
IND-CMS-SUPTR09-SUM-10-E 

 

 

Indra Deimos 
 

indracompany.com  

 

 

 

 

 

Developer’s 
Manual 
OSFEG 

Error Generation Libraries for the open Simulation 
Framework 

 

 

 

 

 
 

Javier Martín Ávila & Aida Filgueira Pallas – Project Engineers 

Mercedes Pavía – Project Manager 

Mercedes Pavía – Project Manager 

 

Document Code: OPENSF-DMS-OSFEG-DM 

Version: 1.9 

Date: 16/06/2025 

Confidentiality Level: Unclassified 

 



 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
2 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

 

 

 

 

 

 

 

  

 

 

 

 

This page intentionally left blank 



 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
3 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

Document Status Log 

Issue Section Change Description Date 

1.0  First issue of this document 04/06/09 

1.1  Updated for openSF V3 22/11/13 

1.2  New build system with CMake 15/12/17 

1.3  Updated for OSFEG v1.4 14/12/18 

1.4 4 Updated for OSFEG v.1.4.1 

 The value of “float” elements may now be provided as text content. 

 Updated XML examples for the different perturbation types 

 Updated environment definition (compiler, C++ standard) to match OSFI 

 Updated example C++ sources 

17/12/20 

1.5 3.3 Updated for OSFEG v1.4.3: license modified (in v1.4.2), updated reference 
environments in sec. 3.3. 

31/05/22 

1.6  Release for OSFEG v1.4.4: no changes 19/12/22 

1.7 3 Release for OSFEG v1.4.5: add BUILD_CQREPORTS option in sec. 3.4.1. 23/05/23 

1.8 3 Release for OSFEG v1.4.6: update requirements in sec. 3.3. 24/05/24 

1.9 3 Release for OSFEG v1.4.7: add support for Apple Silicon CPUs in macOS, and 
update the recommended compiler version to GNU 9.5. 

16/06/25 

 



 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
4 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

Table of Contents 

Document Status Log ............................................................................................................................................................ 3 
Table of Contents ................................................................................................................................................................... 4 
List of Tables ............................................................................................................................................................................ 5 
1. INTRODUCTION .................................................................................................................................................................... 6 

1.1. Purpose 6 
1.2. Scope 6 

2. RELATED DOCUMENTS ....................................................................................................................................................... 7 
2.1. Applicable Documents 7 
2.2. Reference Documents 7 
2.3. Standards 7 

3. GETTING STARTED .............................................................................................................................................................. 8 
3.1. Introduction 8 
3.2. Conventions used in this Manual 8 

3.2.1. <OSFEG_DIR> 8 
3.3. Initial Requirements 8 

3.3.1. Hardware requirements 8 
3.3.2. Software requirements 8 

3.4. Installation 9 
3.4.1. Build Instructions 10 

4. OPENSF ERROR GENERATION LIBRARIES .................................................................................................................... 12 
4.1. Error definition files 12 

4.1.1. Definition of perturbations 12 
4.1.2. Available error functions 12 

4.1.2.1. Deterministic Functions 12 
4.1.2.2. Sampling Functions 14 
4.1.2.3. Nondeterministic Functions 15 
4.1.2.4. Binary and Composite Operations 16 

4.1.3. Example file 16 
4.2. Process logic 17 
4.3. Examples of use 18 

4.3.1. C++ Programming Language 18 
4.3.2. C++ Compilation and Execution process 18 

 



 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
5 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

List of Tables 

Table 1: Applicable documents............................................................................................................................................................... 7 
Table 2: Reference documents ............................................................................................................................................................... 7 
Table 3: Standards ...................................................................................................................................................................................... 7 
Table 4: Suggested compilers for sources ......................................................................................................................................... 9 
Table 5: System pre-requisites ............................................................................................................................................................... 9 
Table 6: Recommended utilities ............................................................................................................................................................. 9 
 



 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
6 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

1. INTRODUCTION 

This project concerns the definition and development of libraries to ease the generation of analytical and 
stochastic perturbations, or a combination of them, in the models that will be integrated into the open Simulation 
Framework (openSF) system. It will be applicable to other projects that imply the use of openSF. 

1.1. Purpose 

The objective of this document is to provide a detailed description and an operation manual of the error generation 
libraries used during the development and deployment of the models implied in a simulation creation process. 

The intended readerships for this document are model developers and scientists that are in charge of integrate 
those models into the open Simulation Framework. 

1.2. Scope 

This document contains a detailed description of the libraries and an API that should be used as a reference 
manual by model developers. It also includes a brief architecture description and some examples of use. 

This document contains the following sections: 

 An introduction (current section 1) for giving a quick overview of the project; 

 A list of related documents to provide a documentary background (section 2) 

 An introduction to the libraries, installation and linking instructions (section 3) 

 A description of the architecture, the process logic and some examples of use. It also includes the coding 
guidelines (section 4) 



 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
7 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

2. RELATED DOCUMENTS 

2.1. Applicable Documents 

The following table specifies the applicable documents that shall be complied with during project development. 

Table 1: Applicable documents 

Reference Code Title Issue 

[OSF-ICD] openSF-DMS-ICD-001 OpenSF Interface Control Document 3.0 

[AD 2] EOP-SFP/2012-12-1686/PB/ag Change Request for the openSF V3 activities 
description. 

- 

2.2. Reference Documents 

The following table specifies the reference documents that shall be taken into account during project 
development. 

Table 2: Reference documents 

Reference Code Title Issue 

[RD 1] OSFI DM OpenSF Integration Libraries – Developers Manual 1.23 

[RD 2] openSF-DMS-SUM OpenSF System User Manual 4.5 

2.3. Standards 

The following table specifies the standards that shall be complied with during project development. 

Table 3: Standards 

Reference Code Title Issue 

[STD 1] www.w3.org/TR/xml11 Extensible Markup Language (XML) 1.1 Second 
Edition 

[STD 2] www.uml.org/#UML2.0 Unified Model Language (UML) 2.1 

[STD 3] ISO/IEC 14882:2011 C++ Standard 2011.3 

 



 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
8 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

3. GETTING STARTED 

3.1. Introduction 

In the frame of concept and feasibility studies for the Earth Observation (EO) activities, mission performance in 
terms of final data products needs to be predicted by means of so-called end-to-end (E2E) simulators. 

A specific mission E2E simulator is able to reproduce all significant processes and steps that impact the mission 
performance and gets simulated final data products. 

The open Simulation Framework (openSF) is a generic simulation framework product aimed to cope with these 
major goals. It provides end-to-end simulation capabilities that allow assessment of the science and engineering 
goals with respect to the mission requirements. 

This openSF tool lets users to integrate and execute pieces of code, «models» that form the building blocks of a 
simulation process. 

Typically, those pieces of code, «models» are handled by openSF as simple executable programs with three 
interfaces, input, output and configuration. 

Under this scenario appears the goal of performing a statistical analysis of the E2E simulator driven by the errors 
and perturbations present in the parameters involved in a simulation chain.   

The Open Simulation Framework Error Generation Libraries (OSFEG from now on) will be used as a tool to ease 
the mathematical modeling of a perturbation within statistical analysis scenarios. 

OSFEG offers to developers a well-documented interface to ease the modeling and generation of a perturbation 
over desired parameters. 

The libraries provide an error-modeling interface based on a XML file definition and its correspondent 
implementation in C++. A detailed description will be seen in section 4.  

3.2. Conventions used in this Manual 

This chapter lists all the conventions used throughout this Developer’s Manual 

3.2.1.  <OSFEG_DIR> 

All through the contents of this Developer Manual, a “variable” called <OSFEG_DIR> is exhaustively used as a 
placeholder. The variable value points to the root folder that contains the OSFEG library, normally installed by 
CMake directly or unpacked from a previous build. 

3.3. Initial Requirements 

The OSFEG system is prepared to run in a hardware and software platform with the following requirements. These 
must be fulfilled before installing the distribution. 

3.3.1. Hardware requirements 

OSFEG is designed to be compatible with any platform that supports a standard C++11 compiler and run-time. In 
particular, it has been tested with: 

• Operating systems: Microsoft Windows 10 (21H2), Linux (Ubuntu 22.04), macOS 13 

• Architectures: x86-64 (also known as AMD64 or Intel 64) or Apple Silicon processor 

Building on other platforms/versions (e.g. on Windows 11, FreeBSD or using an ARM processor) might work, but it 
is not tested. 

3.3.2. Software requirements 

This is the list of suggested compilers for the sources. Nevertheless, developers can use their favorite compilers 
in each case. 



 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
9 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

Table 4: Suggested compilers for sources 

Language Compiler Licensing Distribution Site 

C/C++ Any compatible with C++11, suggested GNU C/C++ 
compiler v9.5 or later 

GNU GPLv3 https://gcc.gnu.org  

 

The following table shows the system pre-requisites in order to build the OSFEG library. 

Table 5: System pre-requisites 

Component Purpose Licensing Distribution Site 

De-compressor Extract files from release packaged in a 
compressed tarball 

N/A N/A 

CMake 3.22 or higher Build, test and pack the OSFI libraries BSD 3-clause Linux repository or 
https://cmake.org/  

 

The following table shows a set of utilities that are recommended to build the OSFI libraries. If Xerces-C is not 
installed in the system, the OSFEG build system can be configured to download and build it automatically. 

Table 6: Recommended utilities 

Component Purpose Licensing Distribution Site 

Doxygen 1.8.13 or 
higher 

Generate OSFI libraries 
documentation 

GNU General 
Public License 

Linux repository or 
https://www.doxygen.nl  

Google Test Generate and execute C++, C 
and Fortran tests 

BSD 3-clause Linux repository or 
https://github.com/ 
google/googletest  

Xerces-C 3.2.0 or 
higher 

Parse XML files Apache License 
2.0 

https://xerces.apache.org/  

3.4. Installation 

OSFEG is distributed as source package. Figure 1 shows a high-level view of the contents of the distribution: 

 The folder include contains the header files of the library 

 The folder releng (release engineering) contains CMake configuration files 

 The folder src contains the source files of the library 

 The folder test contains a set of unit and integration test procedures that ensure the proper performance of 
the library 

In addition, the distribution includes the main CMake make file and the license. 

http://gcc.gnu.org/
https://cmake.org/
http://www.stack.nl/%7Edimitri/doxygen/index.html
https://github.com/google/googletest
https://github.com/google/googletest
http://xerces.apache.org/


 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
10 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

  

Figure 1: OSFEG distribution 

3.4.1. Build Instructions 

First, extract the integration libraries into the desired location and enter it: 

$ tar -xf osfeg-<version>-sources.tar.zst 

$ cd OSFEG 

Next, create a folder where the products of the building process will be generated (e.g. build) and enter it: 

$ mkdir build 

$ cd build 

The command that detects the system properties and creates the build system accepts a set of optional 
arguments that must be reviewed. First of all, the OSFEG libraries depend on Xerces v3.2.0. The default behavior 
of the build system is to look for the library in the user’s system, but two optional arguments can be used to change 
the behavior: 

 XercesC_DIR: it forces CMake to look for the Xerces library in the directory provided. 

 BUILD_XERCES: if this option flag is set to ON, CMake will download and build a compatible version of Xerces 
in a subdirectory created in the build folder. 

If the optional flag BUILD_SHARED_LIBS is set to ON (the default is OFF), the build process generates shared 
libraries. If not, static libraries are created.  

If the Boolean optional argument BUILD_DOC (default value ON) is set to OFF, the Doxygen-based documentation 
of the OSFEG libraries will not be created. It shall be remarked that the utility Doxygen itself must be installed in 
order to generate it. 

Option BUILD_TESTING (default value ON) can be set to OFF in order to skip the test building process. If ON, Google 
Test must be installed in order to build most of the tests. 

Finally, if the optional flag BUILD_CQREPORTS is set to ON (default is OFF) the build process will generate a folder 
named “cqreports” in which static analysis and test coverage reports are generated. If enabled, new requirements 
are needed: Cppcheck for static analysis, gcovr and the required processor (gcov or llvm-cov) for test coverage. 
Important: do not use this option to build a production library, as the instrumentation for test coverage produces 
spurious output and makes the code slower. 

The following example shows how to configure the OSFEG make files from the build folder created inside the 
OSFEG directory to generate the static libraries. It can be seen that the Xerces library is downloaded and built. It 
shall be remarked that the optional arguments are provided starting with “-D”. 



 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
11 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

$ cmake -DBUILD_XERCES=ON ../ 

See the documentation for CMake for more configuration options, e.g. for the choice to create projects for 
different build systems (e.g. Xcode, Eclipse, etc.). Regardless of the choice of build system, once it is are 
configured, the selected OSFEG libraries can be built with the following command, run from the build directory:  

$ cmake --build . 

The OSFEG tests can be launched with the following command executed from the build directory, or using the 
“test” target of the build system:  

$ ctest 

If the test execution has been successful, the “package” and “package_source” targets can be used to generate 
distributable versions of the binaries and sources. The first can also be achieved by running: 

$ cpack 

If the process has been successful, the package folder structure should be as follows: 

 include: header files  

 lib: dynamic or static libraries of OSFEG. In addition, the folder cmake/OSFEG/ contains the CMake 
configuration files. 

 share: documentation of the libraries API in html format. This folder is not available if the documentation is not 
created. 

It must be noted that the OSFEG binaries generated may have dependencies e.g. on Xerces or the C++ runtime of 
the compiler that was used. If module developers want their modules to be redistributable, they have the 
responsibility to include any dependencies in the package, especially the Xerces library used during the build 
process. Note that if the library was built alongside OSFEG (via the BUILD_XERCES flag) the generated products 
are located in the build directory in the folder xerces/ExternalProject/Install. 



 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
12 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

4. OPENSF ERROR GENERATION LIBRARIES 

In this section, the following is given: 

 A detailed description of the functions implemented within the error generation libraries. 

 A complete set of examples of how to use the APIs and how to compile and run them. 

4.1. Error definition files 

In this section will be described the mathematical functions implemented within the error generation libraries. The 
libraries include the most used analytical and random functions to perturb parameters in E2E simulation modelling 
scenario. 

The parameter perturbation functions are defined through an XML file. An example it is shown at the end of this 
section. 

This section is especially relevant because the error definition file describes the mathematical behavior of the 
parameter’s perturbation. It is also included a detailed description of the variables involved in the function 
definition. 

4.1.1. Definition of perturbations 

The file is structure around the definition of one or more “error” items, which are introduced by XML elements with 
a tag name of “parameter”. They are defined as follows: 

 A “name” attribute, whose value is used to identify the error definition in the API. 

 A single child element, which must be one of the error functions in section 4.1.2. 

<parameter name="ERROR-ID"> 
<error-function /> 

</parameter> 

4.1.2. Available error functions 

Error functions are defined by an element in the XML tree. The element tag name selects the type of function, 
while the definition parameters (e.g. mu and sigma for a Gaussian distribution) may be passed as attributes or as 
sub-elements, depending on the specific type. 

Normally, parameters that are specified as sub-elements may themselves be of any type of error function, allowing 
e.g. the frequency of a sinusoidal function to be itself defined as a function growing linearly with time. 

<error-function attributes…> 
 <child-function /> 
 <child-function />… 
</error-function> 

However, in the case where the parameter is not a function but a constant, the special element “float” provides 
the value of the constant. It may take one of two forms: one where the value is in the content of the element, and 
another where it is specified as a “value” attribute. Both forms are recognized and parsed, but the former is 
preferred for new files as it is slightly shorter. 

<float>123.456</float> <!-- Preferred --> 
<float value="123.456" /> <!-- Legacy --> 

4.1.2.1. Deterministic Functions 

Deterministic functions are those whose value it is known in the entire time domain. 

 Affine 

This function calculates the perturbation as an affine value. An affine transformation consists in a linear 
transformation and a translation. 



 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
13 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

• error = a1  + a0 * t 

<affine> 
 <float>1< /float>  <!--  Linear Transformation Variable a0 -- > 
 <float>1</float>    <!--  Translation Variable  a1 -- > 
</affine>   

 Bias 

This function calculates the perturbation as a constant value. 

<bias> 
 <float>1</float>  <!-- Constant Value -- >  
</bias> 

 Linear 

Calculates the perturbation as a linear value: 

 p = a * t  

This is a particular case of affine transformation when translation variable is equals to 0. 

<linear> 
 <float>1</float>  <!-- Linear Transformation Variable a -- >  
</linear> 

 Parabolic 

This function calculates the perturbation as a parabolic value. 

 p = a0 + a1 * t + a2 * t2  

<parabolic> 
 <float>1</float>   <!-- a0 --> 
 <float>1</float>   <!-- a1 --> 
 <float>1</float>   <!-- a2 --> 
</parabolic> 

 Polynomial 

This function calculates the perturbation as a generic polynomial value. This function has as many float parameters 
as degrees of the desired polynomial plus one. 

<polynomial> 
 <float>1</float>   <!-- a0 --> 
 <float>1</float>   <!-- a1 --> 
     … 
 <float>1</float>   <!-- a(n-2) --> 
 <float>1</float>   <!-- a(n-1) --> 
</polynomial>   

 Step 

This function calculates the perturbation as step function. 

 if simTime < t  =>  p = a0  

 if simTime > t  =>  p = a1  

<step> 
 <float>3</float>    <!-- t --> 
 <float>1</float>    <!-- a0 --> 
 <float value="-1" />   <!-- a1 --> 
</step> 

 Sinusoidal 

Calculates the perturbation as sinusoidal function 

 p = a * sin(2 * pi * f * t + phi)  



 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
14 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

 f(Hz) 

 phi(deg) 

 t(secs) 

<sinusoidal> 
 <float>10</float>   <!-- Amplitude a --> 
 <float>10</float>   <!-- Frequency f in Hz --> 
 <float>0</float>     <!-- Angle phi in deg. -->    
</sinusoidal> 

 Tangent  

Calculates the perturbation as tangent function  

 p = a * tan(2 * pi * f * t + phi)  

 f(Hz)  

 phi(deg)  

 t(secs)  

Remember that the tangent function has singularities when the angle evaluated is n*pi/2, for nonzero integral n. 

<tangent> 
 <float>10</float>   <!-- Amplitude a --> 
 <float>1</float>     <!-- Frequency f in Hz --> 
 <float>0</float>     <!-- Angle phi in deg. -->    
</tangent> 

4.1.2.2. Sampling Functions 

Error Generation libraries implements three interpolation methods, linear, polynomial and spline sampling. In 
order to define the points of the interpolation there is a common set of variables that are listed below. 

 xMin:  Min value of the independent variable 

 xMax:  Max value of independent variable 

 step:  Increment between values of the independent variable 

The number of points provided for the interpolation (nValues) must be exactly as needed to cover all predefined 
values of the independent variable, as follows: 

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 

 Linear Sampling  

This function makes an interpolation with the given points assuming it follows a linear rule.  

<linearSampling xMin="1.0" xMax="5.0" step="1"> 
 <float>1</float> 
 <float>3</float> 
 <float>5</float> 
 <float>7</float> 
 <float>3</float> 
</linearSampling> 

 Polynomial Sampling 

This interpolation method builds a polynomial grade n, being n the number of specified points. This interpolation 
minimizes the Least Square Error. Ref: Neville Method. 

<polynomialSampling xMin="1.0" xMax="12.0" step="1"> 
 <float>1</float> 
 <float>2</float> 
 <float>1</float> 
 <float>2</float> 
 <float>1</float> 



 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
15 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

 <float>2</float> 
 <float>1</float> 
 <float>2</float> 
 <float>1</float> 
 <float>2</float> 
 <float>3</float> 
 <float>5</float> 
</polynomialSampling> 

 Spline Sampling 

Interpolate the given “n” points with Cubic Splines Method. 

<splineSampling xMin="1.0" xMax="20.0" step="2"> 
 <float>2</float> 
 <float>3</float> 
 <float>2</float> 
 <float>3</float> 
 <float>2</float> 
 <float>3</float> 
 <float>2</float> 
 <float>3</float> 
 <float>10</float> 
 <float>2</float> 
</splineSampling> 

4.1.2.3. Nondeterministic Functions 

These functions correspond to common random function implementation with seed management for testing 
purposes. 

 Beta Distribution 

This function generates random values with Beta function as probability density function. 

<beta seed="1" v="2" w="5" xMin="0.0" xMax="1.0" /> 

 Gamma Distribution 

This function generates random values with Gamma function as probability density function. 

<gamma seed="1" location="0.0" scale="0.5" shape="9" /> 

 Exponential Distribution 

This function generates random values with Exponential function as probability density function. 

<exponential seed="1" a="1" b="1.5" /> 

 Normal Distribution 

This function generates random values with Gaussian function as probability density function. 

<normal seed="1" mu="100.0" sigma="10.0" /> 

 Uniform Distribution 

This function generates random values following a Uniform Distribution. 

<uniform seed="1" xMin="0" xMax="1" /> 

 Poisson Distribution 

This function returns the perturbation as a generated random value with Poisson function as probability density 
function. 

<poisson seed="1" mu="10" /> 

 Truncated Gaussian Distribution 



 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
16 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

This function returns the perturbation as a generated random value with Truncated Gaussian function as 
probability density function. 

<truncatedGaussian seed="1" mu="0.5" sigma="0.2" xMin="0.4" xMax="0.6" />  

 Uniform Discrete Distribution 

This function returns the perturbation as a generated random value with Uniform Discrete function as probability 
density function. 

<uniformDiscrete seed="1" i="0" j="1" /> 

 Distribution with custom Probability Density Function 

Returns the value of a random variable generated with a custom probability density function given. It is only 
recommended to use it by expert developers/scientists. 

<customPDF seed="24" xMin="0.0" xMax="12.0" step="1"> 
 <float>7</float> 
 <float>43</float> 
 <float>21</float> 
 <float>10</float>  
 <float>2</float> 
 <float value="6" />  
 <float value="23" /> 
 <float value="31" />  
 <float>7</float> 
 <float>2</float> 
 <float>7</float> 
 <float>43</float> 
 <float>21</float> 
</customPDF> 

4.1.2.4. Binary and Composite Operations 

Error Generation Libraries implements the basics mathematical operations in binary mode. The operations 
implemented are: 

 Addition 

 Subtraction 

 Multiplication 

 Division 

 Exponentiation 

 Root 

Composite operations consist of a deterministic function with one or more of its parameters following another 
function or binary operation. 

4.1.3. Example file 

An example of an error definition file with several parameters using both random and deterministic functions is 
shown below. The meaning of the defined parameters is as follows: 

• Affine and sinusoidal: 𝐴𝐴 sin(2𝜋𝜋 𝑓𝑓𝑠𝑠 + 𝜙𝜙)  𝑠𝑠 + 𝑘𝑘 with A=10, f=90, ϕ=0 and k=5. 
• Sinusoidal and beta: 𝐴𝐴 sin(2𝜋𝜋 𝑓𝑓𝑠𝑠 + 𝜙𝜙) with A sampled from a Beta(1,2) distribution, f=10, ϕ=0. 
• Composition: [10 sin(2𝜋𝜋 90𝑠𝑠)]2 + 40 sin(2𝜋𝜋90𝑠𝑠 + 5) − 1. 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
 <parameter name="Affine and sinusoidal"> 
  <affine> 
   <sinusoidal> 
    <float>10<!-- A --></float> 



 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
17 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

    <float value="90" /> <!-- f --> 
    <float><!-- phi -->0</float> 
   </sinusoidal> 
   <float value="5" /> 
  </affine> 
 </parameter> 
 <parameter name="Sinusoidal and beta"> 
  <sinusoidal> 
   <beta seed="1" v="1.0" w="2.0" xMin="10.0" xMax="15.0" /> 
   <float>10</float> 
   <float>0</float> 
  </sinusoidal> 
 </parameter> 
 <parameter name="Composition"> 
  <addition> 
   <exponentiation> 
    <sinusoidal> 
     <float>10</float> 
     <float value="90" /> 
     <float>0</float> 
    </sinusoidal> 
    <float>2</float> 
   </exponentiation> 
   <subtraction> 
    <sinusoidal> 
     <float value="40" /> 
     <float value="90" /> 
     <float value="5" /> 
    </sinusoidal> 
    <bias> 
     <float>1</float> 
    </bias> 
   </subtraction> 
  </addition> 
 </parameter> 
</errorsFile> 

4.2.  Process logic 

In this section, the process logic of using the libraries in models source code is shown. 

Steps for using the Error Generation Libraries: 

1. Include the OSFEG.h header file in your code 

#include <OSFEG.h> 

2. Create an instance of the ErrorSources class passing the name of the XML error definition file. The constructor 
throws an exception in case of error, so remember to handle it. Note that exceptions thrown from ErrorSources 
may have additional information about the cause of the problem in more specific exceptions nested in the 
outermost one1. 

ErrorSources reader{errorDefinitionFile}; 

3. Access the perturbation values by the full name of the parameter and a double specifying the simulation step. 

reader.getError(paramName, step); 

                                                                    

1 See for example the “print_exception” function in the example for nested exception functions in 
https://en.cppreference.com/w/cpp/error/throw_with_nested  

https://en.cppreference.com/w/cpp/error/throw_with_nested


 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
18 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

4.3. Examples of use 

4.3.1. C++ Programming Language 

Here is an example of C++ code that uses the error generation libraries.  

#include <OSFEG.h> 
#include <iostream> 
#include <string> 
#include <stdexcept> 
 
using namespace std; 
 
int main(int argc, char *argv[]) 
try { 
 string config(argv[1]); 
 cout << "Reading file " << config << endl; 
 // Create an ErrorSources instance to read the file 
 ErrorSources reader{config}; 
 double t = 1.25; 
 string paramName = "Example"; 
 cout << "Value at " << t << ": " << reader.getError(paramName, t) << endl; 
 return 0; 
} catch (const exception &e) { 
 cerr << e.what() << endl; 
 return 1; 
} 

4.3.2. C++ Compilation and Execution process  

This section provides instructions for building the modules using CMake, the suggested build system. It assumes 
that OSFEG and Xerces are already built. 

In order to provide the Xerces and OSFEG libraries to the building system, the user should use the CMake 
command find_package. Firstly, the developer shall add the Xercesc package with the commands shown below. 
It can be seen that function find_package allows the user to input the location of the library to be added. The 
package Threads refers to the threading library of the system and it is usually needed by Xerces. 

find_package(Threads REQUIRED) 
find_package(XercesC REQUIRED CONFIG HINTS "${XercesC_DIR}") 

The OSFEG library is added using the same command. 

find_package(OSFEG REQUIRED CONFIG HINTS "<OSFEG_DIR>") 

Where <OSFEG_DIR> is as defined in section 3.2.1. After these commands, Xerces and OSFEG are available for the 
building process, which shall be performed with the proper CMake commands. 

Integration libraries come in two distribution types, shared or static libraries. 

If you have linked the program against shared libraries, you can execute the binary files after specifying the 
location of those shared libraries like this: 

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<OSFEG_DIR>/lib 

Linking with static libraries does not require specifying the location of the linked libraries since the executable 
already includes all the code. 

The command for executing the example binary is: 

./cppExample <arguments> 

 
  



 

OSFEG 

Developer’s Manual 

OPENSF-DMS-OSFEG-DM 

1.9 

16/06/2025 

 

Indra Deimos 

 
19 of 19 

 IND-CMS-SUPTR09-SUM-10-E 

 

 

 

 

 

 

 

 

 

 

 

End of Document 

 


	Document Status Log
	Table of Contents
	List of Tables
	1. INTRODUCTION
	1.1. Purpose
	1.2. Scope

	2. RELATED DOCUMENTS
	2.1. Applicable Documents
	2.2. Reference Documents
	2.3. Standards

	3. GETTING STARTED
	3.1. Introduction
	3.2. Conventions used in this Manual
	3.2.1.  <OSFEG_DIR>

	3.3. Initial Requirements
	3.3.1. Hardware requirements
	3.3.2. Software requirements

	3.4. Installation
	3.4.1. Build Instructions


	4. OPENSF ERROR GENERATION LIBRARIES
	4.1. Error definition files
	4.1.1. Definition of perturbations
	4.1.2. Available error functions
	4.1.2.1. Deterministic Functions
	4.1.2.2. Sampling Functions
	4.1.2.3. Nondeterministic Functions
	4.1.2.4. Binary and Composite Operations

	4.1.3. Example file

	4.2.  Process logic
	4.3. Examples of use
	4.3.1. C++ Programming Language
	4.3.2. C++ Compilation and Execution process



