium string
Location of the executable file that is going to
be called to execute the product.

gedit

Parameters Medium string
The list of parameters that will follow the
executable. No variables can be passed from
the HMI.

-f $file1

4.3.5.2. Edit tool

Selecting this functionality, the user can access and edit all the attributes of the selected tool.

4.3.5.3. Delete tool

Selecting this functionality, the user can delete the selected tool.

4.3.5.4. Tool execution

The process to execute an external data exploitation application can be triggered in three different ways:

❑ Tool execution from the file system view (see below).

❑ Tool execution from the simulation edit view and execution results view (see Figure 4-59). The
execution view is the same as the simulation view with two particularities, ‘Results’ tab is enabled
and the status is completed (successfully or not). Note that in the execution view the status of
the output files is shown as Available if the simulation chain has been successfully executed while
in the simulation editing the status is shown as Pending (see Section 4.3.3.6.2).

❑ Scheduled execution over simulation data products, Section 4.3.5.6.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

78 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-59: Tool Execution/Schedule from Simulation Edition View

To execute a tool from the file system view, the user has to right-click over a file name whose extension
is associated to one or several product tools, a menu showing some actions will pop-up.

Figure 4-60: IO file pop-up menu

Once the desired action is selected, a dialog will show up asking the user for completing the executable
command line. openSF HMI presents the location of the selected file. It presents the absolute path for
“external” tools and path relative to $OPENSF_HOME if it is an “internal” tool.

Users can accept the default parameters or can add extra ones. Users can also make use of the
environment variables supported by openSF (described in section 4.5.1), writing the dollar symbol and its
name.

Once accepted, the parameters, the tool program will be executed in a separate thread (so the openSF
operations are not interrupted).

For a real example of product tool execution see Section 7.3.

4.3.5.5. Popular product tools

During the integration of openSF in E2E simulation projects the development team has identified a set of
product tools widely used and that are freely available on the web. For every listed tool the operating

system compatibility is also specified (Linux, Multi-platform…).

Instant tool execution

Schedule tool execution

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

79 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Image processing tools

Below these lines are listed a set of tools for viewing and editing image files. The applications listed
support a large number of image formats.

Image Viewers

❑ IrfanView - Multiformat Image Viewer - Microsoft Windows
❑ Eye of Gnome - Gnome Image Viewer - Linux (GNOME)
❑ Gwenview - KDE Image Viewer - Linux (KDE)
❑ Okular - KDE Document and Image Viewer - Linux (KDE)

Image Editors

❑ GIMP - The free Adobe Photoshop alternative - Multi-platform
❑ Inkscape - Image editor with vector graphics support - Multi-platform

Text editors

❑ Notepad
❑ Emacs - GNU Editor - Multi-platform
❑ Notepad++ - Full-featured - Microsoft Windows

Scientific data formats

NetCDF

Network Common Data Form is a set of interfaces for array-oriented data access and a freely-distributed

collection of data access libraries for C, Fortran, C++, Java, and other languages.

❑ Panoply - NetCDF data plotting - Multi-platform

❑ ncBrowse - NetCDF file browser - Multi-platform

HDF

Hierarchical Data Format, commonly abbreviated HDF, HDF4, or HDF5 is the name of a set of file formats
and libraries designed to store and organize large amounts of numerical data.

❑ HDFView - HDF File viewer (images, tables...) - Multi-platform

Browsers

A web browser is a software application for retrieving, presenting, and traversing information resources
on the World Wide Web.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

80 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-61: Web browser as openSF product tool

Example: Figure 4-61 shows the use of an Internet Browser (Mozilla Firefox) for graphing the results of

testing a random number generator. It uses Octave graphing capabilities and Google Charts API.

❑ Mozilla Firefox – Multi-platform
❑ Google Chrome – Multi-platform
❑ Opera – Multi-platform

Other tools

❑ GNU Octave - If GIMP is the free photoshop-like choice, this is the equivalent for MATLAB - Multi-
platform

❑ GNU Plot - GNU software that gives plotting capabilities through a command line interface - Multi-
platform

4.3.5.6. Specification of final product tools

It is possible to add a list of product tools as post-processing operations, that is, a series of executables
to be called upon the execution completion. This is done while creating a simulation (Figure 4-62).

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

81 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-62: Product tools specification

There are two ways to add tools to this list:

❑ Selecting a file from the input, configuration or output files list. Users can right-click on a file
marked as Available or Pending and a pop-up menu will appear. This menu will show a list of tools
that can be applied to that certain file10. These tools can be executed instantly (if the file is
already Available or scheduled to be at end of the execution process). Users can change the
default parameters for the tool execution. Figure 4-63 shows the contextual menu that pops up

when the user right-clicks on a file from the Simulation Creation/Edition view.

Figure 4-63: File contextual menu.

When scheduling actions to certain files, openSF uses, instead of the actual file name and location, a
reference to the file’s foreseen location as an environment variable. These variables are named starting

with the dollar symbol, then “IO”, the simulation number and its identifier with no blanks, underscores or
dots. For example, $IO0orbitxml denotes the orbital file to be generated in the proper folder by the
execution process and $IO1radaroutputnc, the NetCDF file generated by the radar module of a given
simulation.

In case the selected tool is an “external” tool (as described in Section 4.3.5) the HMI will prefix the
$E2E_HOME variable to form the absolute path of the file. Following the previous example, if users want

to view the contents of the orbit XML file with an external viewer, HMI will present
$E2E_HOME/$IO0orbitxml. If users want to plot the radar output (using an internal tool) HMI will present
only $IO1radaroutputnc.

In the same way, users can include references to the rest of openSF environment variables like
$E2E_HOME.

❑ Clicking on the “add tool to simulation” button. Upon a selection of this action, users can choose
one tool from the appearing list of defined tools. Users can change the default parameters for the

tool execution.

10 Tools defined in the system have an action associated to a file extension.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

82 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Users can also select a certain tool and remove it from the list and, alternatively, change the order of
execution of the tools with the arrow buttons besides. In any case product tools are always executed at
the end of the executing simulation.

Usage Example:

A simple simulation involving only one module execution. The scenario is composed by:

❑ Simulation name: simulationTest

❑ Module name: moduleTest

❑ Input for the module: inputTest.txt located in $E2E_HOME folder

❑ Output generated: outputTest.txt

❑ Module configuration: globalConfig.xml and localConfig.xml

❑ $E2E_HOME variable points to /home/tester/openSF/

❑ The simulation folder is /home/tester/openSF/simulations/

❑ Tool defined associated to txt extension: meld

It is desired to compare the input and output files with a visual diff like application named meld
(http://meldmerge.org/). In this case the syntax for the tool would be:

❑ For the input file user can use the original location or the foreseen location where openSF copies

that file: /home/tester/openSF/inputTest.txt or $IO0inputTesttxt

❑ Foreseen location for output file: $IO0outputTesttxt

❑ As explained before there are different mechanisms to schedule the execution of the tool. The one

recommended in this case is to right click on the output file whose status is pending and click on
the “meld” tool under the schedule title. A pop-up window appears with a text field presenting the
variable for the output file location $IO0outputTesttxt. The user shall complete the syntax for the
tool appending the location of the input file (/home/tester/openSF/inputTest.txt or

$IO0inputTesttxt).

Figure 4-64: Tool parameters specification

❑ The value of the other simulation related variables would be:

• $E2E_EXECUTION_HOME = /home/tester/openSF/simulations/simulationTest<DATE>/, where
<DATE> represents the date when the simulation was executed

4.4. Executing a Simulation

Once a simulation has been defined, it is time to run it. This section describes this phase.

4.4.1. Execution settings

M I A E

I E

http://meldmerge.org/

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

83 of 155

 DEG-CMS-SUPTR09-SUM-10-E

This section describes all the execution settings available in openSF.

4.4.1.1. Switch module version

This functionality allows the selection of a specific module version for a simulation execution (Figure
4-65).

Model C
version 1

Model A
version 2

Model B

Model A
version 3

Model A
version 2

Model A
version 1 Model C

version 2

Model C
version 1

Figure 4-65: Module chain with different module versions

From the openSF HMI, the switch module version operation can be invoked from the simulation execution
window by navigating down to the module the user wishes to alter the version of. Next, right-clicking
over it. Whenever the module has more than one version available the “Switch module version” option
appears for selection. This is illustrated in Figure 4-66 below.

Figure 4-66: Switch module version

4.4.1.2. Bypass/Switch-off module execution

This functionality enables users to switch off certain modules when running simulations.

From the openSF HMI, the bypass/switch-off module operation can be invoked from the simulation
execution window by navigating down to the module that the user wishes to bypass. Next, right-clicking
over the “Bypass/Switch-off module” option, as illustrated in Figure 4-67 below. This choice is persistent,

if the simulation is saved to the database.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

84 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-67: Bypass/Switch-off module

As a result, openSF will inform the user of the change in the list of data files needed to be provided due
to the omission of modules and their corresponding outputs. Some inputs will no longer be needed, but
other files may become “missing” instead of “pending” if a module that was going to generate them as its
output becomes inactive.

Figure 4-68: Bypass/Switch-off module missing files

The user can revert the bypassed module and switch it back on by navigating down to the module that
the user wishes to re-activate. Next, right-clicking over the “Switch-on module” option that appears for

selection.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

85 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-69: Switch-on module

4.4.1.3. Run from a given point in the module chain

The idea is to allow users to skip modules at the beginning of the simulations, and therefore start

simulations from a certain point. However, the data from non-executed modules is needed for the
execution. Before running the simulation, the user needs to define the data files needed.

The Figure 4-70 shows a simple example. Modules A, B and C constitute the simulation. If we want to
rerun it starting from B, we need to provide the output of Module A from a previous run (or by other
means).

Model A Model BInput A

Input B

Model C Output C

Output A Output B

Figure 4-70: Run simulation from Module B

From the openSF HMI, the run from a given point capability can be invoked from the simulation execution
window of a completed simulation by navigating down, either in the “Setup/Input” tab or in the
“Execution/Category” one, to the module that the user wishes to start the execution from. Next, right-
clicking over the “Run from here” option that appears for selection. This is illustrated in Figure 4-71
below.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

86 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-71: Run simulation from a given module

The result of this action is similar to bypass/switch-off each module previous to the point where the
execution should start.

4.4.1.3.1. Run from a given module using previous data

The option to run a simulation from a given module is available both for a new simulation definition as
well as for re-running a simulation execution. In this latter case, the user can use the input data from the
original simulation execution or use the input data produced in the simulation execution.

The user can revert the input and configuration data to the one originally used in the simulation definition
by navigating down, either in the “Setup/Input” tab or in the “Execution/Category” one, to the module
that the user wishes to reset the IO descriptors. Next, after right-clicking over it, the “Reset setup” option
appears in a context menu for selection.

Figure 4-72: Reset IO descriptor option

As a result, the simulation’s original definitions are now re-established.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

87 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-73: Reset IO descriptor setup

Furthermore, the user can revert to the data produced in the simulation execution for an individual IO
descriptor by navigating down to the descriptor that the user wishes to restore. Next, right-clicking over
it the “Use previous data” option that appears for selection.

Figure 4-74: Use previous setup IO descriptor options

4.4.1.4. Removal of intermediate output files

As shown in Figure 4-75, the user has the option of removing intermediate output files. By activating this
option, a simulation executing will remove from the simulation directory any output file not generated by
the last module of a simulation execution and that correspond to intermediate data of a step in the
module chain.

4.4.1.5. Breakpoint scheduling

Users are able to schedule breakpoints during the simulation execution. A breakpoint is a point where the
simulation execution shall stop in a controlled manner, due to system architecture constraints it is only

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

88 of 155

 DEG-CMS-SUPTR09-SUM-10-E

possible to interrupt the execution when a determined module has finished the computation and has
written the corresponding output.

The user interface for breakpoints addition can be found in the “Execution” tab.

Figure 4-75: Breakpoint scheduling interface

In order to schedule a breakpoint after a module, users shall select its identifier in the “Select
Breakpoint” drop-down list box. To remove previously defined breakpoints the user shall select the option
“Remove Breakpoint” from the same widget.

Once a simulation execution is interrupted with the breakpoint scheduling system it is possible to resume
the paused simulation and continue with the simulation chain keeping the same settings as the previous
run (see Section 4.4.3.2).

4.4.1.6. Remote execution

When executing a simulation, the user can select a remote machine where to execute it. This
configuration can be applied:

(a) to the whole simulation: selecting a remote machine (previously configured) in the “Remote

Machine” drop down list box of the simulation execution window;

(b) on a module by module case: selecting for each module a remote machine from the contextual
menu obtained when right-clicking over the module listed in the simulation setup pane of the
simulation execution window.

If both mechanisms are used, the system assumes that the last configuration selected overrides the
previous one. Therefore, selecting a machine for the whole simulation overrides previously configured
machines per module; as well, configuring a remote machine module by module after configuring the

whole simulation may allow a finer configuration with possibly less configuration effort.

See Section 4.4.6 for remote machine configuration details.

4.4.2. Series of simulations with parameters variation

From the parameter’s configuration tab, a series of simulations can be implicitly defined by specifying
parameters sequences. openSF provides 3 different mechanisms to do this:

• Iterations

• Batch

• Perturbation

A E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

89 of 155

 DEG-CMS-SUPTR09-SUM-10-E

These modes are mutually exclusive in a configuration11, so configurations cannot have 2 different types
of parameter sequencing set.

4.4.2.1. Parameters iteration

Users can assemble iterative simulations. This is a powerful feature that helps to run a large number of

simulations by changing values of the parameters. Users can alter any parameter’s value to fine-tune the
behaviour of a module for a particular simulation run.

From the “Parameters” tab of a simulation view, selecting one or many parameters and pressing on the
“Iteration…” button will open the dialog shown in Figure 4-76. In this example two float parameters from
two different modules are being iterated.

Figure 4-76: Iterating parameters

This figure shows the initial state of the dialog. The list of the selected parameters is shown in a tree

configuration

Accessing to the “values” column of the table, users can input a list of valid values separated by commas
and wrapped by square brackets (for example [3, 4, 5]).

By selecting a parameter and clicking the cogwheel icon, or by double-clicking (left or right button,
depending on the OS) on a parameter, the user can open the following numeric sequence generator
dialog for an advanced customization of the iteration values:

Figure 4-77: Editing numeric sequences

11 In the special case of Statistical perturbations, the exclusivity is not currently enforced since it does
not affect the other modes. Combinations perturbations are strictly exclusive with the other modes.

This is the step/division
text field

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

90 of 155

 DEG-CMS-SUPTR09-SUM-10-E

This dialog lets the user define a numerical sequence of values (of the selected type: FLOAT or INTEGER)
in three different ways:

❑ User input. Users can introduce their own values using the “Values” text field.

❑ Numeric sequence by step. Once defined the starting (x1) and ending (xn) values of the sequence,
users can input the value of the step (s) in the step/division text field. The generated arithmetical
sequence following this rule:

 ,2,, 111 sxsxx ++

Numeric values will never be greater than the upper limit. For example, a numeric sequence starting
from 1 to 10 with a step of 5 will generate a series of [1, 6].

❑ Numeric sequence by division. Once defined the starting (x1) and ending (xn) values of the
sequence, users can input the number of divisions (d) in the step/division text field. The

generated arithmetical sequence following this rule:

()

d

xx
ssxsxx n 1

111 ,,2,,
−

=++

Numeric values will never be equal or greater than the upper limit. For example, a numeric sequence
starting from 0 to 10 with five divisions will generate a series of [0, 2, 4, 6, 8].

Users can now accept or cancel the numerical sequence.

Note that parameters not involved in the iteration will remain fixed to a value but they can be manually

changed as seen in Section 4.3.3.6.5.

The iterated parameters will be highlighted in the simulation parameters’ tab as shown in Figure 4-78 and

iterate view can be opened again for more customization with a double-click on an iterated parameter.

Note that pressing again on the “Iteration…” button will override the previously configured iterations (if
the “OK” button is then pressed).

Figure 4-78: Simulation with iterated parameters

Readers must be aware that the openSF system provides a functionality to filter redundant modules out

of an execution process (i.e. whenever they would generate the same outputs because they are set up to

run with the same inputs and configuration files). For more details, please refer to Section 4.4.3.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

91 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4.4.2.1.1. Saving parameter iteration definitions

Upon defining an iterative configuration, the user can save this definition in a parameter iteration
definition file. This is accomplished by using the “Save” button in the dialog shown in Figure 4-76.
Additionally, the user can load a previously defined iteration configuration from file (using the “Load”
button).

The format of the files used to store the iteration configuration definitions is compliant with the

configuration parameter file format as specified in [AD-E2E].

4.4.2.2. Batch simulation

In cases where the user needs to run multiple instances of a simulation with a variation of the
parameters’ values not covered by the mechanism described in the previous section (Sec. 4.4.2.1),
openSF enables the definition of a batch execution. This ability aims at providing fine grained control over
the number of executed variations of the original simulation and the parameter values that are

customized for each of them.

The configuration of a batch simulation requires the creation of a batch simulation configuration file. The

syntax and format of this type of file is described in [AD-E2E]. This file can be loaded through the

“Batch” button available in the simulation’s parameters tab.

Upon loading the file, openSF checks the format to guarantee its validity and imports the contents. The
simulation will be successfully configured and a confirmation message will be displayed with the total

number of simulation executions after the simulation template spawning together with the ID and module
names of the overridden parameters (see Figure 4-79).

Figure 4-79: Successful batch configurated simulation message

As it was the case with the overridden parameter values configured through the “Iterate” option, the
overridden parameters are highlighted in the simulation’s parameters tab as shown in Figure 4-80. A
“Clear Batch” button will appear in the tab which allows the user to reset the parameters to their previous
values.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

92 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-80: Simulation with overridden parameters through the batch option

To ease the use of this feature, together with the examples of the validation database, an example of a
“batch simulation configuration file” for the “E2E_test_simulation” is provided and can be found in the
following path: $INSTALL_DIR/test/data/batch/E2E_test_simulation_batch.xml.

4.4.2.3. Parameter perturbations

The simulation perturbation system brings to the users the following functionalities:

❑ Independently define perturbation functions for configuration parameters, for each module
involved in a simulation.

❑ Combine different functions for generating parameter values. An example would be a parameter
taking values drawn from 𝐴 sin (𝜔𝑡) where A is itself a random variable with a Gaussian

distribution, while ω is a constant and t is an independent variable running linearly between two
values.

❑ Two different execution schemes, Statistical and Combined modes

4.4.2.3.1. Parameter perturbation interface

The module perturbation interface is composed by the following panels:

❑ A tab that shows for each module the “Perturbation Function Tree”. This tree presents the module
parameters and the perturbation function applied to them.

❑ An info panel where perturbation parameters can be modified:

- Number of shots (integer format). This determines the number of executions of the module,
with each execution generating new values for the selected parameters according to the
desired combination of random and analytic functions.

- Independent variable (called “time” by convention) min and max for analytical perturbations
(real format). Values of this variable will be drawn linearly in this [min, max] interval
according to the number of shots. For example, with N=5 and an interval [0, 1], the five
values would be 0, 0.25, 0.5, 0.75 and 1.

- Perturbation file where function definition is stored (XML format)

❑ Execution summary panel where simulation execution is outlined prior saving/running it.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

93 of 155

 DEG-CMS-SUPTR09-SUM-10-E

❑ A button bar for adding new functions to a parameter in the module.

Figure 4-81: Perturbation system main window

4.4.2.3.2. Defining a new perturbation

This section describes the steps that an user shall follow in order to add a new perturbation to a
simulation.

1. Select from Simulation Creation/Edition interface the desired INTEGER/FLOAT parameters. The
user may select multiple parameters using the Ctrl key. Global configuration parameters cannot

be perturbed. If no valid parameters are selected, the message in Figure 4-82 will appear.

Figure 4-82: No valid parameters selected

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

94 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-83: Selection of parameters for perturbation

2. Launch parameter perturbation system using the button in the top part of the “Parameters” tab

3. Select a Perturbation Tree leaf and click on the “+” button from the button bar at the bottom.
This action will pop-up the “Select Function” frame.

- Remember that functions can be nested so “+” button is also used for creating complex
functions.

- If the user wants to setup another perturbation function for a parameter remember to

previously delete it selecting the node and pressing the “-” button from the button bar.

Figure 4-84: Adding a perturbation function to a module parameter

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

95 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4. In the “Add Perturbation” window insert the function parameters checking that table frame
changes to white colour (e.g. Random → normal function must have a sigma greater than 0,

second operand of BinaryOperations → Root must be positive)

Figure 4-85: Complex perturbation function

Figure 4-86: Random perturbation properties

5. Click on “Add” button to update the Perturbation Function Tree

6. Change number of shots, min/max time as desired

7. Preview execution, selecting the desired perturbed execution scheme.

8. Accept the simulation perturbation, adding it to the simulation

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

96 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-87: Preview of statistical mode execution scheme

Additional operations that can be performed are:

❑ Clear module perturbation: Right click on module tab and select “Close”

❑ Save perturbation into selected file: Dumps Perturbation Function Tree into an XML file. Right
click on module tab and select “Save”

❑ Plot perturbation: Right click on the desired tab and select “Plot”. A new window will appear
showing the time series and histogram for each perturbed parameter. Following figures Figure

4-89 and Figure 4-90 show how a parameter perturbation can be plotted from HMI.

❑ Load an external XML file with errors definition for a set of module parameters (Figure 4-91).
Only errors matching with a module parameter name will be loaded within the system.

❑ Perturbations can be combined to obtain more complex perturbations by adding perturbations to
the same parameter. This is illustrated in Figure 4-88.

Figure 4-88: Complex perturbation for a parameter

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

97 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-89: Time series line for a parameter perturbation

Figure 4-90: Histogram chart for a random parameter perturbation

Figure 4-91: Loading an external error file

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

98 of 155

 DEG-CMS-SUPTR09-SUM-10-E

❑ Functions with a variable number of properties (such as sampling functions, custom probability
density function, etc.). Users are able to add/delete points through “+” and “-” buttons of the
“Select Function” interface.

Figure 4-92: Function with variable number of properties (points)

❑ Additionally, users can change the value of a leaf item by double clicking on the Perturbation
Function Tree

Figure 4-93: Editing a value of the Perturbation Tree

4.4.2.3.3. Statistical and combined perturbed execution modes

openSF iteration of parameters (Sec. 4.4.2.1) is based on the combination of all possible values that the
affected parameters can assume. This approach results in an exponential increase of the executions
number, depending on the number of parameters being iterated and the number of parameters assumed
values (e.g. the iteration of two parameters with 10 different values each one ends up to 100
executions).

The above-mentioned approach can be not the most efficient one in some specific cases, e.g. for

statistical modules, for modules that need to run in different modes for each simulation, or for modules

that need to be executed more than one time depending on a parameter value. In order to cope with the

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

99 of 155

 DEG-CMS-SUPTR09-SUM-10-E

variable needs of such casuistry, two additional mechanisms have been implemented to handle the
iteration/perturbation of parameters or batch runs.

Thanks to the first additional mode of execution (Statistical mode), any module can be configured with

different parameter perturbations/iterations and, without the necessity to setup any extra simulation
configuration, the simulation framework introduces a loop executing just the selected module “N” times.

Note that in the “statistical” mode, the output files/folders of each module will be named in principle in
the same way at each execution, and consequently it is the responsibility of the module developer
to handle this issue to avoid overwriting the output data.

B

A

B (1)

C D

B (2)

B (3)

B (n)

Figure 4-94: Statistical mode execution scheme

The other execution mode (Combined mode) provides the possibility of setting up a number of
simulations equal to the number of shots configured for the perturbations of each module. This approach
imposes the constraint that all modules shall be set-up with the same number of shots, thus every

module including the unperturbed ones will be re-run with the same parameters.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

100 of 155

 DEG-CMS-SUPTR09-SUM-10-E

B

B (1)

B (2)

B (3)

B (n)

A

A (1)

A (2)

A (3)

A (n)

C

C (1)

C (2)

C (3)

C (n)

D

D (1)

D (2)

D (3)

D (n)

Figure 4-95: Combined mode execution scheme

Figure 4-96: Execution mode selector

Some important considerations about this two additional execution modes are the following:

❑ In Statistical mode, it is modules responsibility to handle output files as openSF specifies always

the same filename for each shot.

❑ In order to make the Statistical mode repeatable by script, openSF creates a set of configuration
files, one per shot specified, using as name convention “File_N.xml” where N is the iteration
number. This is not needed in Combined mode as configuration files are stored in different
simulation folders.

❑ Combined mode simulations are handled openSF as any other simulation, while in Statistical
mode openSF adds a new log message specifying the module iteration number.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

101 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-97: Statistical mode iterations log message

4.4.2.3.4. Perturbations functions

In this section all the available perturbation functions are presented. The independent variable is

represented by t.

4.4.2.3.4.1. Deterministic functions

Deterministic functions are those whose value is known in all the time domain.

❑ Affine

Calculates the perturbation as an affine value. An affine transformation consists in a linear transformation

and a translation.

• error = a1 + a0 * t

❑ Bias

Calculates the perturbation as a constant value.

❑ Linear

Calculates the perturbation as a linear value:

• p = a * t

This is a particular case of affine transformation when translation variable is equals to 0.

❑ Parabolic

Calculates the perturbation as a parabolic value.

• p = a0 + a1 * t + a2 * t2

❑ Polynomial

Calculates the perturbation as a generic polynomial value. This function has as many float parameters as
degrees of the desired polynomial plus one.

❑ Step

Calculates the perturbation as step function.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

102 of 155

 DEG-CMS-SUPTR09-SUM-10-E

• if t < Tstep → p = a0

• if t > Tstep → p = a1

❑ Sinusoidal

Calculates the perturbation as sinusoidal function

• p = a * sin(2 * pi * f * t + phi)

• f(Hz)

• phi(deg)

• t(secs)

❑ Tangent

Calculates the perturbation as tangent function

• p = a * tan(2 * pi * f * t + phi)

• f(Hz)

• phi(deg)

• t(secs)

Remember that the tangent function has singularities when the angle evaluated is ±n*pi/2.

4.4.2.3.4.2. Sampling functions

The openSF error generation plugin implements three interpolation methods, linear, polynomial and

spline sampling.

In order to define the points of the interpolation there is a common set of variables that are listed below.

❑ Linear Sampling

This function makes an interpolation with the given points assuming it follows a linear rule.

❑ Polynomial Sampling

This interpolation method builds a polynomial grade n, n being the number of specified points. This
interpolation minimizes the Least Square Error. Ref: Neville Method.

❑ Spline Sampling

Interpolate the given “n” points with Cubic Splines Method.

How to use the sampling functions

The sampling functions are useful for cases where the perturbation is a function known at discrete
instants. That is, F = {yj, xj}, j=1, …n. In such a case, openSF provides with the functionality of
interpolating according different methods: for a given time xt calculate the corresponding perturbation in
the discrete series {yj, xj} such that yt = F(xt)

The xj vector assumes equidistant point and as such it is only defined using by

• xMin: Min value of abscise axis

• xMax: Max value of abscise axis

• step: Increment between abscise values

The number of points must be:

nValues
step

xMinxMax
=

−

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

103 of 155

 DEG-CMS-SUPTR09-SUM-10-E

The sampling functions configuration has to include nValues y values to match the number of x values.

• The "linear sampling" method uses a linear interpolation between points

• The "polynomial sampling" method interpolates using a Neville polynomial

• The "spline sampling" method interpolates with splines

Summarizing, these functions are useful in those cases where the perturbation values for example come
from measurements whose underlying module is not fully known or cannot be represented by an
analytical equation (a gauss distribution, a beta distribution, a combination of gaussian and linear

function and so on).

4.4.2.3.4.3. Non-deterministic functions

Common random function implementation with seed management for testing purposes. If seed is set to
zero openSF initializes pseudo-randomly the seed (e.g. used for non-repeatable executions). All the

functions are common statistical probability density functions:

❑ Beta Distribution
❑ Gamma Distribution
❑ Exponential Distribution
❑ Normal Distribution
❑ Uniform Distribution
❑ Poisson Distribution
❑ Truncated Gaussian Distribution
❑ Uniform Discrete Distribution

❑ Distribution with custom Probability Density Function

The latter returns the value of a random variable generated with a custom pdf given. It is only

recommended to use it by expert developers/scientists.

4.4.2.3.4.4. Binary and composite operations

The simulation perturbation system implements some basic mathematical operations in binary mode. The
operations implemented are:

❑ Addition
❑ Subtraction
❑ Multiplication

❑ Division
❑ Exponentiation
❑ Root

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

104 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4.4.2.4. Time-based scenario orchestration

This section provides details regarding openSF time-based scenario orchestration, which is an enhanced
ability to customize simulation iteration (Section 4.4.2.1).

The time-based scenario orchestration allows the user to launch a series of simulations varying the

parameters values using the simulation time as trigger. The modules may have different execution modes
that are triggered by the simulation time, and in each module mode the modules parameters can be
initialised with different values. An example of a scenario of instrument operational modes is shown in
Figure 4-98.

Figure 4-98: Example instrument operational mode scenario

The different values of the parameters associated to a given module mode are stored in the module
configuration files. Every module can have multiple execution modes, and for each mode not only the
standard parameters values can be customised, but also additional parameters can be added to the
default ones.

The simulations are organized in a time sequence that represents the mission sequence. The time
sequence does not admit gaps or overlaps.

Every simulation has its starting time and duration, which must correspond to the mission time segment

that the simulation is simulating. For every time segment, for every module that has execution modes
configured, a mode can be selected.

The default initial epoch and duration of a time-based scenario are stored in the openSF preferences.
Once a new timeline is created, the initial epoch is stored in the timeline file. When a timeline is created,
the initial epoch is used to set the starting time of the first time-segment (however this can be edited).

When a new time segment is created, its initial time is set to the initial time of the previous time segment
plus its duration. The default duration of a time segment is taken from the value set in the openSF

preferences. The starting time of each segment is stored in the timeline file.

When a simulation is launched, the initial epoch is copied from the timeline file to the global configuration
file. The initial time of every time segment is copied from the timeline file to every module (that has
execution modes) configuration file of every time segment.

Note that the initial epoch stored in the global configuration file might hence not correspond to the initial
time of the first time-segment.

Each time segment can be activated/disabled. A disabled time segment is not run when the simulation is
launched in time-driven mode.

The modules within a simulation can be set in Processing and Simulation mode. Modules in Processing
mode are bypassed when a simulation is run in Time-driven mode.

Note that the time segments can be possibly run in parallel, so the order of execution does not

necessarily follow the timeline sequence.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

105 of 155

 DEG-CMS-SUPTR09-SUM-10-E

For more details on the concepts and definitions supporting the time-based orchestration, please refer to
[AD-E2E].

4.4.2.4.1. Time-based orchestration interface

In a simulation editing window, each specific module time mode is rendered as a node in the tree of
parameters – see Figure 4-99. This is only for display purposes, i.e. when rendering the parameters in
the simulation editing window parameters tree, so it is not reflected in the repository.

Figure 4-99: Module parameters folder organization on a per-mode basis

In the execution tab (Figure 4-100), classification of each module in the processing chain according to
Simulation/Processing categories is done (using the context menu) through the Execution pane in the
simulation edit window.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

106 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-100: Module categorization by Mode

The interface for editing the timeline definition is available upon pressing the ‘Timeline’ button in the
“Parameters” tab in the Simulation Editing window – see Figure 4-101. This panel allows to define and
enable the global timeline parameters and the actual list of time segments to be executed.

Figure 4-101: Timeline management view

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

107 of 155

 DEG-CMS-SUPTR09-SUM-10-E

The global timeline parameters are: (a) the Initial Epoch, (b) the timeline definition file and (c) the
default time segment duration. Timeline segment are displayed below as rows in a table where each
column corresponds to the time segments attributes.

It should be noted that the initial epoch parameter is stored in the global configuration file, so this file
must have been defined prior to the simulation’s Timeline definition. If no previous timeline parameters
are present on the global configuration file, openSF will initialize them to the default values. However,
they are only saved to the global configuration if the user actually Activates the timeline.

To define a Time-Driven simulation, the user can load a previously configured timeline scenario through
the Load Timeline button, or manually configure one. The timeline scenario file must be compliant with

the structure described in [AD-E2E], and the modes referred by the scenario file must match the ones

specified in the local configuration files of the relevant modules.

If the user chooses to manually configure a custom scenario, a valid file path shall be provided for the
global TimelineFile parameter. The user can define as many timeline segments as desired, saving the
modifications when he is satisfied with the result.

Regardless of whether the scenario file is loaded or generated, it has to be activated with the Activate

Timeline button before the simulation can be run. The button also saves the timeline to the selected file.
It shall be noted that the timeline activation not only configures the simulation as Time-Driven but it also
stores the initial epoch timeline parameter in the simulation’s Global Configuration File, so it affects all
the simulations that share the same GCF. If, after the timeline scenario activation, any modification is
done, the file has to be activated again.

For editing the timeline segments the interface has a set of buttons to add, remove or duplicate a time
segment row. These three actions can be performed either accommodating the existing segments (e.g.

add-shift) or without affecting the existing segments. Accommodation is accomplished by adjusting the
start times of the segments so that there are neither time segment overlaps nor gaps in the timeline. The

buttons have been arranged in a rectangle, where the left column buttons shift the time segments, while
the right ones don’t.

The addition of each time segment uses default values from the global timeline parameters defined
above. Within the timeline table on each row, it is possible to select the mode (active true or false) for
each module to be executed during each time segment.

The default representation of time segments in the timeline table can be configured via the System
preferences → Application Setting → Timeline visual. This allows using: duration, number of steps or end
epoch as time segment identifier (first column).

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

108 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-102: Timeline preferences

Each timeline segment time definition shall then be introduced by the user with (a) a start time, and (b)
one of the following: duration, number of steps or end epoch. If then the user inputs duration, the
system can compute the other two alternative values from the start time (and so on for any other
selection). Then in the timeline configuration file all the four time-related values will be written for each

segment. Therefore, when the user switches preference in the global definitions it’s simply changing the
"view" over the time data. Being a global configuration, it actually represents the specific user preference
for viewing one of the three alternative values. If the simulation is changed or if a given timeline
configuration file is supplied (which shall be self-contained) to another user then the displayed column
shall be the one corresponding to the users’ preference.

The user can press on the “Disable Timeline” button to disable the timeline, and return to a Data-driven
simulation.

4.4.2.5. Monte Carlo simulations

This section provides guidelines to implement a Monte Carlo (MC) simulation in openSF, taking into

account current openSF limitations.

Full support for MC studies is intended in the future, as the current implementation is known to have
limitations. With the current status of openSF, MC analysis can be simplified by taking some precautions
when developing simulation modules.

Three different approaches are suggested to implement a MC analysis. The best approach depends on the

specific constraints of the project and the implementation of the module on which it is desired to perform
the MC analysis. These different approaches originate from the fact that, although openSF can perform
iterations (parametric analyses) both in local and global parameters, it can only introduce perturbations
(Monte Carlo analyses) in the LCFs.

4.4.2.5.1. One module MC with local parameter

The first option to implement a MC analysis in openSF considers that only one module needs to be
executed multiple times. The parameter to be perturbed only needs to be injected in a single MC module.

The layout of this approach is shown in Figure 4-103.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

109 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-103: Monte Carlo chain in statistical mode

In the most generic version of this approach, the module on which the Monte Carlo will be performed is
preceded by a chain of modules and generates results that will feed into another set of modules. These
post-processing modules can be used to merge the multiple results of the MC.

The parameter(s) on which the MC is applied must be defined as part of the module’s local configuration,
with the perturbation specified in openSF through the “Perturbation” menu – see details on how to
configure the desired number of shots and use the Statistical execution mode at Section 4.4.2.3.

In the chain shown in Figure 4-103, the modules A through B are only executed once, and the same
happens with the modules D through E.

Notice that openSF only initiates the execution of a module when all expected inputs are available.
Therefore, to build a sequential execution the chain needs to define the inputs of a module as the outputs

of the previous one.

To use this approach, the developer must consider the following points. Alternative approaches should be
considered in case the following points don’t apply to the problem at hand.

❑ The value of the varying parameter can only be defined in the local configuration file of the MC
module.

❑ openSF passes the same input and output files/folders to all the executions of the MC module. This

implies that the MC module knows the varying parameter and dynamically modifies the name of
output files to avoid overwriting them.

❑ To correctly process the results of the MC module, downstream modules must be able to read and
understand those results. Some degree of agreement is necessary between the MC module and the
downstream modules, either by sharing the naming convention used to generate output files and

recognise from the names the varying parameter, or by reading the result files and obtaining that
information from its contents.

❑ Considering that openSF initiates the execution of a module when all inputs are available, it is not
possible to simply specify a folder as output of the MC module to pass results to downstream
modules. After the first MC module terminates, the presence of the folder indicated to openSF that
the following module can be started.
Possible alternative solutions are listed below, knowing that the most applicable depends on the
design of the simulator.

o Pass the number of shots to the MC module, and at the end of execution generate a

“MC_Completed” flag file in case the expected number of output files is available (i.e. all
shots have finished). The “MC_Completed” flag file is essentially used to trigger the
execution of downstream modules.

o Pass the number of shots to the first post-processing module. This module is launched as
soon as openSF verifies that a results folder exists, and enters an active polling loop until it

finds the expected number of files is available.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

110 of 155

 DEG-CMS-SUPTR09-SUM-10-E

o In case the modules design/implementation cannot accommodate the above approaches,
divide the whole Monte Carlo study in two completely independent simulations. The first
simulation executes the modules up to the MC modules, without any post-processing

modules; then the second, executes the remaining post-processing modules, manually
configured and launched by the user after the completion of the first one.

The options discussed above do not consider handling of errors in MC modules. In those cases,
either the modules need to implement error-checking mechanisms, or the user needs to check
the correct execution of all shots to ensure reliable results.

4.4.2.5.2. Multiple modules MC with local parameter(s)

Another approach has to be used when more than one module is executed with perturbed parameters for
each of the Monte Carlo shots. The chain presented in Figure 4-104 shows two main disadvantages: all
the modules are executed for each of the MC shots, with the consequent increase in the computation

time, and it is not possible to combine all results generated by the MC modules.

Figure 4-104: Monte Carlo chain in combined mode

In the most generic version of this approach, a chain of modules on which the Monte Carlo will be

performed is preceded and followed by a set of normal modules.

As in the previous approach, the parameter(s) affected by the MC must be defined in the local
configuration file, with the perturbation specified in openSF through the “Perturbation” menu – see details
in the Section 4.4.2.3 on how to configure the number of shots and use the Combined execution mode.

This approach relies in assembling an independent simulation for each perturbation shot. Each shot is
considered independently, rerunning common modules, and storing the results in a different simulation
folder. In this case, the MC module is not obliged to provide a different name for the result files, although

it might be desired in order to gather all the results in a common folder.

The use of the same value of a perturbed parameter in more than one module is supported by simply
defining the desired parameter in the local configuration files of the affected modules, and in openSF
define the exact same perturbation for all of those parameters.

To keep the simulations executions coherent, all parameter perturbations of the MC modules need to
have the same number of shots. The non-perturbed modules will be re-run with the same configuration
parameters and the inputs produced by the previous modules of its simulation.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

111 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4.4.2.5.3. Multiple modules MC with global parameter

In case none of the previous approaches is applicable, or the parameter to vary is not local but global,
there is still one additional approach that can be used to implement a Monte Carlo analysis in openSF.

As this approach relies on an external tool to generate the perturbed parameter values, it should only be
used when the varying parameter needs to be injected into multiple modules and, either the varying
parameter must be defined in the global configuration file, or else no perturbation capabilities are

needed.

The typical chain for this approach is shown in Figure 4-105. To setup this approach, create a normal
simulation in openSF without taking into account MC. Use the “Iteration” features, as described in Section
4.4.2.1, to customize the global parameter to be perturbed. The perturbed parameter values can be

introduced manually, or by providing a file containing the values – this file is typically generated by an
external tool. Consider also using a “batch simulation configurator file” as explained in Section 4.4.2.2.

Executing the simulation essentially results in a parallel execution for each of the values of the varying
parameter.

Figure 4-105: MC with a global parameter

As the varying parameter is global, all the modules can access it and decide according to its value. As
with the previous approach, each shot of the MC is executed as an independent simulation implying that
all the common modules are executed repeatedly and that there is supported way to gather/aggregate all
the results.

This last limitation could be bypassed by implementing post-processing modules considering the
following:

1. Define the total number of shots of the MC in the global configuration file.

2. Considering that all the simulations files are stored as subfolders within the main simulation folder,

at the beginning of the module execution, retrieve the simulation folder path and go one level up.

3. Index all the existing folders and their contents.

4. Count the number of MC results and if it is lower than the expected number of shots, end the
execution of the post-processing module.

5. When the number of existing results is the same as the expected shots (i.e. when executing the
last simulation) perform the post-processing over all the indexed results.

The choice between using this or a similar solution or to simply defining another processing simulation to
aggregate the results and manually execute it depends on design decisions particular to each project.

4.4.3. Simulation run

Once a simulation definition is ready, users can execute it.

M I A E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

112 of 155

 DEG-CMS-SUPTR09-SUM-10-E

The effective execution order of the simulation modules is determined by openSF, based on the
input/output dependencies – see Section 4.4.3.1.1 for further details.

Upon the activation of the “run” command, the system performs a series of checks to ensure the validity

of the simulation:

❑ If the global configuration file for the simulation, or the local configuration file of any active
module in the simulation is missing, the execution will not proceed, and a dialog will be displayed
listing the missing files as shown in Figure 4-106.

Figure 4-106: Execution prevented due to missing configuration files

❑ If there is any other file with the “missing” status (that is, the system is unable to find it in the
given location), openSF makes the assumption that this file will be in the right place when
needed, so it leaves the responsibility of placing it in the correct place to the user or to process
outside the system. A fatal error is likely to be raised by a module if it cannot locate a needed file.

❑ If any parameter is not valid, openSF will show a message warning the user. The simulation can

be run with parameters in a not valid state, but modules may then raise errors and stop the
execution if they cannot parse the value, if a parameter points to a non-existing file, etc.

❑ In some cases, like executing iterative simulations or sequences of the same modules, some of
the modules may be redundant (that is, they will generate the same output because they are run
with the same input and configuration).

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

113 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-107: Modules redundancy in simulation execution

Figure 4-107 shows the dialog that pops-up in case there is any redundancy. Users can choose to either
execute or ignore all the modules marked as redundant. Once every validity check is fulfilled, openSF will

run the simulation (Figure 4-108) and information about its status will be given to the user in two
different ways. One is the log window and another is the simulation progress window. The window
presents a progress bar showing the percentage of simulation progress and a button to abort/close the
execution.

During the simulation execution, all events raised by the modules are collected and displayed in the Log
Messages table. By default, these messages are processed and displayed/coloured based on their type,
but openSF allows to inspect the original messages by checking the “Show non-formatted messages”

option. The event messages displayed in the Log Messages table are collected and stored in a log file that
can be opened for further inspection using the “Show Log” button. The collected events can be of one of
the following types:

❑ System information – An event with some information to the user is generated by the platform.
This is a harmless event; the execution continues with no interruption. Coloured in dark grey

❑ Information – Some module raises an event. Its message is intercepted and stored by the

platform. This is a harmless event; thus, the execution continues with no interruption. Coloured in
green

❑ Warning – A module has detected a non-fatal error or situation. From the point of view of openSF,
this is a harmless event, so the execution continues with no interruption. Coloured in yellow

❑ Debug – These events are raised when executing the simulation in “debug mode”. Some modules
optionally use an environment variable to show debugging information (see Sec. 4.5.1). Coloured
in grey

❑ Error – A fatal error has happened in the module execution, so the entire simulation is considered
to have failed. There are multiple ways this may happen: if the module execution unexpectedly
crashes, if the module itself informs the platform by using an “Error” type event, or if it returns a

non-zero code (for the languages that support it). Coloured in red.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

114 of 155

 DEG-CMS-SUPTR09-SUM-10-E

❑ Exception – This log type shows the error output stream of a module when the execution crashes.
Typically, this kind of messages is produced when an un-controlled exception has occurred (Ex:
error in bash script syntax). Coloured in orange.

Figure 4-108: Simulation execution progress

Figure 4-109: Execution log showing an error message

In the previous screenshot it is also shown how openSF warns the user about output files that have not
been created by the module: “Output file/folder “…” has not been successfully generated by the module”,

there is a log message for each output item not generated.

Pressing the “abort” button will make the system ask for confirmation. Once granted, the execution will
be interrupted with an error event generated by the system. Later on, this simulation execution can be
restarted or recovered from the last valid module executed.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

115 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4.4.3.1. Parallelisation of module execution

Parallel execution of modules in openSF is based on Multicore programming for parallel computing.

A multi-core processor is a single computing component with two or more independent actual processors
(called "cores"), which are the units that read and execute program instructions. The improvement in

performance gained by the use of a multi-core processor depends very much on the software algorithms
used and their implementation. In particular, possible gains are limited by the fraction of the software
that can be parallelised to run on multiple cores simultaneously (Amdahl's law).

openSF target system is typically a workstation or server. These systems will often have multicore

processors.

Regarding the parallel execution the approach is based on performing parallelisation at module level:

each module acquires a core resource thread and uses it, then releases it when finished. This approach is
also generic enough to cover parallelisation at module chain level as well.

Parallelisation is implemented in openSF according to the principle that a module starts its execution as
soon as its inputs are available. At the E2E simulation start-up, the only modules that can be launched in
parallel are those having external inputs (i.e. inputs not generated as outputs by other modules), while
during the simulation execution the system allocates each available core to the first module in the
pipeline ready to be executed (i.e. the first in the queue with available inputs).

4.4.3.1.1. Parallel execution

The parallel execution of simulation modules is activated and controlled by openSF based on the
configured maximum number of distinct processes used for execution (see option Maximum Execution

Threads in the preferences, Section 4.5).

The process of scheduling the simulation modules execution can be decomposed in two distinct steps:

1. Taking into account the input/output dependencies between all simulation modules (as specified
via the descriptors), openSF calculates a serializable execution schedule of all modules

2. Then, at the start of the execution and whenever a simulation module terminates, openSF
launches in parallel as many modules as possible, considering that:

a. a module can only be launched if all modules providing its inputs have already completed

their execution

b. the number of running processes must always be less or equal to the maximum number
of processes allowed

It is important to notice that currently openSF relies only on process termination and the return code to
determine that a simulation module has completed, without any other additional check – i.e. openSF

detects if the intended outputs have not been generated but it will not consider that cause for termination

nor will it verify the validity of generated outputs.

The parallelisation of the simulation modules is essentially transparent to the user, i.e., the parallelisation
is performed without requiring feedback from the user, both at E2E simulation chain level and module
level. Figure 4-110 shows an example of a simulation execution were two modules are executed in
parallel as can be seen by log messages originating from the two modules interleaved with each other.

M I E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

116 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-110: Simulation execution showing parallel module execution

In case two modules are executing in parallel, the log messages are shown in the order of arrival to
openSF. They will appear mixed in the simulation log. By looking at the Source column the user can
identify which module produced each message. Nevertheless, the user can access the “Execution/Logs”

option and select/filter whichever log messages according to given criteria (see Sec. 4.4.3.3). Notice that
the writing accesses to the log file itself is protected for concurrency issues.

The openSF mechanism on whether to parallelise module execution is based on the simulation module’s
IO descriptors dependencies. Only modules without such dependencies are considered for parallel

execution. This means that during the simulation execution the consistency of the data flow constituents
is granted.

In case parallelisation is active for a simulation execution with parameter perturbation a choice is given to
the user whether parameter perturbation can be parallelisable or if it should be serialized.

Figure 4-111: Parallelization option dialogue

4.4.3.2. Simulation Resuming

Users can also resume aborted or failed simulations taking into account that the simulation chain will
start in the last successfully run module. See Section 4.4.1.3.1 for further details.

4.4.3.3. Logs

One of the products of a simulation execution are a set of events are produced as messages and stored
by the system.

A E

A E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

117 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Log messages are stored in the file <simulations_folder>/<sim_id>/openSF.log for global events, and in
a file named log/simulation.log under each execution folder for events related with a specific simulation.
Also, if a certain application setting is enabled (see Section 4.5.2), log files are stored for each module in

a simulation, in the same folder and named after the related module.

Users can access to the complete set of logs stored by the system in the “Logs” menu (Figure 4-112)
from the main menu.

Figure 4-112: Logs menu

Figure 4-113 shows a window with a list of log messages stored by the system. As it can be seen, the
table shows the computer date and time when the platform intercepted the event, the type of the event,
a message describing the event, the identifier of the simulation associated with the event and its detailed
source (module, simulation or system).

This list of events is sorted (by default) in increasing time order until filling the “Maximum number of
rows displayed” field. Users can change the number of log messages to be displayed. For example, if the
“Maximum number of rows displayed” is set to 10, the list displays the last 10 messages

Figure 4-113: Logs list view

Users can also filter this list. Users can select a field, input a string that must contain this field and press
the “filter” button. A search is performed by the system and the results are shown on screen. Only
records fulfilling the filter restriction will be shown. When clearing the filter text, the system shows again

the full set of log messages.

Moreover, users can access the “dump log” functionality at the bottom of the window. Once selected,
users can select the name and location of the log destination file. The list of logs shown in the window will
be stored in the file system.

4.4.3.4. Simulation groups

A E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

118 of 155

 DEG-CMS-SUPTR09-SUM-10-E

When simulations run in Time-driven or Iteration/Perturbation mode, a considerable number of children
simulations can be opened at the same time (see Sec. 4.4.2). To manage this issue, openSF groups all
the child sub-simulations into a parent window, as well as in a parent output folder (see Sec. 4.2.2) to

ease the user management of the overall simulation results.

Thus, if a simulation is executed in any of these modes, the user will be prompted with a screen
collecting all the sub-simulations and each of the execution results, as depicted in Figure 4-114 (for a
time-based execution) and in Figure 4-115 (for an execution with iterated or perturbed parameters).

Figure 4-114: Grouping of simulations for the Time-Driven execution

While the simulations are executing, the user has several available options: “Abort all…” which aborts all
the sub-simulations, “Abort selected” which aborts only the selected Sub-simulation or “Details…” if the
user wants to open one subs-simulation in particular. The latest option can also be accessed if the user
double-clicks on top of any simulation.

Figure 4-115: Grouping of simulations for the Iteration/Perturbation execution

4.4.4. Import and export simulations

The import/export capability provides the means to share all the information associated to simulations
among different openSF instances.

I E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

119 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4.4.4.1. Export simulation

The data needed to import a simulation consists in two files, obtained through a previously executed
export operation:

❑ SQL file, containing the SQL operations to perform a replica of the database data into the target

openSF instance.

❑ ZIP file, containing the data files needed for the execution of the simulation. Furthermore, in case
of an executed simulation, the zip file includes also the input files used for that particular run.

From the openSF HMI, the export operation can be invoked from two different locations:

1. From the Repository menu. In this case, we need to navigate from the “Repository” menu down to

the simulation that the user wishes to export. Next, right-clicking over it; the “Export” option appears

for selection. This is illustrated in Figure 4-116 below.

Figure 4-116: Export from the repository menu

1. From the Executions menu. If the user wishes to export a simulation that has been run, it can do so
by accessing the “Executions” menu and selecting the Export operation upon the desired simulation,
similarly to the previous case. This is shown in the next figure.

Figure 4-117: Export from the executions menu

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

120 of 155

 DEG-CMS-SUPTR09-SUM-10-E

In both cases, the output obtained as a result of the Export operation are two files (sql and zip) that are
placed in the folder indicated by $E2E_HOME. These files are needed for the import operation, and they
ensure the creation in the database of the constituent elements of the simulation (i.e. descriptors,

modules, tools, and simulation, as well as the provision of input and configuration files) needed for the
simulation’s execution. However, it is to be noticed that the executable files corresponding to the
modules and tools are not included in the export operation.

The difference between both types of export (from the Repository menu and from the Executions menu)
is that the Import of the latter type creates the simulation only in the Executions tab. That is due to its
identifier (featuring the execution time stamp) and its state (Successful or Failed), which indicates that it

is an executed simulation.

Once the export has been carried out, openSF reports the status in a dialog as the one shown below.

Figure 4-118: Successful execution of the export

4.4.4.2. Import simulation

Users can activate the import operation by accessing the “Repository” menu and clicking on the “Import
simulation …” option, showing the dialog of Figure 4-119. The dialog requests the files needed to

complete the operation: the SQL file that includes the statements needed to create the simulation in the
target database, the log file and a ZIP archive with the simulation data files (configuration and optionally,
inputs) for the simulation’s execution.

Note that for simulations exported by openSF v3.7.1 onwards, the ZIP archive includes the simulation
logs, so it is not necessary to provide the log file on import. If one is specified, it will be ignored.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

121 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-119: Inputs requested for the import

The user can navigate through the file system in order to access the files by clicking on the buttons
appearing at the right side of each input field. Upon completion, openSF reports on the status of the
operation. The figure below shows the dialogue that is presented in case the import was performed

successfully.

Figure 4-120: Successful execution of the import

4.4.4.3. Export module of a simulation

This capability deals with the possibility of exporting the data associated with a module that has already

taken place in a simulation. The export functionality exports the data related to only one module of a
given simulation. Thus, the data exported are the module configuration and input files.

From the openSF HMI, the export module operation can be invoked from the simulation execution
window by navigating down to the module that the user wishes to export. Next, right-clicking over it; the
“Export” option appears for selection. This is illustrated in Figure 4-121 below.

Figure 4-121: Export module from the Simulation Result view

The output obtained as a result of the Export operation is a zip file placed in the folder indicated by
$E2E_HOME. This file is needed for the import operation providing the input and configuration files

needed for the simulation’s execution. However, it is to be noticed that the executable files corresponding
to the modules and tools are not included in the export.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

122 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4.4.4.4. Import module of a simulation

From the openSF HMI, the import module operation can be invoked from the simulation edition window
by navigating down to the module that the user wishes to import to. Next, right-clicking over it; the
“Import” option appears for selection. This is illustrated in Figure 4-122 below.

Figure 4-122: Import module from the Simulation edition view

A module data can be imported into an openSF instance from the data obtained from the export
operation. As the contents of the export relate to data files, it is required that the module exists in the
target openSF instance.

4.4.5. Simulation script generation

This functionality is provided to create and save a file script to enable the external execution of the
simulation. This script file, which e.g. in Linux is named “<simulation_name>.sh”, will be saved in the
simulation folder as every needed input and configuration files. This script contains all the environment

variables definitions and calls for modules’ executions. The script can be executed from command line
and it requires no parameters.

Note that the script is always generated when executing a simulation. The simulation script generation

functionality just generates the script, without having to execute the simulation.

It is important to notice that the execution of this script (outside openSF) will not rely on any of the
openSF provided functionalities. In fact, while the execution will be mimicked, the error handling and
results storage capabilities provided by openSF will not be in place. Moreover, the simulation will be

executed without resorting to the parallelisation capabilities provided by openSF.

4.4.6. Multi-node simulation

openSF has the ability of orchestrating the remote execution of one (or several) module in a simulation
run.

For the sample test simulation scenario shown in Figure 4-123, the user can choose which machine to
use for each module to execute. Note that the remote execution in openSF relies on mounting a remote

file system shared by all instances of openSF executing modules of a same simulation.

I E

E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

123 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-123: Outline of a simulation scenario

4.4.6.1. Remote machine management

For this purpose, a set of remote machines can be configured and managed in the system configuration.

When the user selects the “Remote” option from the menu “System”, the window shown in Figure 4-124

will show up.

Figure 4-124: Remote machines management window

In the bottom of the window there are five buttons, which allow users to perform different actions over
the remote machine configuration. Users can connect or disconnect from a remote machine, create a
remote machine reference, delete a remote machine configuration or refresh the list of available remote

machines.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

124 of 155

 DEG-CMS-SUPTR09-SUM-10-E

The central area of the window shows a list with the remote machine configured in openSF. Users can
obtain information about the remote machine address, the user that connects to the machine and the
remote path where openSF instance is installed.

The bottom of the window shows a label with the remote machine currently connected. In the case
exemplified, the application is not connected to any remote machine so the local installation of openSF is
used for storing the execution products (identified by “localhost” label).

4.4.6.2. Connect to a remote machine

Users can configure openSF to produce the simulation execution products in the file system of a remote
machine. For this, the user has to select a remote machine from the list, and click on the “Connect”

button. Automatically the file system is connected to it, and then, the name of the selected machine is

shown beside the label “Connected to”.

Connecting to a remote machine file system means that the Simulation system folder used by openSF is
located in a remote machine instead of in the local one.

4.4.6.3. Disconnect from a remote machine

Users can disconnect from a remote machine and rely on the local machine file system for simulation
execution. For this, the user has to click on the “Disconnect” button. In case openSF is already connected
to a remote machine automatically the file system is disconnected from it, and then the label “localhost”
is shown beside the label “Connected to”.

Disconnecting from a remote machine file system means that the imulation system folder used by
openSF is the one in the local machine.

4.4.6.4. Configure a new remote machine

If the user wants to create a new remote machine reference, he has to click on the “New” button, and a
dialog will be shown by the application, as it is can see in Figure 4-125.

Figure 4-125: Create new remote machine

A remote machine has four characteristics fields:

❑ User, it is the user who connects to the remote machine

❑ Password (optional), it is the password of the user. In case the ssh key has been setup this field
is not required

❑ Machine Address, it is the address (IP or verbose) of the remote machine

❑ Home, it is the location in the remote machine where openSF instance is installed

Fields User and Home have a default value, that are:

❑ User: “openSF” (created during the installation of the application)

❑ Home: $E2E_HOME (created during the installation of the application)

It is mandatory that all fields have a correct value with the only exception made for the password field,

that can be empty.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

125 of 155

 DEG-CMS-SUPTR09-SUM-10-E

When the user enters all the information correctly and clicks on the “OK’” button, openSF attempts to
connect to the remote machine using the configuration provided.

In case some field has been entered incorrectly (as for example the user or password to connect with the

server are incorrect) openSF shows a message reporting the error (Figure 4-126), and invites the user to
enter the correct information or cancel the creation.

Figure 4-126: Remote machine is unreachable

If the user clicks on the “Cancel” button on the remote machine settings window, no action is performed.

4.4.6.5. Delete a remote machine

To remove a remote machine configuration, the user has to select the remote machine to be removed
from the list, and click on the “Delete” button (Figure 4-127). A new dialog is shown to confirm the
action. If the user clicks on “Yes, delete”, the entry is deleted.

Figure 4-127: Confirm deletion operation

4.4.6.6. Refresh remote machine list

The remote machine management dialog provides the capability to refresh the list of remote machines to
which openSF can be connected to. This capability is useful e.g. in a situation when the user wants to
recover an existing configuration upon upgrading to a new version of openSF.

4.5. Preferences

The “System” menu, shown in Figure 4-128, gives control the general characteristics of the whole openSF
system.

I A E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

126 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-128: System Menu

Selecting this menu option presents the dialog presented in Figure 4-129.

Figure 4-129: Environment variables

In this dialog users can modify some of the characteristics of the system.

4.5.1. Environment variables

A list of environment variables and associated values are shown in a table (Figure 4-129). Once a module
or a product tool is being executed, they can access these variables if they need them because the
system makes them available to the execution process. Users can “add” or “remove” an environment
variable using the given buttons. Double-clicking on an already existing variable the user can edit its

name and value.

Note that all other variables that were already present in the system/user environment when openSF was
started will also be passed to the modules. In case of conflict, the variables defined in the preferences
replace (with a few exceptions, see below) those already in the environment with the same name.

$E2E_HOME must to be defined here so it is exported as an environment variable (see Sec. 3.3.2 for
reference). There is an environment variable recognized by OSFI called $DEBUG_MODE that controls the

verbosity of some module executions. Setting to “On” or “Off” can enable or disable this output.

OpenSF handles in a special way all environment variables used to customize the search for dynamic

libraries. For %PATH% (on Windows), $LD_LIBRARY_PATH (on Linux) and $DYLD_LIBRARY_PATH (on

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

127 of 155

 DEG-CMS-SUPTR09-SUM-10-E

macOS), openSF prepends the value specified in the preferences to the value exported externally in the
environment.

macOS users must be aware of the limitations in using environment variables in script execution enforced

by Apple with the introduction of the System Integrity Protection (SIP) security feature in OS X 10.11 (El
Capitan), which does not allow critical environment variables (such as $DYLD_LIBRARY_PATH) to be
passed in a cascading shell script call.

4.5.2. Application settings

Figure 4-130: System Applications settings

Under this category (Figure 4-130) users can change the following default system parameters:

❑ Check for Updates URL. The configurable URL where openSF looks for software updates.

❑ Synchronize Navigation Tabs: Shows the appropriate simulation folder in the repository view

when a simulation result is opened.

❑ Enable user role selection: When enabled, a custom menu is shown in the toolbar to allow
switching between “Normal” user role and “Developer” user role (see Section 3.2.2).

❑ Override Parameter Dimensions: When a parameter is changed, its dimensions may vary. When
this option is ticked, this would generate a DimsMismatch error. When this option is unticked, the
parameter dimensions are updated according to the new value.

❑ Timeline Segment definition: Specifies how the timeline segment time should be interpreted

(Section 4.4.2.4).

❑ Default Time Segment duration: Default duration of the new Time Segments in seconds.

❑ Initial Time Segment Epoch: Initial Epoch for new Timeline Scenarios. This field shall be compliant
with the CCSDS ASCII Time Code A format (YYYY-MM-DDThh:mm:ss.ddd).

❑ Default execution strategy: The user can choose if the default execution is data-driven or time-

driven.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

128 of 155

 DEG-CMS-SUPTR09-SUM-10-E

❑ Maximum Directory Copy Depth: Defines the maximum depth of the directory tree used when
copying files and folders before a simulation is executed. This copy operation typically includes
copying input and configuration files/directories into the simulation folder. The use of this value is

widespread and is designed to avoid possible infinite loops caused by symbolic links.

❑ Validate LCFs against schema on writing: The user can validate the Local Configuration Files
(LCFs) against a schema file. “Skip validation” is selected by default, but the user can select
“Validate but only generate warnings” or “Validate and fail the simulation on errors”. As the
description indicates, if the user chooses “Validate but only generate warnings”, the LCFs will be
validated against the XSD schema file chosen in the Module menu (Section 4.3.2.2.2) and

warnings will be generated in the simulation log. If instead the user selects “Validate and fail the
simulation on errors”, the validation against the XSD schema file will raise errors which will force

immediate termination the simulation’s execution.

❑ Symlink handling mode: By default, when a symbolic link file or folder is used in a simulation (as
a configuration or input), the actual file or folder referred to by the source element is copied in
the simulation folder (“Copy File”) (see Section 4.3.4). The user can instead choose to create a
symbolic link to the original source (“Copy Link”) or ignore symbolic links altogether (“Ignore”). In

this latter case, the symbolic links are not considered when creating the execution folder. If some
module refers to files/folders containing symbolic links, the user is responsible for manually
placing them where the module expects them to be found.

❑ Module CLI Version: Version of the Command Line Interface used when running a module. Version
1 uses positional arguments, while version 2 uses flagged options (see [AD-ICD]).

❑ Maximum Execution Threads. Sets the maximum number of modules that can be executed in
parallel during a simulation execution. The recommended value corresponds to the number of

cores of the machine were openSF is installed. Possible values are: 0 (number of cores of the
machine), 1 (no parallelisation enable) or N (the number of modules that may be executed in

parallel). Keep in mind that it is allowed to insert a maximum number of execution threads higher
than the number of cores of the machine and the impact is that a core may have to deal with
more than one thread. Nevertheless, a warning message will be shown to the user whenever
entering a value higher than the machine’s number of cores.

❑ Store raw logs for each module executed: if disabled, a single log file will be generated for each
executed simulation. The file contains general status messages, plus the messages from all
modules formatted according to [AD-E2E]. However, if this option is enabled, a log file will be
created in the same folder containing the “raw” output (both with and without E2E-ICD format)
for each module in the simulation. This may be useful for debugging some modules.

4.5.3. Application folders

Under this category users can change the default locations for these directories. If relative paths are
given, they are resolved under $E2E_HOME (see 3.3.2) unless otherwise specified:

❑ Simulations. This is the place where all the files associated to simulation executions can be found.
Execution scripts, report files and, by default, configuration and output files generated are going
to be stored here.

❑ Temp. Some intermediate files are going to be stored temporarily in this directory.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

129 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-131: Application folders

4.5.4. Interpreters Definition

OpenSF allows the user to run modules not directly executable from the system command line. Such
modules can be executed by means of an interpreter that can be specified in the system preferences

(See Section 6.3.1 for module’s execution details). A number of built-in interpreters are available by
default, while further ones can be specified by the user. Figure 4-132 shows a list of available
interpreters, accessible by navigating to System → Preferences → Interpreters Definition.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

130 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-132 Interpreters definition

When a module is executed, openSF checks if its extension is compatible with one of the available active

interpreters, giving priority to the built-in ones. Interpreters can be activated and disabled using the first
column in Figure 4-132.

Built-in interpreters’ path can be modified by selecting the desired interpreter and pressing on the “Edit”
button. This will open the pop-up in Figure 4-133, which allows the user to select an interpreter’s path.

Figure 4-133 Built-in interpreter path definition

In case no path is given, the table in Figure 4-132 will display the placeholder “<Default>”, which
assumes the interpreter to be in the system path. The only exception to this mechanism is for Python

interpreter under Windows OS, that has to be explicitly specified in order for the interpreter to work. This
built-in option is hence only available in Windows.

User-defined interpreters can be added, removed and edited using the corresponding buttons, as shown
in Figure 4-132. When one of the last two options is chosen, the window in Figure 4-134 is shown.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

131 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 4-134 User-defined interpreter definition

Here the user can define a name, an extension, a binary path and a list of arguments. Note that only one
extension can be specified. Note also that if different interpreters share the same extension, openSF does
not resolve the ambiguity and therefore the user is invited to resolve it, e.g. activating only the desired
interpreter. To add, shift upwards, shift downwards or remove an argument from the arguments list, the

user can use the respective buttons. When creating an argument, the window in Figure 4-135 is shown.

Figure 4-135 Interpreter argument definition

Here, the user can choose to specify a general argument as a literal string or to insert a placeholder to

indicate openSF to insert:

Placeholder Representing

<mod_file> The module file name that is being executed

<input_files> The module input file names

<output_files> The module output file names

<config_files> The module configuration files (global and module-specific)

The actual output generated by the input, output and configuration files placeholders depend on the
global setting for the CLI version to be used: running with CLI version 1 generates a single argument
with all files separated by commas, while using CLI version 2 generates multiple arguments with the

appropriate flags e.g. --global gcf.xml.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

132 of 155

 DEG-CMS-SUPTR09-SUM-10-E

4.6. Miscellaneous

A series of documents and utilities that are available from openSF is presented in this section.

4.6.1. About openSF

From the “help” tab of the menu bar, the “About openSF” functionality can be accessed. The system will

show a dialog with the copyright and license scheme for the openSF platform.

Figure 4-136: openSF About View

4.6.2. Embedded documents

A series of documents are embedded and deployed along with openSF. Users are able to view these
documents launching the proper software application. The applications for viewing the supported file

types are the ones defined as default applications for current OS.

Figure 4-137: Help documents tree view

The supported file types and the typical viewers are the following:

❑ PDF: “Portable Data Format”; Acrobat Reader

M I A E

I

M I A E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

133 of 155

 DEG-CMS-SUPTR09-SUM-10-E

❑ HTML: “Hypertext Markup Language”; Web Browser

❑ Plain Text: Notepad, Vim, Emacs ...

4.6.3. CPU usage

This dialog is helpful to analyse the CPU core use when the module execution is parallelised by openSF.

4.6.3.1. Linux

Accessing this functionality, the system will show a custom dialog with occupation of CPU cores by
machine processes.

Figure 4-138: CPU Core Usage view

4.6.3.2. macOS

The macOS Operating System already provides a default application to convey information about CPU
usage, the ‘Activity Monitor’. Accessing the CPU Usage functionality in openSF therefore launches the
‘Activity Monitor’ external application.

4.6.3.3. Windows

In Windows this CPU usage tool is not available and hence the user shall use the Windows Task Manager

instead.

E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

134 of 155

 DEG-CMS-SUPTR09-SUM-10-E

5. ANNEX A: ERROR MESSAGES

openSF platform controls its correct behaviour with an error handling system. Users are informed about
the nature of the error and a possible way to correct it.

In general, every time an input value is needed, the platform will perform a validation process. If the

input does not comply with the needed format, the user will be informed with a self-explained message.

Errors not shown as part of the graphical interface are not controlled messages. They correspond to
messages from the standard output or error stream.

When executing a simulation, modules raise their own error messages and they are intercepted by the
system and shown as log messages in the execution view

Here is a list of different kinds of raised errors:

Module Operation Error Comments

System.Configuration Adding a new variable Validation error
Follow the instructions to
correct the value

System.Tools

Accepting changes

Tool addition failed
The user has chosen a
duplicated identifier. Please
provide a different identifier

Validation error
Follow the instructions to
correct the value

Deleting a tool Database error
Possible database failure. Is
the database running?

Executing a tool File IO error Follow the instructions

Repository.Descriptors

Accepting changes

Descriptor modification
failed

Possible database failure. Is
the database running?

Descriptor addition
failed

Duplicated identifier chosen.
Please provide another
identifier

Validation error
Follow the instructions to
correct the value

Adding an IO file

Validation error
Follow the instructions to
correct the value

A descriptor shall not
have associated two
files with the same id

Please choose another
identifier

Deleting a descriptor Database error
Possible database failure. Is
the database running?

Repository.Modules

Accepting changes

Validation error
Follow the instructions to
correct the value

Module addition failed
Duplicated identifier. Please
provide a different identifier

Deleting a module Database error

Possible database failure. Is
the database running and
configured?

Creating a new
version

Database error
Possible database failure. Is
the database running and
configured?

I A E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

135 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Module Operation Error Comments

Repository.Results Deleting a result Database error
Possible database failure. Is
the database running and
configured?

Repository.Simulations

Accepting changes

Validation error
Follow the instructions to
correct the value

Database error
Possible database failure. Is
the database running and
configured?

Simulation addition
failed

Duplicated identifier. Please
provide a different identifier

Simulation modification
failed

Possible database failure. Is
the database running and
configured?

Adding a simulation
Simulation identifier
cannot be void

Please provide a valid identifier
before adding a simulation

Deleting a simulation Database error
Possible database failure. Is
the database running and
configured?

Generating a script File IO error Follow the instructions

Iterating parameters

Invalid list of values
Please input a comma-
separated list of valid values
(no blanks)

Validation error
Follow the instructions to
correct the value

Removing a
simulation

There is no simulation
selected

Please select a simulation to
remove

Running a simulation

Cannot run an
unnamed simulation

Please input a valid
identification to the simulation

Missing configuration
files

Provide the missing GCF or
LCFs in order to run the
simulation

Validation error
Follow the instructions to
correct the value

File IO Error Follow the instructions

Setting limits Validation error
Follow the instructions to
correct the value

Executions.Log Dumping the log File IO error Follow the instructions

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

136 of 155

 DEG-CMS-SUPTR09-SUM-10-E

6. ANNEX B: DEVELOPING MODULES FOR OPENSF

This section is aimed to module developers that are looking for further information about openSF module
integration.

openSF can integrate as a module every executable code that follows the requirements described in [AD-

ICD], and execute them within the system.

Nevertheless, module developers must take care of the following points:

❑ Memory handling is responsibility of the module. openSF does not manage memory assignments
and does not destroy any data structure created by the module;

❑ A module can create child processes, but their management is still on the module developer’s
side;

❑ openSF does not detect when a module execution is “halted” or in an infinite loop. It is suggested

to periodically send some logging information to openSF (i.e. heartbeat) so that the user can
identify a stalled module.

❑ Execution performance of the module may be slightly slower when orchestrated by openSF,
because of the messaging interception/collection mechanism;

❑ Module developer is responsible of the error and exception handling as explained in [AD-ICD].
(Error Handling section).

Below there is a list of documents with relevant information on module development and the topics
covered by each one.

❑ openSF Interface Control Document [AD-ICD]

➢ openSF interface specifications

➢ Module development guidelines

➢ Module development process

❑ OSFI Developer’s Manual [RD-OSFI-DM]

➢ Integration libraries reference manual for each programming language.

❑ OSFEG Developer’s Manual [RD-OSFEG-DM]

➢ Error Generation Libraries reference manual

❑ openSF Architecture Design Document [AD-ADD]

➢ openSF architecture

➢ Interaction between modules and openSF

6.1. Precautions to ensure safe module parallelization

The functionality of openSF to allow parallel execution brings a certain responsibility to module
developers. It is responsibility of the module developers to ensure that the modules are in fact
parallelisable, e.g. that their implementation has the proper precautions regarding access to common
resources. openSF can only assure synchronization of module execution and it must rely on modules

being “well behaved” with respect to parallel execution.

In order to ensure safe module parallelisation, module developers should ensure that modules are either:

M

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

137 of 155

 DEG-CMS-SUPTR09-SUM-10-E

❑ Thread safe: implementation is guaranteed to be free of race conditions when accessed by
multiple threads simultaneously, or;

❑ Conditionally safe: different threads can access different objects simultaneously, and access to

shared data is protected from race conditions.

The use of software libraries can provide certain thread-safety guarantees. For example, concurrent reads
are typically guaranteed to be thread-safe, but concurrent writes might not be. Whether or not a program
using such a library is thread-safe depends on whether it uses the library in a manner consistent with
those guarantees. Thread safety guarantees imply some design steps to prevent or limit the risk of
different forms of deadlocks, as well as optimizations to maximize concurrent performance.

There are several approaches for avoiding race conditions to achieve thread safety. The first class of

approaches focuses on avoiding shared state, and includes:

❑ Re-entrancy: writing code in such a way that it can be partially executed by a thread re-executed
by the same thread or simultaneously executed by another thread and still correctly completes
the original execution. This requires the saving of state information in variables local to each
execution, usually on a stack, instead of in static or global variables or other non-local state. All
non-local state must be accessed through atomic operations and the data-structures must also be

re-entrant;

❑ Thread-local storage: variables are localized so that each thread has its own private copy. These
variables retain their values across subroutine and other code boundaries, and are thread-safe
since they are local to each thread, even though the code which accesses them might be
executed simultaneously by another thread.

The second class of approaches are synchronization-related, and are used in situations where shared
state cannot be avoided:

❑ Mutual exclusion: access to shared data is serialized using mechanisms (e.g. semaphores) that
ensure only one thread reads or writes to the shared data at any time. Incorporation of mutual
exclusion needs to be well thought out, since improper usage can lead to side-effects like
deadlocks and resource starvation;

❑ Atomic operations: shared data are accessed by using atomic operations which cannot be
interrupted by other threads. This usually requires using special machine language instructions,

which might be available in a runtime library. Since the operations are atomic, the shared data
are always kept in a valid state, no matter how other threads access it. Atomic operations form
the basis of many thread locking mechanisms, and are used to implement mutual exclusion
primitives;

❑ Immutable objects: the state of an object cannot be changed after construction. This implies that
only read-only data is shared and inherent thread safety. Mutable (non-constant) operations can
then be implemented in such a way that they create new objects instead of modifying existing

ones (e.g. this approach is used by the string implementations in Java, C# and python).

Thread safety

Thread safety is a simple concept: is it "safe" to perform operation A on one thread whilst another thread
is performing operation B, which may or may not be the same as operation A. This can be extended to
cover many threads. In this context, "safe" means:

❑ No undefined behaviour;

❑ All invariants of the data structures are guaranteed to be observed by the threads.

The actual operations A and B are important. If two threads both read a plain int variable, then this is
fine. However, if any thread may write to that variable, and there is no synchronization to ensure that the
read and write cannot happen together, then a data race occurs, which is undefined behaviour, and this
is not thread safe.

Unless special precautions are taken, then it is not safe to have one thread read from a structure at the
same time as another thread writes to it. If it can be guaranteed that the threads cannot access the data

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

138 of 155

 DEG-CMS-SUPTR09-SUM-10-E

structure at the same time (through some form of synchronization such as a mutex, critical section,
semaphore or event) then there should be no problem.

Element like mutexes and critical sections can be used to prevent concurrent access to some data, so

that the writing thread is the only thread accessing the data when it is writing, and the reading thread is
the only thread accessing the data when it is reading, thus providing the thread safety guarantee. This
therefore avoids the undefined behaviour mentioned above.

However, the programmer still needs to ensure that the code is safe in the wider context: if more than
one variable needs to be modified then the mutex needs to be held across the whole operation rather
than for each individual access, otherwise the invariants of the data structure may not be observed by

other threads.

It is also possible that a data structure may be thread safe for some operations but not others. For
example, a single-producer single-consumer queue will be fine if one thread is pushing items on the
queue and another is popping items off the queue, but will break if two threads are pushing items, or two
threads are popping items.

Global variables are implicitly shared between all threads, and therefore all accesses must be protected
by some form of synchronization (such as a mutex) if any thread can modify them. On the other hand, if

a separate copy of the data is held for each thread, then that thread can modify its copy without worrying
about concurrent access from any other thread, and no synchronization is required. Of course,
synchronization is always needed if two or more threads are going to operate on the same data.

6.2. Environment variables

The user can customize the environment variables used by openSF and that are available to the modules
and tools during simulation execution, tailoring them to his system. These variables can be set in the

system preferences window (see Section 4.5). An environment variable that is always exported is
$E2E_HOME, which is described in Section 3.3.2.

6.3. Module pre-requisites

In most cases, openSF runs modules by invoking them as binaries from the simulations folder. This
means that it is responsibility of the module developer/integrator to provide any dependencies (e.g.
libraries, interpreters, etc.) and to perform the setup needed for such modules to work correctly. The
means are varied and depend on the type of module (compiled binary, script, etc.).

For example, a module written in C++ may link statically against all its dependencies so that the
resulting executable does not depend on any dynamic libraries that would have to be found and loaded

on start, although this may not always be possible depending on the library and the system.
Alternatively, dependencies can be provided in a way that may be located by the module, so e.g. a

Python module that makes use of OSFI-Python or other libraries may access them by:

❑ Installing them in the site-packages directory of Python,

❑ Including them in the PYTHONPATH environment variable, or

❑ Distributing them alongside with the module, making the script itself look for them in a known
location relative to the module (e.g. ../libs/OSFI/Python).

For more information on the matter of module development and deployment, look at the documents
mentioned in Section 6.

6.3.1. Modules not compliant with E2E Generic ICD

OpenSF offers some support to run modules non-strictly adherent with the Generic E2E Interface Control
Document [AD-ICD]. If such modules do not comply with the standard CLI, they can be wrapped and

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

139 of 155

 DEG-CMS-SUPTR09-SUM-10-E

called by means of a specified interpreter. The arguments of the given interpreter can be freely specified
and ordered (See Section 4.5.4) and they may include:

1. The list of input files

2. The list of output files
3. The list of configuration files
4. The module file

Note that the lists themselves are specified in the same fashion as described in [AD-ICD].

6.3.2. IDL

Note: IDL module execution is deprecated and not under further development.

To execute modules in IDL with openSF is necessary to have IDL software installed on the computer.

openSF has been tested with the following versions of this software: version 7.1, 8.0 and 8.1.

If the user has a previous version, the application may not work. It is recommended to have installed at
least IDL 7.1, and whenever possible version 8.0 or later.

An important requirement for the correct functioning is that IDL is installed in the default path, because if
not some features of the OSFI library will not work properly. This problem is related with the ConFM
module, which uses some internal classes of IDL that must be in the default path in order for the
application to find them. IDL looks in fact for these classes only in the default directory, and if it does not

find them generates an error.

For IDL 7.1 the default path is ‘/usr/local/itt/idl’ and for IDL 8.x the default path is ‘/usr/local/itt/idl/idl’.

Furthermore, IDL provides three types of licenses according to the user needs, as can be seen below:

❑ IDL development: Full license for IDL that allows to the user to use all its functionalities. Users
can access to the IDL Development Environment, the IDL command line, and having the ability of
compiling and executing IDL .pro files and executing .sav files.

❑ IDL runtime: Allows executing IDL programs precompiled and saved as .SAV files, or .pro files

without any type of restriction.

❑ IDL virtual machine: It is a free license that allows to the user to execute IDL programs
precompiled and saved as .SAV files, or .pro files. This kind of license has a few restrictions, like
displaying a splash screen on start-up, callable IDL applications are not available.

To execute a .sav or a .pro file without any type of restriction it is necessary to have installed the
development license or the runtime license on the computer. If user wants to generate .sav files by

compiling .pro files, it is mandatory to have the development license. If the user only has the virtual
machine license, he can execute .pro and .sav files but with restrictions, as many functionalities are not

available for this type of license.

6.3.3. MATLAB

To execute modules in MATLAB with openSF, MATLAB software must be installed on the computer. The
only requirement is that MATLAB version must be R2009a or later, with the corresponding license.

6.3.4. Python and other scripts

The framework also executes script-based modules, such as Python or shell scripts. Currently, they are
invoked as normal programs, so they must be marked with execution permissions. The choice of

interpreter must be somehow recognizable for the system e.g. with the customary hash-bang line:

#!/bin/sh (POSIX shell scripts)

#!/bin/bash (BASH scripts)

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

140 of 155

 DEG-CMS-SUPTR09-SUM-10-E

#!/usr/bin/env python (Python, system default version)

#!/usr/bin/env python2/3 (Python, script choice of a version)

#!/opt/bin/PowerShellCore6/pwsh (Other, custom script interpreters)

Since .sh/.bat files are executed directly, Windows users cannot run POSIX shell modules and Linux/Mac
users cannot run CMD batch modules. However, the system is extensible and new “interpreted file” types
can be added in future versions.

6.3.5. Python scripts execution in Windows

Due to the Python2/Python3 ambiguity (some scripts are compatible between both versions and some

are not), a method to choose between the correct interpreter for each script is necessary. Giving the

version of the interpreter to be used via shebang lines in the beginning of the Python script solves the
issue.

Since Windows does not allow shebang lines to choose between which Python version to use, the solution
is to use a launcher12 for aiding in the location and execution of different Python versions, allowing the
scripts to indicate a preference for a specific Python version.

Thus, in Windows, the Python interpreter must be specified to run Python modules. If available, the user
shall use the aforementioned launcher/chooser “py.exe” instead of a specific interpreter version i.e.

“python.exe”.

This Python interpreter, as well as others interpreters from the compatible languages, can be chosen by
accessing Systems → Preferences → Interpreters Definition, as thoroughly described in Section 4.5.4.

12 https://docs.python.org/3/using/windows.html#python-launcher-for-windows

https://docs.python.org/3/using/windows.html#python-launcher-for-windows

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

141 of 155

 DEG-CMS-SUPTR09-SUM-10-E

7. ANNEX C: TUTORIAL - CREATING AN E2E SIMULATION

This chapter will show user how to create and end-to-end simulation within openSF software. The
simulation chain used is the one installed as validation scenario during openSF deployment.

This chapter is divided in the following sections:

❑ Scenario Description, showing the outline of the E2E simulation, logic entities, input and output
identification, etc…

❑ Module Development Guidelines detailing the module development process aimed to be
integrated in openSF.

❑ Framework Structure Definition, which details the steps that shall be taken in order to create
a whole simulation scenario within openSF HMI. This section also gives some guidelines about the
recommended folder structure for a simulation project that will be integrated within openSF.

❑ Product Tools Specification, including the definition of data exploitation tools.

This tutorial should be complemented by the information in the openSF Training course material [RD-

TM] available on the openSF web page (https://eop-cfi.esa.int/index.php/openSF).

7.1. Scenario Description

The outline of a test simulation scenario is shown in Figure 7-1. The drawing of this diagram is the first
step to integrate a simulation scenario within openSF.

Figure 7-1: Outline of a test simulation scenario

I A E

https://eop-cfi.esa.int/index.php/opensf

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

142 of 155

 DEG-CMS-SUPTR09-SUM-10-E

After this point users shall identify and define the openSF entities that will be part of the simulation
scenario. The entities that take part in this tutorial E2E simulation are listed in the following sections.

7.1.1. Descriptors – Input and Output Files

The definition of the descriptors (file sets) shall be done together with the module definition as input and

files generated are the interfaces for simulation modules. This is described in the [AD-ICD].

The files showed in this section have been extracted from the validation test data set. These can be found
in the openSF installation test folder. Note that even though they are XML files, they are input/output

files and not configuration files as defined in AD-E2E, and therefore they do not use the same format.

❑ Input_Ionosphere: input used for the Ionosphere module.

• InputIonos.xml

❑ Product_Ionosphere: file generated by the Ionosphere module.

• Ionosphere.xml

❑ Input_Geometry, input used for the Geometry computation module.

• InputGeo.xml

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<openSFProduct>

 <InputGeo>

 <temperature type="FLOAT" value="30"/>

 <humidity type="FLOAT" value="56"/>

 </InputGeo>

</openSFProduct>

Figure 7-2: Product file example

❑ Product_Geometry, file generated by the Geometry computation module.

• Geometry.xml

❑ Product_OSS, file generated by the Observing System module.

• Instruments.xml

❑ Input_Scene, input used for the Scene Generator, it is composed by a map input file and the

outputs of the Geometry module and the Observing System module.

• Maps.xml

• Geometry.xml

• Instruments.xml

❑ Product_Scene, output from the Scene Generator module.

• Scene.xml

❑ Input_L1b, input used for the L1b processor composed by the outputs coming from Scene
Generator, Observing System and Ionosphere modules.

• Scene.xml

• Instruments.xml

• Ionosphere.xml

❑ Product_L1b, descriptor that represents the level 1b simulated product.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

143 of 155

 DEG-CMS-SUPTR09-SUM-10-E

• L1b.xml

❑ Product_L2, descriptor that represents the level 2 simulated product. This file can be considered

as the global simulation output.

• L2.xml

7.1.2. Modules

This is the list of modules identified within the test simulation chain. Each module has associated an input
and output description to allow a proper orchestration of the simulation scenario. Other module

configuration items such as executable file and XML configuration file are described in [AD-ICD].

❑ IonosphereModule

• Input descriptor: Input_Ionosphere

• Output Descriptor: Product_Ionosphere

❑ GeometryModule

• Input descriptor: Input_Geometry

• Output Descriptor: Product_Geometry

❑ OSSModule

• Input descriptor: Product_Geometry

• Output Descriptor: Product_OSS

❑ SceneGenerator

• Input descriptor: Input_Scene

• Output Descriptor: Product_Scene

❑ L1bGenerator

• Input descriptor: Input_L1b

• Output Descriptor: Product_L1b

❑ L2Retrieval

• Input descriptor: Product_L1b

• Output Descriptor: Product_L2

7.2. Framework Structure Definition

This task consists in defining all the entities specified in section 7.1 into the openSF HMI. This can be

performed following the instructions specified in the openSF reference manual, chapter 4 of this
document. Furthermore, a step by step example of the creation of this simulation in the openSF HMI can

be found in the openSF Training course material [RD-TM] available on the openSF web page

(https://eop-cfi.esa.int/index.php/openSF).

7.2.1. Folder Structure Guidelines

This section gives some tips and recommendations about the folder structure within a simulation project

that is integrated into openSF. This section is aimed at easing the integration process. As mentioned, the

following instructions are not mandatory as users can choose whatever structure they prefer.

https://eop-cfi.esa.int/index.php/opensf

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

144 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Simulation Project Structure

❑ modules folder where all files regarding to the simulation algorithms are stored including
executable, configuration and input files

• src for modules source code

• bin for modules binaries

• lib for the libraries (example libProducts.dll for input output management that can be common to
all modules within the simulation chain)

• cots folder for storing third party applications and libraries used within the modules

• test folder for system and unit tests

• data

➢ conf for global and module configuration files

➢ input for filed used as input

❑ tools folder where store source code and related files for project specific tools (ex: end-to-end
comparator)

• bin for tools binary files

• lib for tools library files

• src for tools source files

❑ doc folder where useful documentation of the project can be located

openSF team recommends storing all the data regarding to the project in folders using E2E_HOME as root
directory or a subfolder of it. Example: /home/tester/openSF/E2Etutorial/ being /home/tester/openSF/
the openSF home folder. This will help in the framework integration process as relative paths to the files

can be used. The resultant folder structure for the E2E tutorial presented in this chapter is shown in
Figure 7-3.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

145 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 7-3: E2E tutorial folder structure

7.3. Product Tools Specification

The definition of product tool is detailed in Section 4.3.5; it is recommended that users take a look to this
section before going on reading.

7.3.1. Simulation Products Exploitation

Following the mechanism described in Section 4.3.5, openSF users are able to plug-in any product tool in
order to visualize, post-process or archive the simulation products.

The selection of this product tools depends on the type of simulation products (definitively files) users
want to analyse. A list of popular product tools used in openSF related simulation projects is shown in

Section 4.3.5.5.

In case of the test simulation scenario where all product files are XML the tool associated can be the

user-preferred text editor (Notepad, Gedit, Emacs etc…).

7.3.2. Closing the Loop in an E2E Simulation

Usually the target of performing and E2E simulation is to validate the output of a set of algorithms
comparing the input and the output of the simulation. Other objectives can be the sensitivity and stability
analysis of a full processing chain over a set of simulation parameters.

In any of the mentioned cases it is necessary to perform a comparison between two points of the
simulation chain in order to analyse the results. This connection closes the loop within a simulation
scenario.

In order to close the loop in openSF, users can follow the following strategies depending on the

simulation scenario.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

146 of 155

 DEG-CMS-SUPTR09-SUM-10-E

❑ Development of a product specific processing tool.

❑ Development of a new module and insert it into the simulation chain as a new processing stage.

❑ Use of a cots comparison tool. This mechanism is recommended when the product format can be

compared directly without any pre-processing step.

For the tutorial scenario possible points to close the loop are the Scene input (Scene.xml) and the L1b or
L2 product (L1b.xml or L2.xml). This action would require the development of a product specific tool that
performs a simple processing of the Scene input in order to compare with the L1b or L2 products. This
situation can be also solved including a new module in the simulator where this comparison is performed.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

147 of 155

 DEG-CMS-SUPTR09-SUM-10-E

8. ANNEX D: INSTRUCTIONS TO BUILD THE FRAMEWORK

This annex explains how the openSF framework is built. This section is oriented only for developers that
need to build openSF from sources due to project specific customizations.

The openSF development team recommends the use of Eclipse IDE as it is the platform used for

developing the framework. It is just a recommendation, as the platform uses Maven as a build system

and thus can be built directly from the command line, or with another Java IDEs.

8.1. Pre-requisites to Build the Framework

❑ openSF source files

❑ Java Development Kit, version 8 or later

❑ Apache Maven tool, version 3 or later

❑ If installer packages are to be generated, install4j with a valid license, version 5.1.

8.2. How to Build the openSF Platform

Apache Maven is a Java-based build system that uses Project Object Model (POM) files to orchestrate
compilation and packaging of applications. Maven is able to automatically pull dependencies from the
Internet, a functionality that is used to download the Eclipse RCP Java files and native launchers.

Due to the above, building openSF requires a connection to the Internet, at least the first time that the
build is attempted: This is necessary in order for Maven to download its own plugins, including the Tycho
system that builds Eclipse RCP applications, and the Eclipse runtime files.

Once unpacked, the openSF tree contains the following relevant files and folders:

❑ build.sh: support script performing most of the Maven build steps.

❑ openSF.build: folder containing the majority of the “release engineering” architecture. In
particular, the main POM file that other files in the project reference.

❑ openSF.build/generate-installers.py: support script that gathers the files for each platform into
the right structure and calls install4j to generate the installer packages.

❑ openSF.build/dependencies-mvn2osgi: folder containing a separate POM project that needs to be
processed first and separately, due to a technical limitation of Tycho/Maven.

❑ openSF.build/installers: folder containing install4j project files in order to generate installation
packages for openSF (see §8.3). Also contains a folder to place the external packages to be
bundled in, like documentation files, example modules, ParameterEditor, etc.

❑ openSF.product: folder where the output of the build will be generated (under “target”).

❑ platform: folder containing the main source code for the openSF framework.

❑ platform.tests: folder containing unit tests for the openSF platform.

The output of this step is a series of “Eclipse packaged product” ZIP files, one for each platform, available
at the openSF.product/target/products/ folder. Note that a single build in one machine generates the files

I A E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

148 of 155

 DEG-CMS-SUPTR09-SUM-10-E

for all platforms13, since the platform-dependent components are downloaded from Eclipse and don’t
need to be built.

These files are not full installations of openSF: they are only one of the multiple components that are

needed to build a fully-functional installer package, as described in Section 8.3. However, they can be
used as-is during development and testing, if they are unpacked on top of an existing openSF installation,
they will in effect “upgrade” that installation.

8.2.1. Simplified procedure

Using the support script provided, it is easy to build the openSF platform files

$./build.sh

The support script runs the two-step build process outlined in the following simulation, accepting two

environment variables that change its behaviour:

❑ MVN: path to the Maven executable, defaults to “mvn”, so Maven is expected to be available in the
system PATH.

❑ SKIP_TESTS: if defined to “1”, skips the phase in which the openSF unit tests are run (the Maven
target used is “package” instead of the next step “verify”).

8.2.2. Detailed procedure

Any build configuration changes before the process can be performed on the various files that define the

project settings. For example, the file openSF.build/pom.xml defines the system platforms to build for;
the file platform/plugin.properties configures some strings in the program, etc.

In order to build the platform, first the project under openSF.build/dependencies-mvn2osgi must be built
and installed (in the local Maven repo). This step is required due to a limitation of the Maven/Tycho build,
and only needs to be performed once as long as this project does not change. It makes available some
OSGi-enabled JARs for the second project to find and use.

$ mvn -f openSF.build/dependencies-mvn2osgi/pom.xml clean install

After the dependencies project is installed for Maven to find its outputs, the main project can be built:

$ mvn -f openSF.build/pom.xml clean verify

The “verify” target builds the product and runs unit tests. If such tests fail, the build stops immediately
and the product files are not generated. If such behaviour is not desired, there are two different options:

❑ Passing the -fae (“fail at end”) flag to Maven. In this case, the test failure will be noted and the
build will be reported as “failed”, but the product files will still be generated.

❑ Using the “package” target instead of “verify”, which skips the execution of the unit tests.

8.3. How to Build the Installer Packages

As mentioned before, the output of the last step is a series of ZIP files in the Maven-generated target
folder under openSF.product. They contain the archived installations of the RCP products for each

platform, which can be used during development as mentioned in §8.2. However, a working openSF
installation is made up of several components, which if missing will make the system work partially, or
not at all. Those components are:

13 However, if building on Windows, the fact that the Windows file system does not save the

“executable” bit will mean that the launchers in the generated Linux and Mac OSX product files generated
will require a later chmod +x.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

149 of 155

 DEG-CMS-SUPTR09-SUM-10-E

❑ Documentation files, the set of PDFs shown in the help menu. Without these files, no help files will
be shown at all in the HMI.

❑ ParameterEditor, which is built separately as another RCP archived product, but with the same
procedure described for openSF. If this platform-specific component missing, openSF will not be
able to launch PE as an external configuration file editor.

❑ Example modules and database, which is a set of dummy modules, configuration and input files,
along with a database with simulations including them. Since they include C++ modules along with
Java and Python examples, they are platform specific, built using CMake and require linking against
the OSFI library. If missing, only the “empty” database template file is available in the HMI, but no
openSF functionality is lost.

❑ Template openSF.properties file, placed by the installer in the installation folder after some
variables have been replaced. Without this file, openSF might not start.

In order to generate the installer, the openSF.build/generate-installers.py script can be used. It requires
the other components to be present at openSF.build/installers/external. The user can place them there
manually, or, if these outputs are uploaded to some internal Maven repository (e.g. as part of some
continuous integration build system), the dependencies.pom and gather-components.py files in that same

folder are designed to download them from such a repository automatically. In either case, the layout
should look like Figure 8-1.

Finally, if install4j is available, running the installer generation script will create files similar to those
displayed in Figure 8-2. The script accepts settings through several environment variables including the
product version and installer signing capabilities; see the script itself for details.

Figure 8-1: External components

Figure 8-2: Generated installers (one release and
one development build)

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

150 of 155

 DEG-CMS-SUPTR09-SUM-10-E

9. ANNEX E: USING DOCKER IN OPENSF SIMULATIONS

The ability to run applications in virtual containers enables developers to easily integrate heterogenous
environments in which E2E simulators are nowadays expected to work. The use of Docker promotes also
the automated deployment of the execution environment and favours simpler and continuous testing

procedures. This section describes how a simulation module can be setup inside a container and how to

integrate it in an openSF E2E simulation.

It is highly recommended that each simulation module is deployed inside a separate Docker container,
with OpenSF used to orchestrate the multiple modules that make part of the simulation. Notice that the
goal of using containers, in the scope of E2E development, is to allow the integration of modules
developed in heterogenous OS. This facility should not be used to favour the creation of deployment
schemes that create unnecessary coupling between components.

The deployment of OpenSF inside a container is considered highly inappropriate.

9.1. Concepts and Requirements

When running a module inside a container, it is by default isolated from the host environment in multiple
ways which depend on the system and its configuration. For example, Docker isolates the host filesystem

and, depending on the daemon configuration, it may also provide a separate user namespace; that is,

have different users than the host.

In order for openSF to run a module distributed as a container image, the following points must be taken
into consideration:

1. Dependencies: all dependencies of the module must be included in the container image. For
example, this may include dynamic libraries, OSFI and other packages.

2. Paths mapping: from the point of view of openSF, the container-based module must respect the
E2E-ICD. This means that the module will be passed some arguments and environment variables
which represent paths into the host filesystem, while the container internally sees a separate
filesystem. Thus, some paths from the host need to be mapped into the container.

3. File access: the module needs read and write access to the simulation folder (the path
represented by the E2E_EXECUTION_HOME variable), in order to read the configuration/input
files and to generate the output files as required. Furthermore, read-only access to other paths

may also be needed.
4. Permissions of output files: the output files created by the module need to be themselves

accessible by the (host environment) user running openSF, so they can be opened by any further

modules in the simulation, or by the user when the simulation completes.

In general, point 1 is taken care of at the time of image definition (Dockerfile) and build. For point 2, the
module needs some external support program or script that presents an E2E-ICD compatible interface to
openSF, while launching the container with an appropriate configuration to map the necessary host paths

into the container environment.

In case the simulation module needs to rely on data in other paths (either directly or via filesystem
symlinks), beware that extra caution is required. The path mappings defined when running the Docker
container need to ensure that all necessary data is correctly available for the module.

Points 3 and 4 present a more complex problem that depends on the setup of the container system. For
example, the default settings for Docker on Linux share the user IDs between the host and the container,

but security-oriented deployments may use that separate user namespaces that appear as different
numbers inside and outside the container.

I A E

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

151 of 155

 DEG-CMS-SUPTR09-SUM-10-E

If the container process can be made to run using the same (external) user as openSF, then the issue is
likely moot. Otherwise, permissions and/or ACLs need to be set appropriately on the simulations folder to
allow the proper interoperation of files.

9.2. Example

Considering that an openSF simulation module is ready for deployment, in order to run it inside a Docker
container the following steps will be considered:

1- Create Docker image

2- Invoke Module in Docker container

3- Setup Module in openSF

The example provided as part of openSF assumes a Linux host and Docker containers, and that the
Docker daemon is not configured to remap the user namespace. Refer to the contents of folder
<OPENSF_INSTDIR>/test/data/docker for the files described in the following sections, which provide

details of how these steps allow to set up the Simple simulation module.

Please note that other container environments are not covered by this example. In particular,
macOS/Windows Docker is not considered, even when running Linux containers. Neither are Windows

containers on Windows Docker, other Linux container runtimes such as Podman, etc. While it is possible
that such systems may be able to run a module in openSF by carefully applying the four points in section
9.1, they are not the main focus of this section.

9.2.1. Create Docker Image

A Docker image is created by following the recipe described in a Dockerfile. Typically, images take an

existing base image (e.g. Ubuntu 20.04) and build on top of it by installing only what is essential to run
the application, which in our case the simulation module.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

FROM ubuntu:20.04

ENV DEBIAN_FRONTEND noninteractive

Make basic tooling available

RUN apt-get update \

 && apt-get install -y --no-install-recommends \

 software-properties-common \

 sudo \

 gosu \

 python-is-python3 \

 && rm -rf /var/lib/apt/lists/*

Install the openSF (Simple) Module. Other dependencies (e.g. OSFI) would go here too

COPY simple.py /opt/simple/simple.py

RUN chmod +rx /opt/simple/simple.py

ENV PATH="/opt/simple:${PATH}"

Setup a generic entry point

COPY entrypoint.sh /usr/local/bin/entrypoint.sh

RUN chmod +x /usr/local/bin/entrypoint.sh

ENTRYPOINT ["/usr/local/bin/entrypoint.sh"]

Figure 9-1: Simple Dockerfile

The Simple Dockerfile, presented in Figure 9-1, is based on Ubuntu 20.04 (line 1).

The Dockerfile then installs the basic tools necessary to deploy and run the Simple simulation module
(lines 7-14). Notice that in the example, auxiliary tools such as sudo/gosu are installed to facilitate the

execution of the simulation module, and specifically to allow running the simulation module with root and

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

152 of 155

 DEG-CMS-SUPTR09-SUM-10-E

non-root users. Depending on the use case, the simulation module developer might want to install the
build toolchain and allow building/deploying the module from sources.

The deployment of the simulation module is handled in lines 17-18. Considering that Simple is a single

Python script file, the deployment just copies the file to the expected installation location and ensures
that it is executable. Since this example comes with openSF itself, it will re-use the OSFI-Python library
that is distributed with the openSF examples. However, normal modules must include their own
dependencies, including OSFI, since they should run on multiple versions of openSF.

In case it is necessary, the Dockerfile also allows to customize the execution environment (see line 20,
where the PATH environment variable is adjusted to allow finding simple.py).

The deployment step in the Dockerfile should be considered as a working specification of how to deploy

the simulation module, either base on a distribution package or on a sources package. In this sense, it

should be a dynamic reflection of what is described in the module’s user manual.

The setup finishes by provisioning and configuring an entry point to be executed when the docker
container is run. This file is a small auxiliary script that runs inside the container, and customizes the
environment based on parameters passed when running the container (e.g. adjusts the user running the
simulator inside the container).

Assuming that the environment variable OPENSF_HOME is defined to <OPENSF_INSTDIR>, to build the
Docker image opensf:simple execute the following commands:

$ cd $OPENSF_HOME/test/data/docker/simple

$ docker build -t opensf:simple .

9.2.2. Invoke Module in Docker container

Even though running inside a Docker container, the simulator module must be able to access
configuration and input files and to generate output files at locations designated by openSF. The
simulator module must also be invokable using the standard CLI parameters (as described in [AD-E2E]).

This can be achieved via a Simple adapter script that maps all necessary folders inside the Docker
container, and forwards all the options to the simulator module.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

#!/usr/bin/env bash

IMAGE=opensf:simple

docker run --rm -t \

 -e RUN_AS_USER="$(id -u)" \

 -e RUN_WITH_USERNAME="${USER}" \

 -e OPENSF_HOME="${OPENSF_HOME}" \

 -e E2E_HOME="${E2E_HOME}" \

 -e E2E_EXECUTION_HOME="${E2E_EXECUTION_HOME}" \

 -v "${OPENSF_HOME}:${OPENSF_HOME}" \

 -v "${E2E_HOME}:${E2E_HOME}" \

 -v "${E2E_EXECUTION_HOME}:${E2E_EXECUTION_HOME}" \

 "${IMAGE}" \

 simple.py "$@"

Figure 9-2: Simple adapter

The Simple adapter script (shown in Figure 9-2) creates a temporary container to run the simulation
module simple.py inside.

The script calls the docker run command on line 5, with option --rm to dispose of the container one the

simulation module is finished.

The options on lines 6-7 provide environment variables for the entry point script, customizing the user

that runs the simulator inside the container – this is important to correctly match file

ownership/permissions inside and outside of the container as stated in points 3 and 4 of 9.1.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

153 of 155

 DEG-CMS-SUPTR09-SUM-10-E

The relevant environment variables (E2E_HOME and E2E_EXECUTION_HOME) are made available to the
simulator based on the options in lines 8-10. Typically OPENSF_HOME is not used by the simulation
module and thus is not necessary, but in the current example it is used to locate and provision the OSFI

Python library.

In case the simulation depends on other environment variables, made available via openSF preferences,
these must be added as further options in the adapter script.

To allow reading configuration and inputs and writing outputs, the options in lines 11-13 mount the
relevant folders inside the container at the locations they are expected. This means that even though
running inside the container, the simulation module will find the files/folders and no path translation is

actually needed.

The Docker image to be used is determined by line 14 and then line 15 specifies the command to be
executed – i.e. the simulator module called with the parameters exactly as defined by openSF.

Assuming that the OPENSF_HOME variable is defined and points to <OPENSF_INSTDIR>, to run Simple
inside the container run the adapter script as follows:

$ cd $OPENSF_HOME/test/data/docker

$./simple.sh -g gcf.xml -l lcf.xml

Info | OpenSF (Simple) Module v1.0 is inside docker|3.6.0

Info | Inside docker, using configuration file: gcf.xml|3.6.0

Info | Inside docker, using configuration file: lcf.xml|3.6.0

9.2.3. Setup Module in OpenSF

In practice, with the Docker image created and an invokable script to run the Simple simulation module
ready, there are no differences to set up any other simulation module. From an openSF perspective, the
invokable script will act as a regular/native module.

For the Simple simulation module, do as follows:

1) Create the appropriate input and output descriptors
2) Create the module, defining test/data/docker/simple.sh as the executable
3) Add the new module to an existing simulation or create a new simulation and use it

After these three steps are concluded, simply run the simulation. Figure 9-3 shows the execution log of a
simulation where the provided Simple example was configured with input descriptor Product_L1b, output
description OutputGeneric, and included in E2E_test simulation.

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

154 of 155

 DEG-CMS-SUPTR09-SUM-10-E

Figure 9-3: Example container module configured and running in openSF

openSF

System User Manual

OPENSF-DMS-TEC-SUM01

4.1

24/06/2021

© Deimos Space S.L.U. 2021

155 of 155

 DEG-CMS-SUPTR09-SUM-10-E

END OF DOCUMENT

