
IND-CMS-SUPTR09-SUM-10-E

Indra Deimos

indracompany.com

Developer’s
Manual
OSFI
Integration Libraries for openSF

openSF Team – Project Engineers

Javier Martin Ávila – Technical Responsible

Mercedes Pavía – Project Manager

Document Code: OPENSF-DMS-OSFI-DM

Version: 1.26

Date: 28/05/2025

Confidentiality Level: Unclassified

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

2 of 101

IND-CMS-SUPTR09-SUM-10-E

This page intentionally left blank

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

3 of 101

IND-CMS-SUPTR09-SUM-10-E

Document Status Log

Issue Section Change Description Date

1.0 First issue of this document 15/12/08

1.1 ANSI C programming language support 27/04/09

1.2 Quality indicators functionality added 26/05/09

1.3 Mac Installation added 15/03/10

1.4 OSFI library for F77, IDL and Matlab.

Added sections describing the integration of models in F77, IDL and Matlab.

22/09/10

1.5

4.1

4.4

Updated OSFI library for Matlab.

Added configuration for IDL.

Add reference to openSF ADD, OSFI section.

New section with OSFI additional features.

12/11/2010

1.6 4.4 Updated OSFI library for Python. 02/04/2014

1.7 4.2.7 Updated after review comments from ESA: implemented RIDS
OPENSF_v3.2_RID_03, OPENSF_v3.2_RID_04 and OPENSF_v3.2_RID_05.

30/04/2014

1.8

3.1

Updated OSFI library for Java

Update of AD/RD

Reworded introduction

15/08/2016

1.9 Updated OSFI available API (added existParameter method) 20/10/2016

1.10 Updated after review comments from ESA: added Python requirements, added
reference documentation (doxygen)

18/11/2016

1.11 3.3.2 Updated due to support to Python 3.X 16/06/2017

1.12 3.3.2 Update version of compilers used in openSF 06/07/2017

1.13 4 New section defining the OSFI implementation of the E2E ICD 13/09/2017

1.14

4.3

New build system based on CMake

New Fortran interface and Foreign Function Interface

Fortran 77 and IDL deprecated

15/12/2017

1.15 3.5

4

Introduction of new sections on building modules with OSFI and upgrading from
previous OSFI versions.

Updated section on the API and added coverage tables.

14/06/2018

1.16 3.4.1 Clarify the use of CMake for Python and Matlab implementations. 14/12/2018

1.17 Removed references to specific OSFI releases 11/06/2019

1.18 3.5.3

4.5.7

Include build instructions for generating a Python Wheel binary package.

Add examples of use of OSFI Python through an installed package.

17/07/2019

1.19 2.3, 3.3.2

3.2

3.3.1

3.4, 3.5

4.2.3, 4.3

New versions of the supported compiler/runtime for all languages. In particular,
removed support for Java 7 and Python 2.7.

Replacing $OSFI_HOME with <OSFI_INSTDIR> to avoid confusion with the new
environment variable $E2E_HOME. Also updated the data types (mention TIME).

Updated to address compatibility with MS Windows.

Reorganize sections w.r.t. the Python wheel package, and mention the accepted
values of OSFI_LANGS.

Add API to access TIME parameters. Also, provide textual values in the cells of
the API coverage tables.

03/07/2020

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

4 of 101

IND-CMS-SUPTR09-SUM-10-E

Issue Section Change Description Date

1.20 2.1, 2.2

3.2

3.3.2.3

3.5.2

4.2.1

4.3.1.1

4.3.6

4.5.6

5.2

Updated references.

Clarify deprecation of $OSFI_HOME and fix typos.

Mention sys.path in addition to PYTHONPATH.

Update Java module distribution guide to account for the new dependency on
Apache Commons CLI.

Add description of CLIv2 and update tables.

Update const qualification of C++ CLP functions.

Update Matlab CLP API with CLIv2 and string arrays.

Update Matlab example.

Add section detailing incompatible changes in OSFI 3.6.0.

14/06/2021

1.21 2.2

3.3

5.3, 5.4

Updated documentation.

Update reference environments.

Add new sections.

31/05/2022

1.22 4.2.3, 4.3

5.5

Update to reference the new (in some languages) Parameter functions getPath
and getLocalName and the deprecation of getName

New section for the same changes, plus the C++ API change in DynamicArray.

15/12/2022

1.23 4.3.1

4.3.6

Explain new option BUILD_CQREPORTS.

Update Matlab information to detail the support for string scalars and arrays.

23/05/2023

1.24 2.3, 3.3

3.4.3,
3.5.2

Update requirements.

Add information on the new Matlab toolbox package

31/05/2024

1.25 2.3

4.2.3

4.3.2,
4.5.2

4.3.3

5.6

Add C11 reference.

Add coverage for new ConFM functionalities in C and Fortran.

Rewrite for the new C API and its example.

Add some new functions in the Fortran API.

New section on porting modules to OSFI 3.10.

19/11/2024

1.26 (all)

2

3.5.3

4.2.3

Ported to new template and styles

Update document versions, remove unused references and add XSD standard

Condensed explanation of the two modes of provisioning OSFI in Python/Matlab

Reference the XSD 1.0 standard

28/05/2025

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

5 of 101

IND-CMS-SUPTR09-SUM-10-E

Table of Contents

Document Status Log .. 3
Table of Contents ... 5
List of Figures .. 8
List of Tables .. 9
1. INTRODUCTION ... 10

1.1. Purpose 10
1.2. Scope 10
1.3. Acronyms and Abbreviations 10

2. RELATED DOCUMENTS ... 12
2.1. Applicable Documents 12
2.2. Reference Documents 12
2.3. Standards 12

3. GETTING STARTED ... 13
3.1. Introduction 13
3.2. Conventions used in this Manual 13

3.2.1. <OSFI_INSTDIR> 13
3.2.2. $E2E_HOME 13
3.2.3. Data Types 13

3.3. Initial Requirements 14
3.3.1. System Requirements 14
3.3.2. Software Requirements 14

3.4. Installation 16
3.4.1. Build Instructions 17
3.4.2. Packaging and/or Installation 18
3.4.3. Python and Matlab Packages 18

3.5. Building and Distribution of Modules with OSFI 18
3.5.1. C++, C and Fortran 19
3.5.2. Java 19
3.5.3. Python and Matlab 20

4. OPENSF INTEGRATION LIBRARIES .. 23
4.1. Architectural Overview 23
4.2. OSFI Common Packages 24

4.2.1. Command Line Parser (CLP) 24
4.2.2. Logger (EHLog) 26
4.2.3. Configuration File Manager (ConFM) 28

4.3. Language-specific interfaces 39
4.3.1. C++ Programming Language 39
4.3.2. C Programming Language 45
4.3.3. Fortran Programming Language 50

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

6 of 101

IND-CMS-SUPTR09-SUM-10-E

4.3.4. Fortran 77 Programming Language 56
4.3.5. IDL Programming Language 57
4.3.6. Matlab Programming Language 59
4.3.7. Python Programming Language 65
4.3.8. Java Programming Language 70

4.4. Additional Features 74
4.4.1. Debug Mode 74
4.4.2. Coloured Logs 74

4.5. Examples of use 76
4.5.1. C++ Programming Language 76
4.5.2. C Programming Language 77
4.5.3. Fortran Programming Language 77
4.5.4. Fortran 77 Programming Language 79
4.5.5. IDL Programming Language 80
4.5.6. Matlab Programming language 82
4.5.7. Python Programming Language 84
4.5.8. Java Programming Language 86

5. COMPATIBILITY WITH PREVIOUS VERSIONS .. 87
5.1. Migrating from OSFI 3.4 to 3.5 87

5.1.1. All/multiple Languages 87
5.1.2. C++ 88
5.1.3. C 88
5.1.4. Fortran 89
5.1.5. Java 89
5.1.6. Python 91
5.1.7. Matlab 93

5.2. Migrating from OSFI 3.5 to 3.6 95
5.2.1. All/multiple languages 95
5.2.2. C++ 95
5.2.3. C 95
5.2.4. Fortran 95
5.2.5. Java 95
5.2.6. Python 96
5.2.7. Matlab 96

5.3. Migrating from OSFI 3.6 to 3.7 97
5.4. Migrating from OSFI 3.7 to 3.8 97

5.4.1. All/multiple languages 97
5.4.2. Java 97
5.4.3. Python 97

5.5. Migrating from OSFI 3.8 to 3.9 97
5.5.1. All/multiple Languages 97

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

7 of 101

IND-CMS-SUPTR09-SUM-10-E

5.5.2. C++ 98
5.5.3. Matlab 98

5.6. Migrating from OSFI 3.9 to 3.10 98
5.6.1. All/multiple languages 98
5.6.2. C 99
5.6.3. Python 100
5.6.4. Matlab 100

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

8 of 101

IND-CMS-SUPTR09-SUM-10-E

List of Figures

Figure 1: OSFI Source Code distribution ...16
Figure 2: Relationship with openSF and modules .. 23
Figure 3 : OSFI common packages .. 23

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

9 of 101

IND-CMS-SUPTR09-SUM-10-E

List of Tables

Table 1: Applicable documents.. 12
Table 2: Reference documents .. 12
Table 3: Standards ... 12
Table 4: Suggested compilers for sources ... 14
Table 5: System pre-requisites ... 14
Table 6: Recommended utilities ..15
Table 7: Functions of the CLP package .. 25
Table 8: Additional functions of the CLP package ... 26
Table 9: Functions of the EHLog package .. 28
Table 10: Additional functions of the EHLog package .. 28
Table 11: Functions of the ConFM package .. 38
Table 12: Additional functions of the ConFM package ... 39
Table 13: Functions of the CLP module in C++ .. 41
Table 14: Functions of the EHLog module in C++ ... 41
Table 15: Functions of the ConFM module in C++ .. 42
Table 16: Functions of the CLP module in C ...46
Table 17: Functions of the EHLog module in C ..46
Table 18: Functions of the ConFM module in C ...46
Table 19: Functions of the CLP module in Fortran .. 52
Table 20: Functions of the EHLog module in Fortran .. 52
Table 21: Functions of the ConFM module in Fortran .. 53
Table 22: Functions of the CLP module in Matlab ...61
Table 23: Functions of the EHLog module in Matlab ... 62
Table 24: Functions of the ConFM module in Matlab .. 63
Table 25: Functions of the CLP module in Python .. 67
Table 26: Functions of the EHLog module in Python ... 67
Table 27: Functions of the ConFM module in Python .. 68
Table 28: Functions of the CLP module in Java ... 72
Table 29: Functions of the EHLog module in Java .. 72
Table 30: Functions of the ConFM module in Java .. 72

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

10 of 101

IND-CMS-SUPTR09-SUM-10-E

1. INTRODUCTION

The open Simulation Framework (openSF) relies on a well-defined set of interfaces [E2E-ICD] that the participating
modules must adhere to. The OSFI activity addressed the definition and development of a set of software libraries
to ease the integration of modules into openSF system by providing a ready-made implementation of these
interfaces.

Usage of OSFI libraries is therefore key to easily develop modules using openSF as orchestrating framework.

1.1. Purpose

The objective of this document is to provide a detailed description and a development manual for the set of
software libraries (OSFI) that can be used during the development and deployment of the modules within an E2E
Mission Performance simulator

The intended readerships for this document are module developers and scientists that are in charge of integrating
those modules into the openSF.

This document is also useful to software engineers responsible of the testing stage.

1.2. Scope

This document shows a detailed description of the integration libraries and an API that can be used as a reference
manual by module developers. It also includes a brief architecture description and some examples of use.

This document contains the following sections:

 An introduction (current section 1) to give a quick overview of the project;

 A list of related documents to provide a documentary background (section 2)

 An introduction to the libraries, installation and linking instructions (section 3)

 A description of the architecture, available API and some examples of use. It also includes the coding
guidelines (section 4)

 A guide on migration for users of previous versions (section 5)

1.3. Acronyms and Abbreviations

The acronyms and abbreviations used in this document are the following ones:

 AD: Architectural Design / Applicable Document

 ADD: Architectural Design Document

 API: Application Programming Interface

 CFI: Customer Furnished Item

 CLP: Command Line Parser

 COTS: Commercial Off The Shelf

 CPU: Central Processing Unit

 DMS: Indra Deimos

Terminology Note: starting with openSF 3.3 the recommended term to identify the orchestrated software
components within an E2E simulation is Module instead of Model.

The text in this document has been amended accordingly however the name of software functions and
variables still reflects the old naming convention.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

11 of 101

IND-CMS-SUPTR09-SUM-10-E

 FFI: Foreign Function Interface

 GUI: Graphical User Interface

 HW: Hardware

 IO: Input/Output

 ICD: Interface Control Document

 OS: Operating System

 PA: Product Assurance

 QA: Quality Assurance

 RD: Reference Document

 RID: Review Item Discrepancy

 SOW: Statement Of Work

 SRD: Software Requirements Document

 SRN: Software Release Note

 SUM: System User Manual

 SW: Software

 TBC: To Be Confirmed

 TBD: To Be Defined / Decided

 TN: Technical Note

 TS: Technical Specification

 V&V: Verification & Validation

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

12 of 101

IND-CMS-SUPTR09-SUM-10-E

2. RELATED DOCUMENTS

2.1. Applicable Documents

The following table specifies the applicable documents that shall be complied with during project development.

Table 1: Applicable documents

Reference Code Title Issue

[E2E-ICD] PE-ID-ESA-GS-464 ESA Generic E2E Interface Control Document 1.4.2

2.2. Reference Documents

The following table specifies the reference documents that shall be taken into account during project
development.

Table 2: Reference documents

Reference Code Title Issue

[RD 1] OPENSF-DMS-SUM-001 openSF System User Manual 4.5

2.3. Standards

The following table specifies the standards that shall be complied with during project development.

Table 3: Standards

Reference Code Title Issue

[XML11] w3.org/TR/xml11 Extensible Markup Language (XML) 1.1 Second
Edition

[C++11] ISO/IEC 14882:2011 Information technology – Programming languages – C++ Ed.3

[C99] ISO/IEC 9899:1999 Information technology – Programming languages – C Cor3, ed.1

[C11] ISO/IEC 9899:2011 Information technology – Programming languages – C Cor1, ed.1

[F2003] ISO/IEC 1539-1:2004 Information technology – Programming languages –
Fortran

Cor4, ed.1

[Java8] JLS-8 The Java® Language Specification Java SE 8

[Python3.8] docs.python.org/3.8
/reference/

The Python Language Reference 3.8

[F77] ISO 1539:1980 Programming languages – FORTRAN 1

[PEP427] www.python.org/de
v/peps/pep-0427/

The Wheel Binary Package Format 1.0 1

[XSD10] w3.org/TR/xmlschema
-0

XML Schema 1.0 (Primer, Structures and Datatypes) Oct 2004

https://www.w3.org/TR/xml11
https://docs.python.org/3.8/reference/
https://docs.python.org/3.8/reference/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://www.w3.org/TR/xmlschema-0/
https://www.w3.org/TR/xmlschema-0/

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

13 of 101

IND-CMS-SUPTR09-SUM-10-E

3. GETTING STARTED

3.1. Introduction

In the frame of concept and feasibility studies for the Earth Observation (EO) activities, mission performance in
terms of final data products needs to be predicted by means of so-called end-to-end (E2E) simulators.

A specific mission E2E simulator is able to reproduce all significant processes and steps that impact the mission
performance and gets simulated final data products.

The open Simulation Framework (openSF) is a generic simulation framework aimed to cope with these major goals.
It provides end-to-end simulation capabilities that allow assessment of the science and engineering goals with
respect to the mission requirements and it is available for Linux and OSX.

This openSF framework allows the users to integrate and execute pieces of code, «modules» that form the
building blocks of a simulation process. To integrate an external module into the framework, the module needs to
fulfil the requirements detailed in [E2E-ICD].

The Integration Libraries activity provides the module developer with a set of routines with a well-defined public
interface hiding the implementation details. This set of routines is currently available in C++, ANSI C, Fortran,
Fortran 77, IDL, Matlab, Python and Java (Fortran 77 and IDL are deprecated).

3.2. Conventions used in this Manual

This chapter lists all the conventions used throughout this Developer’s Manual

3.2.1. <OSFI_INSTDIR>

All through the contents of this manual, a pseudo-variable called <OSFI_INSTDIR> is used as a placeholder. It
points to the root folder that contains the OSFI installation, as performed by executing the “install” target or by
extracting the generated binaries package. This is not an actual environment variable.

3.2.2. $E2E_HOME

Environment variable provided by the orchestrating framework, as defined in [E2E-ICD]. If present, it is used to
resolve relative paths given as the value of FILE and FOLDER-typed parameters.

As a deprecated fallback, if there is no variable $E2E_HOME the library also checks for the existence of an
$OSFI_HOME variable in the environment. If it is found, it is used but a deprecation warning is emitted. Note that
this fallback may be removed at a later OSFI release.

3.2.3. Data Types

Every requested or given piece of data in OSFI is formatted in one of the following types, defined in [E2E-ICD]:

 STRING. A string of alphanumeric characters. While the ICD limits strings to 255 characters, OSFI places no a
priori restriction on their size.

 INTEGER. Integral number (no decimal part) between -231 and 231-1. This matches the ranges of the C and Java
data types int32_t and int, respectively.

 FLOAT. Floating-point number with a range defined by the Java type double (IEEE-754 binary64 format).

 BOOLEAN. The values TRUE or FALSE, exclusively.

 FILE. The absolute or relative path and name of a file into the file system.

 FOLDER. The absolute or relative path and name of a folder into the file system.

 TIME. An instant in time, with at least microsecond precision.

Relative paths in FILE or FOLDER values are resolved in relation to the value of $E2E_HOME, if present, or left as
relative otherwise.

Parameter elements may have compound types, such as ARRAY or MATRIX, as defined in the referred document.
The element type of the compound will be one of the above.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

14 of 101

IND-CMS-SUPTR09-SUM-10-E

3.3. Initial Requirements

The OSFI system is prepared to run in a hardware and software platform with the following requirements. These
must be fulfilled before installing the distribution.

3.3.1. System Requirements

OSFI is tested to be compatible with the following architectures and operating systems:

 Operating systems: Microsoft Windows (10 22H2 or 11), Linux (Ubuntu 22.04), macOS (13+)

 Architectures: x86-64, Apple Silicon (for macOS only)

Building on other platforms/versions (e.g. on Windows ARM, or FreeBSD) might work, but it is not tested.

3.3.2. Software Requirements

The table below contains the list of required compilers or runtime environments for the OSFI sources. The “strict
requirements” (second column) are defined by compatibility with certain standards or features e.g. C++11.

On the other hand, the “suggestion” column shows values that are known to be valid, for example because they
are used in our build/test environments. This does not preclude the user from building/running in different
compilers or runtimes, so long as they are compatible with the stated requirements e.g. Clang or an appropriate
version of MSVC instead of the suggested GCC for C/C++, Intel Fortran instead of gfortran, etc.

Table 4: Suggested compilers for sources

Language Requirements Suggestion Licensing Distribution Site

Fortran Compatible with
Fortran 2003
[F2003]

GNU Fortran
Compiler v 7.5+

GNU GPLv3 gcc.gnu.org/fortran/

C++ Compatible with
C++11 [C++11]

Linux/Windows:
GNU C++ compiler
v7.5+

GNU GPLv3 gcc.gnu.org

macOS: Clang from
appropriate Xcode

Xcode and Apple SDKs
Agreement

developer.apple.com
/xcode

C Compatible with
C99 [C99]

Linux/Windows:
GNU C compiler
v7.5+

GNU GPLv3 gcc.gnu.org

macOS: Clang from
appropriate Xcode

Xcode and Apple SDKs
Agreement

developer.apple.com
/xcode

Java Compatible with
Java SE 8 [Java8]

Adoptium JDK
version 8 or greater

GNU GPLv2 with
Classpath exception

adoptium.net

Python Compatible with
Python 3.8
[Python3.8]

CPython 3.8 or
greater

Python Software
Foundation license

www.python.org

Matlab R2019a+ - Proprietary -

Table 5 shows other system pre-requisites to build the OSFI libraries.

Table 5: System pre-requisites

Component Purpose License Distribution Site

De-compressor Extract files from release packaged in a
compressed tarball or ZIP file

N/A N/A

CMake 3.22 or higher Build, test and pack the OSFI libraries BSD 3-clause Linux repository or
cmake.org

http://gcc.gnu.org/fortran/
https://gcc.gnu.org/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://gcc.gnu.org/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://adoptium.net/
https://www.python.org/
https://cmake.org/

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

15 of 101

IND-CMS-SUPTR09-SUM-10-E

Table 6 shows a set of utilities that are recommended to build the OSFI libraries. If Xerces is not installed in the
system, the OSFI build system can download and build it.

Table 6: Recommended utilities

Component Purpose License Distribution Site

Doxygen 1.8.13+ Generate libraries documentation GNU General
Public License

Linux repository or
doxygen.nl

Google Test Generate and execute C++, C and
Fortran tests

BSD 3-clause Linux repository or
GitHub

Xerces-C++ 3.2.0+ Parse XML files Apache
License 2.0

xerces.apache.org

3.3.2.1. IDL

Warning: OSFI-IDL is deprecated. It is no longer in active development, and this section is no longer updated.

To execute modules in IDL with openSF it is necessary to have installed IDL software on the computer. openSF has
been tested with the following versions of this software: version 7.1, 8.0 and 8.1. If the user has a previous version,
the application may eventually not work. It is recommended to have installed at least IDL 7.1, and whenever
possible version 8.0 or later.

An important requirement for the correct functioning is that IDL is installed in the default path, because if not some
features of the OSFI library will not work properly. This problem is related with ConFM module, which uses some
internal classes of IDL that must be in the default path, because otherwise the application does not find them. This
is caused because IDL looks for these classes only in the default directory, and if it does not find them generates
an error.

For IDL 7.1 the default path is ‘/usr/local/itt/idl’ and for IDL 8.x the default path is ‘/usr/local/itt/idl/idl’.

Furthermore, IDL provides three types of licenses according to the user needs, as can be seen below:

 IDL development: Full license for IDL that allows to the user to use all its functionalities. Users can access
to the IDL Development Environment, the IDL command line, and having the ability of compiling and
executing IDL .pro files and executing .sav files.

 IDL runtime: Allows executing IDL programs precompiled and saved as .SAV files, or .pro files without any
type of restriction.

 IDL virtual machine: It is a free license that allows to the user to execute IDL programs precompiled and
saved as .SAV files, or .pro files. This kind of license has a few restrictions, like displaying a splash screen
on start-up, callable IDL applications are not available.

To execute a .sav or a .pro file without any type of restriction it is necessary to have installed the development
license or the runtime license on the computer. If user wants to generate .sav files by compiling .pro files, it is
mandatory to have the development license. If the user only has the virtual machine license, he can execute .pro
and .sav files but with restrictions, as many functionalities are not available for this type of license.

3.3.2.2. Matlab

To execute modules in Matlab with openSF, Matlab software must be installed on the computer, with the
corresponding license.

3.3.2.3. Python

There are two prerequisites to execute a Python module from openSF:

1. Python 3.8+ correctly installed. Support for older Python versions is generally dropped in the first OSFI release
after each version reaches end-of-life.

2. If OSFI is not deployed to the site-packages location of the Python environment, then the Python path needs
to be configured to point to the necessary libraries. For example, by adding <OSFI_INSTDIR>/include/Python to
the PYTHONPATH environment variable, or directly to sys.path inside Python.

A Python interpreter may be found in the public repositories for the most popular Linux distributions. For further
details about installation please visit the Python webpage.

https://doxygen.nl/
https://github.com/google/googletest
https://xerces.apache.org/xerces-c/

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

16 of 101

IND-CMS-SUPTR09-SUM-10-E

3.4. Installation

OSFI is distributed as source package, with the necessary sources in every language supported, for including and
compiling with other sources. Figure 1 shows a high-level view of the contents of the OSFI distribution:

 The folder include contains the header files of the library

 The folder releng (release engineering) contains CMake configuration files

 The folder src contains the source files of the library

 The folder test contains a set of unit and integration tests that ensure the proper performance of the library

In addition, the distribution includes the main CMakeLists.txt file, the license, the release notes and the version
information file.

Figure 1: OSFI Source Code distribution

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

17 of 101

IND-CMS-SUPTR09-SUM-10-E

3.4.1. Build Instructions

Note: The build step described in this section is not necessary for the Matlab and Python versions of OSFI. These
libraries can be used directly as source code, but notice that the build process provisions packaging and additional
testing for all versions of OSFI, including those languages. See section 3.4.3 for details.

First, extract the integration libraries into the desired location and enter it:

$ tar –xf osfi-<version>-sources.tar.zst
$ cd OSFI

Next, create a folder where the products of the building process will be generated (e.g. build) and enter it:

$ mkdir build
$ cd build

The command to configure the build has optional arguments that must be reviewed. First, the default behavior of
the build system is to prepare to build all non-deprecated languages supported by the OSFI libraries. Instead, the
user can choose which ones to build by providing the OSFI_LANGS argument with either:

 A semicolon-separated list of the languages to be built. E.g.: CXX;Fortran;Python

 The special value “ALL” which enables all languages, even the deprecated ones

The currently accepted values for OSFI_LANGS are: CXX, C, Fortran, Java, Python, Matlab (supported), plus F77
and IDL (deprecated). Note that the implementations in C and Fortran both depend on the C++ version. Thus, the
C++ library cannot be disabled if either C or Fortran is active.

In addition, the C++ OSFI libraries depend on the XML parsing library Xerces-C++. The default behavior of the build
system is to search for the library, but two optional arguments can be used to change the behavior:

 XercesC_DIR: it forces CMake to look there for the Xerces library.

 BUILD_XERCES: if this boolean flag is set to ON, CMake will download and build Xerces-C++ in the
xerces/ExternalProject folder under the build folder.

Other optional arguments accepted by the build configuration are:

 BUILD_SHARED_LIBS, default value OFF. If set to ON, the build process generates shared libraries. If not,
static libraries are created.

 BUILD_DOC, default value ON. Enables building the Doxygen documentation, but requires Doxygen to be
installed on the machine.

 BUILD_TESTING, default value ON. If set to ON, each language will generate extra targets to build tests
for OSFI itself, and the “test” target will be available to run such tests. Note that some tests are language-
specific and may require extra libraries, e.g. some C++ tests require the GoogleTest library, while some of
the Java tests use JUnit.

 BUILD_CQREPORTS, default value OFF. If set to ON, the build process will generate a folder named
CQREPORTS for each supported language in which static analysis and test coverage reports are
generated. In addition, if this option is activated, new requirements for each language are needed:

o Python: coverage.py for test coverage and Pylint for static analysis.

o C++, C and Fortran: Cppcheck for static analysis, gcovr and the required processor (gcov or llvm-
cov) for test coverage. Important: do not use this option in C++ and Fortran to build a production
library since the required instrumentation for coverage will produce spurious output.

o Java: nothing; all requirements are downloaded on demand

 OSFI_Python_wheel and OSFI_Matlab_toolbox, default value OFF. If the relevant languages are enabled,
the build process will also generate extra packages for the library in the native format for each language.

The following example shows how to configure the OSFI make files from the build folder created inside the OSFI
directory to generate the static libraries. It can be seen that the IDL, Matlab, Java, Fortran 77 and C languages are
disabled, and that the Xerces library is downloaded and built. It shall be remarked that the optional arguments are
provided starting with “-D”.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

18 of 101

IND-CMS-SUPTR09-SUM-10-E

$ cmake -DBUILD_XERCES=ON –D "OSFI_LANGS=CXX;Fortran;Python" ../

Once the build system is configured, the selected OSFI libraries with the appropriate build-system specific
command; or in general with the following call to CMake executed from the build directory:

$ cmake --build .

If enabled, the OSFI unit tests can be launched by using the “test” target of the build system, or with the following
command executed from the build directory:

$ ctest

3.4.2. Packaging and/or Installation

An additional “package” target is available to generate an “installation package” the last step is to package the
OSFI build products with the following command:

$ cpack

If the installation has been successful, the package folder structure should be as follows:

 include: header files for C/C++, plus the Python and Matlab files.

 lib: dynamic or static libraries of OSFI. In addition, the folder cmake/OSFI contains the CMake
configuration files.

 share: documentation of the libraries API in html format. This folder is not available if the documentation
is not created.

The module developer has the responsibility to include in the package the Xerces library used during the build
process. If the library was built with OSFI, the generated products are located in the build directory in the folder
xerces/ExternalProject/Install.

3.4.3. Python and Matlab Packages

Instead of using CMake to test and package the Python version of OSFI, that step can be skipped in favour of
generating a wheel package with Python itself. Wheels [PEP427] are the new standard of Python distribution and
are intended to replace eggs. A wheel package can be generated as follows:

$ cd OSFI_SOURCE_DIR/include/Python
$ python -m pip wheel .

The package will have the following naming convention “OSFI-{version}-{python}-{abi}-{platform}.whl”. It can then
be installed as described in section 3.5.3.2.

Alternatively, if building OSFI using CMake with the Python language enabled, the system can be instructed to also
generate the wheel package by setting the OSFI_Python_wheel build option to a true value (e.g. ON).

The Matlab package must be generated using this latter option, since the toolbox project file needs to be filled
with absolute paths related to the source tree. Thus, from the “build” folder mentioned in section 3.4.1, run the
following commands:

$ cmake -DOSFI_LANGS=Matlab -DOSFI_Matlab_toolbox=ON ../
$ cmake –build .

The toolbox package will be generated as “Matlab_toolbox/OSFI.mltbx”.

3.5. Building and Distribution of Modules with OSFI

It is under the module developer responsibility to distribute it with the OSFI libraries and other dependencies of
the module, ensuring that it will execute properly in the environment of the E2E Mission Performance simulator.

For simulators with few modules, it is recommended to compile them statically with the static version of the OSFI
libraries, in order to guarantee its execution in any environment. However, for simulators with a large number of
modules, it is more efficient in terms of simulator size to build the modules with the dynamic version of OSFI

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

19 of 101

IND-CMS-SUPTR09-SUM-10-E

libraries, although the compilation process becomes more critical in order to avoid potential conflicts during
modules execution.

This section provides instructions for building the modules using CMake, the suggested build system. It assumes
that OSFI (and Xerces, where needed) are already built. It also provides advice for setting up such modules
correctly to ease their distribution and execution from an E2E simulation orchestrator compatible with [E2E-ICD],
like openSF.

3.5.1. C++, C and Fortran

In order to provide the Xerces and OSFI libraries to the building system, the user should use the CMake command
find_package. Firstly, the developer shall add the XercesC package with the commands shown below. It can be
seen that function find_package allows the user to input the location of the library to be added. The package
Threads refers to the threading library of the system and it is usually needed by Xerces.

find_package(Threads REQUIRED)
find_package(XercesC REQUIRED CONFIG HINTS "${XercesC_DIR}")

The OSFI libraries are added using the same command. It can be seen that with the option COMPONENTS, the
developer can select the libraries needed in terms of the module programming language. In the example below,
both C++ and Fortran are selected.

find_package(OSFI REQUIRED CONFIG
 COMPONENTS CXX Fortran
 HINTS "<OSFI_INSTDIR>")

After these commands, Xerces and OSFI are available for the building process, which shall be performed with the
proper CMake commands:

enable_language(CXX)
add_executable(mymodule main.cpp otherfile.cpp)
target_link_libraries(mymodule OSFI::osfi-common)

In order to distribute such a module, the integrator must ensure that all required dynamic libraries are available
when it is going to be executed. Note that OSFI and Xerces are only part of the larger set of libraries required by
the program: the C/C++/Fortran runtime may also need to be distributed in a platform-dependent manner. For
example:

 In Linux, the “rpath” attribute of the executable itself may list absolute or module-relative paths to try.
Thus, build options could be provided to set rpath to “$ORIGIN/../lib”, so the module could be distributed
in a folder called “X/bin” and its dynamic libraries (OSFI/Xerces, runtimes…) could be placed in “X/lib”.

 In Windows, the folder containing the executable is tried first, then those in the PATH variable. Thus, OSFI,
Xerces and any needed runtimes, if built as DLLs, could simply be deployed alongside the executable file.

Another option is to try and build a fully statically-linked executable, which may bloat the binary size but makes it
easily redistributable. However, this option may require custom build options, and is not always available in all
platforms.

Thus, the module developer/integrator would have to use the proper build settings to create the desired scenario
(building with/without dynamic libraries) and then take the proper actions on installation to deploy all needed files
in the necessary structure.

3.5.2. Java

Should the user want to use CMake for building a Java module with OSFI (instead of Maven, Ant or other systems),
they may use the find_package command to import the OSFI-Java target. The OSFI libraries are added using the
same command as before, and the COMPONENTS option allows selecting only some languages.

As in C++, dependencies need to be found and made available. Currently, the only dependency is the Apache
Commons CLI JAR (v1.2). It may be downloaded from the Maven repositories or, if OSFI has been installed or built
as a binary package, it can be found in the “lib” folder of the installation/package:

Find OSFI-Java
find_package(OSFI REQUIRED CONFIG
 COMPONENTS Java
 HINTS "<OSFI_INSTDIR>")
Find the Apache Commons CLI JAR in the same folder

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

20 of 101

IND-CMS-SUPTR09-SUM-10-E

find_jar(commons_cli_jar NAMES apache-commons-cli
 PATHS "<OSFI_INSTDIR>/lib/")

After these commands, OSFI is available for the building process, which shall be performed with the CMake
commands. The OSFI-Java target can be linked into a JAR:

find_package(Java 1.8 COMPONENTS Development) # find javac
include(UseJava)
add_jar(mymodule com/dms/ModMain.java com/dms/ModComp.java
 ENTRY_POINT com/dms/ModMain
 INCLUDE_JARS OSFI::osfi-java "${commons_cli_jar}"
)

Install phase: copy the JAR to the “bin” folder
install_jar(TestModel DESTINATION bin)
Then copy the dependencies to some path we can find, e.g. “lib”
get_target_property(osfijar OSFI::osfi-java JAR_FILE)
install(FILES "${osfijar}" "${commons_cli_jar}" DESTINATION "lib")

In order to distribute such a module, the OSFI-Java JAR, along with its dependencies, needs to be available on
execution too. Note, however, that the CMake Java-related functions will not install the OSFI JAR along with the
module automatically, hence the extra step above.

For the same reason, and since it does not know where such dependencies will be found, CMake does not add
them to the Class-Path attribute in the JAR manifest either. The main consequence is that the class path needs to
be indicated on execution, as follows:

$ java –cp bin/mymodule.jar:lib/osfi.jar:lib/apache-commons-cli.jar
 com.dms.ModMain

In order to ensure that the class path stored in the JAR can find the dependencies, the module developer needs
to decide at build time where they will be installed (relative to the module JAR file). The following addition will
generate the required Class-Path entry:

Generate a custom manifest so we can put the OSFI jars in the
Class-Path property. We will install the module at X/bin, and its
dependencies at X/lib.
file(GENERATE
 OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/MANIFEST.MF"
 CONTENT [[Class-Path: ../lib/$<TARGET_FILE_NAME:OSFI::osfi-java>
 ../lib/apache-commons-cli.jar
]]) # Note this extra newline in the content – it is important!
Otherwise this will not be "merged" with the CMake-made manifest
add_jar(mymodule com/dms/ModMain.java com/dms/ModComp.java
 ENTRY_POINT com/dms/ModMain
 INCLUDE_JARS OSFI::osfi-java
 MANIFEST "${CMAKE_CURRENT_BINARY_DIR}/MANIFEST.MF"
)

If the module is built and installed with this configuration, it can be executed with the default class path in the JAR
manifest, like:

$ java –jar bin/mymodule.jar

3.5.3. Python and Matlab

Python and Matlab are mainly interpreted languages, and thus they are not compiled by CMake in any way. The
only condition to execute a module using OSFI in those languages is that the libraries in question are accessible
to the modules at runtime, using any of the language-specific methods: Two different approaches are feasible:

 The library may be made available in the Python or Matlab “system path”, or placed at a known module-
relative path so that the module can properly import it.

 Using a Python wheel or a Matlab toolbox: a package can be generated from the distributed sources and
installed in the system or (for Python) in a virtual environment, being automatically available for any
module to import it.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

21 of 101

IND-CMS-SUPTR09-SUM-10-E

3.5.3.1. CMake-based redistribution

If the Python/Matlab modules are going to be used as they are in the source tree, CMake can be used to aid in the
install and distribution, since the OSFI build defines imported targets for the Python and Matlab OSFI libraries.
Such targets are defined as INTERFACE libraries, like e.g. a C++ header-only library.

This means that they are not built as such, but still are able to provide relevant properties, in particular
INTERFACE_INCLUDE_DIRECTORIES, which is a list of paths that will contain the OSFI-Python/Matlab library
directory as its first item. It can then be used in order to install the library alongside the module as follows:

find_package(OSFI REQUIRED CONFIG
 COMPONENTS Python Matlab
 HINTS "<OSFI_INSTDIR>")

Install our Python module to the bin folder. Using PROGRAMS will
ensure that the executable bit is set
install(PROGRAMS "mymodule.py" DESTINATION bin)

Also get the path where the OSFI-Python libs are, and copy them
to the lib/OSFI folder on install
get_property(OSFI_PYTHON_DIR
 TARGET OSFI::osfi-python
 PROPERTY INTERFACE_INCLUDE_DIRECTORIES)
list(GET OSFI_PYTHON_DIR 0 OSFI_PYTHON_DIR) # Get 1st element
install(DIRECTORY "${OSFI_PYTHON_DIR}"
 DESTINATION "lib/OSFI" # Will create a OSFI/Python/ dir
 FILES_MATCHING PATTERN "*.py") # Avoid copying *.pyc, etc.

The above setup ensures that the library files (in this case, OSFI-Python) are copied to the “lib” folder of the install
directory, while the module itself is copied with execution permissions to the “bin” folder. The code for Matlab is
exactly the same, performing the adequate substitutions of “osfi-python” for “osfi-matlab” and “.py” for “.m”.

In order for a module to be executable, it needs to be able to find the library, so in the case of Python, the following
code would need to be inserted at the start of the module. It first tries to load OSFI from the default Python path,
and if that fails it tries to load it from the module-relative path “../lib/OSFI/Python”, which is where the above
CMake code will have installed it.

#!/usr/bin/env python

from os.path import dirname, realpath, join
import sys
try: # Try to load something from OSFI in case it is in sys.path
 from OSFI import Logger
except ImportError:
 # If not, add the known path $moduledir/../lib/OSFI to sys.path
 cur_fdir = dirname(realpath(__file__))
 osfi_dir = realpath(join(cur_fdir, '..','lib','OSFI','Python'))
 sys.path.append(osfi_dir)
 try: # And try again
 from OSFI import Logger
 except ImportError as e: # Give up
 raise ImportError("Cannot find the OSFI library in the"
 "Python path, or at " + osfi_dir)
import other_things
Rest of the module code

If the above steps are followed, the Python/Matlab module will always be able to access the OSFI library, and so
it will be able to be executed from the command line without adding any special variables or settings to the
environment:

$./bin/mymodule.py

The Matlab version of the module code adaptation is similar in both methodology and implementation, although
the way of calling the module is E2E-ICD implementation dependent – check the corresponding manual for details.

function testModel (configurationParameters, inputs, outputs)
% Check that OSFI is in the Matlab path. If not, add the known path
% $moduledir/../lib/OSFI/Matlab to it and check again.
if ~exist('ConFM', 'class')
 cur_fdir = fileparts(mfilename('fullpath'));
 osfi_dir = fullfile(cur_fdir, '..', 'lib', 'OSFI', 'Matlab');

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

22 of 101

IND-CMS-SUPTR09-SUM-10-E

 addpath(osfi_dir);
 if ~exist('ConFM', 'class')
 error('mymod:depmissing', ['Cannot find the OSFI library' ...
 'in the Matlab path, or at %s'], osfi_dir)
 end
end
% Rest of the module code

3.5.3.2. Usage of Python and Matlab packages

Once generated as indicated in section 3.4.3, the Python wheel package can be installed into the system, or into
any desired virtual environment, by using the pip package manager:

$ pip install dist/OSFI-{version}-{python}-{abi}-{platform}.whl

The OSFI packages will then be placed in the site-libraries folder of the target, and will be directly accessible for
importing by the code.

For the Matlab toolbox, the package can be opened in the Matlab GUI, or for a text-based installation the
“matlab.addons.toolbox.installToolbox” command can be used. Once properly installed, the OSFI components
will be available in the Matlab environment, without needing to explicitly add them to the path.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

23 of 101

IND-CMS-SUPTR09-SUM-10-E

4. OPENSF INTEGRATION LIBRARIES

In this section, the following is given:

 An architectural overview, giving structural descriptions of the elements offered in the APIs (such as
inheritance diagrams for C++ classes, etc).

 A complete set of examples of how to use the APIs and how to compile and execute them.

4.1. Architectural Overview

The Integration Libraries will serve as interface between the openSF component and the external module, as
shown in Figure 2.

Figure 2: Relationship with openSF and modules

The package “Model” depends on the functionalities implemented in the “OSFI” package.

This package, in turn, depends on the functionalities provided by the “ConfigMgr” and “Model Executor” interfaces
of the “openSF” package. This executor is responsible for providing the proper command line arguments for the
module execution. The “ConfigMgr” is the module generating the XML configuration files.

There exists a tight integration between the “openSF” package and the “Integration Libraries” package because
the former also needs the latter for reading the events raised and logged out from the module execution.

Figure 3 : OSFI common packages

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

24 of 101

IND-CMS-SUPTR09-SUM-10-E

This diagram shows how a system is split up into logical groupings by showing the dependencies among these
groupings. As a package is typically thought of as a directory, package diagrams provide a logical hierarchical
decomposition of a system.

It can be seen that both “CLP” and “ConFM” packages depend on the “EHLog” package because they are also
able to raise certain events to be logged out.

Regarding the interaction between languages, the C++ implementation serves as a reference for function naming
convection and availability to the module developer. The Fortran and C OSFI libraries use the C++ libraries by
means of an intermediate bridging C++ library called FFI (Foreign Function Interface). This library implements an
interface to the OSFI functions that can be called without C++ name mangling or other C++-specific features such
as exception handling. It is intended as an intermediate layer to OSFI-C++ from other languages and should be
used to extend OSFI capabilities to other languages that are not currently supported natively.

4.2. OSFI Common Packages

This section describes the functions provided by the OSFI common packages in terms of input, output and
behavior. In it, the general API of OSFI is described using concepts such as “a list of X”, which are later determined
in each language-specific section to the concrete implementation provided, e.g. List<X> in Java, a cell array in
Matlab, etc.

The handling of error conditions is also language specific: when this section mentions that certain condition
“results in an error”, that will in general log an error to the OSFI logger, but other extra effects could be:

 In C++, Java or Python, raise an exception or simply return a certain flag value.

 In C, return an error code or a null pointer.

 In Fortran, both of the above depending on the presence or not of the STAT argument

In general, functionalities provided by each module will be described as a series of “cards” in the following format:

Operation name: (inputs…)  (outputs…)

Component Name of the (sub-)component e.g. CLP or ConFM.Parameter

Generic name Name that in most cases will be part of the name of the actual function implementing
the operation.

Precondition Conditions that need to hold before calling this operation. Does not include conditions
only on the inputs, which are described in their own slot.

Inputs List of inputs for the operation, and conditions that they need to hold. For object-
oriented languages, it does not include the “this” or “self” object handle, which is listed
in preconditions.

Outputs List of outputs from the operation, and conditions that are verified by them. For object-
oriented languages, it does not include the “this” or “self” object handle, changes to
which are listed in postconditions.

Postconditions Conditions that are verified after returning from the call.

Errors List of error conditions. Unless otherwise specified here, what OSFI does in an error is
language-specific.

Furthermore, “none” here does not preclude language-specific problems such as out-
of-memory errors in list-related operations, etc.

Notes Any extra comments.

4.2.1. Command Line Parser (CLP)

According to section 2.1.2 of [E2E-ICD], a module shall be invoked with exactly three-command arguments: the
configuration files, the input files and the output files. In all three cases, the individual files in a single argument
are separated by commas.

In OSFI 3.6, an alternative format for the command-line interface was introduced, using flag-based options. Each
file is an argument of its own, and it is preceded by its type:

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

25 of 101

IND-CMS-SUPTR09-SUM-10-E

 --global or -g for the global configuration file

 --local or -l for the local configuration file

 --input or -i for each input file

 --output or -o for each output file

OSFI currently supports both formats transparently to the module. However, they are exclusive with each other.
This package provides the following functionalities:

Build CLP: args  ()

Component CLP

Generic name Build CLP, usually class constructor, or “create”

Precondition None

Inputs Command-line arguments. Depending on the language, it may be a list of strings, three
strings, or even optional (causing the program command line arguments to be read by
OSFI).

Outputs None per se (usually, the constructed CLP object)

Postconditions The CLP is properly initialized; functions to query the lists of C/I/O files can be called and
will return without errors.

Errors In general, if the format does not match the description of section 2.1.2 of [E2E-ICD].

Get the list of C/I/O files: ()  files

Component CLP

Generic names getConfigFiles, getInputFiles, getOutputFiles

Precondition CLP has been built

Inputs None (or, if a single function, the type of files)

Outputs List of files of the required type

Errors None directly.

Notes In some languages, each getter may be implemented as a pair of functions to get the
number of elements and the individual list item by index. Alternatively, access to some
list of files may be provided.

Table 7 summarizes the functionalities that this package shall provide (Function column) and the current state in
terms of implementation depending on the language (an empty cell means that the function is missing). The
column labeled as [E2E-ICD] contains the functions that are required considering the description given by the
document.

In addition, Table 8 shows some functions that are currently implemented by some languages and accessible to
the user, but are not needed to comply with the requirements derived from [E2E-ICD]. Thus, they may be
deprecated and later removed from the API.

Table 7: Functions of the CLP package

Function

[E
2E

-I
C

D
]

C
+

+

C

F
o

rt
ra

n

Ja
va

M
a

tl
a

b

P
yt

h
o

n

F
77

ID
L

Parse command line
arguments
(“constructor”)

Y Y Y Y Y Y Y D D

Get (full) list of C/I/O
files

Y Y Y Y Y Y Y D D

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

26 of 101

IND-CMS-SUPTR09-SUM-10-E

Table 8: Additional functions of the CLP package

Function

[E
2E

-I
C

D
]

C
+

+

C

F
o

rt
ra

n

Ja
va

M
a

tl
a

b

P
yt

h
o

n

F
77

ID
L

Legacy: get single
configuration file

 D D D D D D D

Query (only) number of
C/I/O files

 D D

Tokenize string as list
of C/I/O files

 D D

Check that a file name
is valid

 D D

Legacy: get single
input file

 D D

Legacy: get single
output file

 D D

4.2.2. Logger (EHLog)

According to section 2.2.4 and 2.2.5 of [E2E-ICD] this package shall provide functions to send information, warning,
error, debug, and progress messages. Thus, the EHLog package shall provide the following functions:

 Information: it sends an informative message raised by the module describing a harmless event.

 Warning: it sends a message of a non-fatal error or anomalous condition in data or during the processing that
may cause a fatal error or affect the outputs in format or content. The execution should continue with no
interruption.

 Error: it raises an error. For those programming languages able to throw exceptions, this strategy will be used.

 Debug: it sends an information message only if the debug mode is active.

 Progress: it sends numerical information on the amount of module execution performed.

Additionally, the OSFI implementation introduces extra functions. For example, a function to terminate the
execution and exit with a certain exit code is present in all implementations even though it’s not a strict
requirement. Also, other types of messages with similar formats are supported, like “quality messages”.

Show info/warning/error/debug message: text  ()

Component Logger

Generic names info, error, warning, debug

Precondition Logger has been initialized (if necessary in the language)

Inputs Message text

Outputs None

Postconditions The given message is written to the log output, formatted according to the
corresponding [E2E-ICD] message type.

Errors None directly.

Notes If the message type is debug, the message is only written if the debug mode is
activated.

Implementations may allow formatting of extra data in a language-specific way, e.g.
the C implementations have API similar to “printf”.

Show progress notice: (currentStep, totalSteps)  ()

Component Logger

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

27 of 101

IND-CMS-SUPTR09-SUM-10-E

Generic name progress

Precondition Logger has been initialized (if necessary in the language)

Inputs Integers representing the number of the current work step and the total amount of
steps to be done, respectively. It must hold that 0 ≤ currentStep ≤ totalSteps.

Outputs None

Postconditions The given message is written to the log output, formatted according to the [E2E-ICD]
“progress” message type.

Errors None directly.

Notes -

Finish execution: (exitCode)  ()

Component Logger

Generic names finishExecution

Precondition Logger has been initialized (if necessary in the language)

Inputs Integer exit code to be passed to the language runtime / OS.

Outputs N/A

Postconditions This function does not return normally, instead attempting to terminate execution of
the module through language-specific means.

Errors None directly.

Notes OSFI extension

Show quality message: (name, value)  ()

Component Logger

Generic names qualityReport

Precondition Logger has been initialized (if necessary in the language)

Inputs Quality indicator name: string

Quality indicator value: number or string

Outputs None

Postconditions The given message is written to the log output, formatted according to a custom
message type in the vein of [E2E-ICD] formats.

Errors None directly.

Notes OSFI extension

Table 9 summarizes the functionalities that this package provides, along with the current state in terms of
implementation depending on the programming language: a red cell means that the function is missing, a blue
one that it is available.

The column labeled as [E2E-ICD] contains the functions that are strictly needed taken into account the description
given by the document. It can be seen that the function finish execution is not defined in the [E2E-ICD], but since it
has been implemented in all the languages and is useful, it has been kept as a function to be provided by the
package.

In addition, Table 10 shows some functions (blue cells) that are currently implemented by some languages and
accessible to the user, but are not needed to comply with the requirements derived from [E2E-ICD]. Thus, they may
be deprecated and later removed from the public interface.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

28 of 101

IND-CMS-SUPTR09-SUM-10-E

Table 9: Functions of the EHLog package

Function

[E
2E

-I
C

D
]

C
+

+

C

F
o

rt
ra

n

Ja
va

M
a

tl
a

b

P
yt

h
o

n

F
77

ID
L

Show I/W/E/D msg Y Y Y Y Y Y Y Y Y
Show progress Y Y Y Y Y Y Y Y Y
Finish execution Y Y Y Y Y Y Y Y

Table 10: Additional functions of the EHLog package

Function

[E
2E

-I
C

D
]

C
+

+

C

F
o

rt
ra

n

Ja
va

M
a

tl
a

b

P
yt

h
o

n

F
77

ID
L

Quality reports Y Y Y Y Y Y Y Y
Format I/W/E/D msg
with extra data

 Y Y Y

Query debug mode Y Y Y Y
Set debugging mode Y Y Y
Query color output Y Y Y
Redirect output to a file
(instead of out)

 Y

Get OSFI version Y Y Y

4.2.3. Configuration File Manager (ConFM)

This group of functions deals with the configuration files. First, user code must read a configuration file, and then
the parameters inside can be accessed.

4.2.3.1. Parsing and validating configuration files

Read configuration file: xmlPath  ()

Component ConFM.ParamReader

Generic names Constructor, read/create

Precondition None

Inputs Path to an existing file formatted according to [E2E-ICD].

Outputs None, possibly a handle to the constructed object

Postconditions The configuration file is parsed and functions to access parameters may be called.

Errors If the file cannot be found or read as XML.

If the file is valid XML per [XML11] but is malformed according to [E2E-ICD].

Notes -

Validate configuration file against XSD: xsdPath  valOk

Component ConFM.ParamReader

Generic names validateAgainst

Precondition ParamReader has been initialized successfully.

Inputs Path to an existing file describing a XSD 1.0 schema (per [XSD10]).

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

29 of 101

IND-CMS-SUPTR09-SUM-10-E

Outputs One flag value (e.g. Boolean “true”) if the file passes validation, a different one if the
schema can be read but the file does not validate.

Postconditions -

Errors If the file cannot be found or parsed as an XSD schema.

Notes Some languages also support an alternative form that takes no arguments:
“validateAgainstInternalSchema”. It works as described but the path to the schema is
taken from the XML file itself as noted in an xsi:[noNamespace]SchemaLocation
attribute, see sec. 5.6 of [XSD10].

4.2.3.2. Finding and accessing parameters

The parameters are identified by its complete path, which is obtained concatenating the name of the groups that
contain the parameter (from least to most nested) and the parameter name, all separated by dots. Note that the
root element of the XML file does not count as a group, so its parameter children have paths without any dots.

The following functions are related with parameter access. If the file that contains them has not been validated
previously and/or if the format of the parameters declared is not correct, these functions may raise errors
themselves or defer them to a later time (e.g. when trying to retrieve a parameter value).

Check parameter existence by path: path  paramExists

Component ConFM.ParamReader

Generic names existParameter

Precondition ParamReader has been initialized successfully.

Inputs String describing a parameter path

Outputs True if a parameter under that name has been parsed, false otherwise.

Postconditions -

Errors None directly.

Notes -

Get parameter by name: path  handle

Component ConFM.ParamReader

Generic names getParameter

Precondition ParamReader has been initialized successfully.

Inputs String describing a full parameter path

Outputs Some kind of handle that may later be used to query information about the parameter.

Postconditions -

Errors If a parameter by that name does not exist.

Notes Depending on the language, the “handle” may be an actual copy of the parameter data,
or a reference to ParamReader-held data.

Get parameters by group: path  list of handles

Component ConFM.ParamReader

Generic names getParameters

Precondition ParamReader has been initialized successfully.

Inputs String describing a partial parameter path.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

30 of 101

IND-CMS-SUPTR09-SUM-10-E

Outputs List of handles that may later be used to query information about the parameters.

Postconditions The list is always valid, although it may be empty.

For every parameter p, if its path begins by the given argument, it is contained in the
list.

For every handle in the list, the path of the parameter it refers to begins by the given
argument.

Errors -

Notes Depending on the language, the “handles” may be actual copies of the parameter data,
or references to ParamReader-held data.

An extra version may be provided that does not take any arguments and simply returns
handles to all parameters read from the file.

Furthermore, some versions include a function to print information about either a single parameter, or all read
from the file. It usually prints the attributes defined by the user (see section 2.2.6.2 of [E2E-ICD]) and its value.

4.2.3.3. Get parameter value (for non-ARRAY parameters)

This set of functions is in charge of reading the value of the parameter. They shall support the different element
types in section 2.2.6.2 of [E2E-ICD]. Currently, type TIME is generally unsupported because it was introduced in a
review of the standard document very close to the release of this version of OSFI.

For those programming languages where the type of the output returned by a function must be known at
compilation time (C++, C, Java, Fortran 77 and Fortran) many different functions will be available, covering each
data combination of type and element types. However, for languages where the type of the data is known at run
time (Matlab, Python and IDL), these capabilities could be encapsulated in a single generic function.

Depending on the element type and structure of the value to read, there are certain details that must be
considered that are described in the following sections. Note that these functions may also be applied to an ARRAY
parameter; depending on the specific language they may return a nested structure as described in the following
section, or if the getVector(T) functions are used the array is first flattened in a depth-first fashion before parsing
the elements and returning a 1D list.

Get non-ARRAY parameter value: paramHandle  value

Component ConFM.Parameter

Generic names All languages: get(T)Value, getVector(T), getMatrix(T)

Dynamic languages may also have a getValue / getParsedValue

Precondition -

Inputs Valid parameter handle

Outputs Parsed parameter value according to the declared or chosen element type and data
structure. For vectors, a list of values. For matrices, a list of lists or other language-
specific concept representing a matrix.

Postconditions -

Errors If the value is not formatted according to [E2E-ICD].

If the value does not have the declared dimensionality.

If any of the individual values cannot be parsed as the detected or chosen element type.

Notes An extra version may be provided where the user is allowed to override the element
type declared in the XML.

If getVector(T) is applied to an ARRAY parameter, or a node thereof, the elements of the
chosen subtree will be enumerated depth-first, and the result will be returned as a list
of values.

OSFI does not apply the limit of 255 characters for strings in [E2E-ICD] or check the
string contents for non-alphanumeric characters.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

31 of 101

IND-CMS-SUPTR09-SUM-10-E

4.2.3.4. Access parameter values (for ARRAY parameters)

Two different approaches are possible when accessing ARRAY parameters:

 The “getArrayValue” convention, where the implementation provides functions with an interface similar
to the getVector(T) functions used for non-ARRAY parameters, but which take an additional argument
representing indices into the parsed value of the parameter. Depending on the implementation, the return
value may be restricted to a single vector (so only leaf nodes produce values) or an object representing
the parsed value of (part of) the full structure.

 The “getRootNode” convention, where the library provides access to the structure of the unparsed ARRAY
parameter. User code may navigate this structure, indexing into it to examine the number and value of its
children. Upon reaching a leaf node, use code can ask for the parsed value of this node. Optionally, an
implementation may also provide for a way to parse (part of) the full structure, returning a different type
with a similar API that allows navigating the parsed structure and extracting the values.

Each implementation of OSFI provides at least one of these approaches. As mentioned in both descriptions, they
may provide an extra optional feature which is a way to represent the parsed value of (part of) the full ARRAY
structure. This is easier to do in dynamic languages, but e.g. OSFI-Java does provide this feature too.

Get ARRAY leaf node value: (paramHandle, nodeIndex)  value

Component ConFM.Parameter

Generic names getArrayValue, getLeafVector(T)

Precondition Parameter is of type ARRAY

Inputs Valid parameter handle of type ARRAY.

List of indices into the structure of the ARRAY

Outputs Parsed parameter value according to the declared or chosen element type and data
structure. For vectors, a list of values. For matrices, a list of lists or other language-
specific concept representing a matrix.

Postconditions -

Errors If the value is not formatted according to [E2E-ICD].

If the indices do not reach a leaf node (containing data) or the node contents do not
match its declared dimensionality.

If any of the individual values cannot be parsed as the detected or chosen element type.

Notes An extra version may be provided where the user is allowed to override the element
type declared in the XML.

OSFI does not apply the limit of 255 characters for strings in [E2E-ICD] or check the
string contents for non-alphanumeric characters.

Get ARRAY root node: paramHandle  arrayNodeHandle

Component ConFM.Parameter

Generic names getArrayValue, getLeafVector(T)

Precondition Parameter is of type ARRAY

Inputs Valid parameter handle of type ARRAY.

Outputs Handle to an ArrayNode object representing the unparsed structure of the parameter.

Postconditions -

Errors -

Notes -

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

32 of 101

IND-CMS-SUPTR09-SUM-10-E

Get type of array node: arrayNodeHandle  nodeType

Component ConFM.ArrayNode

Generic names isLeaf, isDataNode, etc.

Precondition -

Inputs Valid array node handle.

Outputs Flag value representing either a data/leaf node (directly containing values) or internal
node (containing other array nodes reproducing the XML structure).

Postconditions -

Errors -

Notes -

Get array node children: arrayNodeHandle  arrayNodeHandles

Component ConFM.ArrayNode

Generic names getSubNodes

Precondition -

Inputs Valid array node handle representing an internal node.

Outputs List of handles to ArrayNode objects representing the children of this node in the
structure defined in the XML.

Postconditions -

Errors If the node is a data/leaf node that cannot contain child nodes.

Notes -

Get array node data: arrayNodeHandle  values

Component ConFM.ArrayNode

Generic names getData

Precondition -

Inputs Valid array node handle representing a data/leaf node of either an unparsed or parsed
node structure.

Outputs If the node represents unparsed values, returns an object that contains both the
number of declared values (in the XML) and the unsplit, unparsed string.

If the node represents parsed values, returns a list of parsed values of the right size.

Postconditions -

Errors If the node is an internal node (and does not contain data)

Notes -

Parse value of array node: arrayNodeHandle  value

Component ConFM.Parameter

Generic names getArrayValue, getLeafVector(T)

Precondition Parameter is of type ARRAY

Inputs Valid array node handle representing an unparsed data/leaf node.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

33 of 101

IND-CMS-SUPTR09-SUM-10-E

Outputs Parsed parameter value according to the declared or chosen element type and data
structure. For vectors, a list of values. For matrices, a list of lists or another language-
specific concept representing a matrix.

Postconditions -

Errors If the value is not formatted according to [E2E-ICD].

If the indices do not reach a leaf node (containing data) or the node contents do not
match its declared dimensionality.

If any of the individual values cannot be parsed as the detected or chosen element type.

Notes An extra version may be provided where the user is allowed to override the element
type declared in the XML.

OSFI does not apply the limit of 255 characters for strings in [E2E-ICD] or check the
string contents for non-alphanumeric characters.

An extra version may be provided that parses the full structure from this node
downwards, instead

4.2.3.5. Query parameter attributes

This set of functions is used to read the attributes of a parameter.

Get number of dimensions: paramHandle  ndims

Component ConFM.Parameter

Generic names getNdims

Precondition -

Inputs Valid parameter handle

Outputs Number of dimensions of a parameter. Will be zero for scalars, 1 for vectors and 2 for
matrices. For ARRAY-typed parameters, the number of dimensions of the rectangular
envelope of the actual shape.

Postconditions -

Errors None directly.

Notes -

Get dimensions: paramHandle  dims

Component ConFM.Parameter

Generic names getDims

Precondition -

Inputs Valid parameter handle

Outputs List of dimensions for a parameter. For scalars it is empty, while it has one element for
vectors and two for matrices: (cols, rows). For arrays it represents the rectangular
envelope of the actual shape.

Postconditions -

Errors None directly.

Notes -

Get path/description/units/maximum/minimum: paramHandle  attrVal

Component ConFM.Parameter

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

34 of 101

IND-CMS-SUPTR09-SUM-10-E

Generic names get(Path, LocalName, Description, Units, Max, Min)

Precondition -

Inputs Valid parameter handle

Outputs String, possibly empty

Postconditions -

Errors None directly.

Notes -

Get data element type: paramHandle  elType

Component ConFM.Parameter

Generic names getElementType

Precondition -

Inputs Valid parameter handle

Outputs Token representing an element type, may be a value from an enumerated type if the
language supports such a concept.

Postconditions -

Errors None directly.

Notes See section 2.2.6.2 of [E2E-ICD]

Query parameter structure: paramHandle  isArray

Component ConFM.Parameter

Generic names isArray

Precondition -

Inputs Valid parameter handle

Outputs Flag representing whether or not a parameter has the ARRAY structure type.

Postconditions -

Errors None directly.

Notes This returns a false flag value for MATRIX parameters, since they cannot sport a tree-
like structure with different sizes.

Get unparsed value: paramHandle  rawValue

Component ConFM.Parameter

Generic names getRawValue

Precondition -

Inputs Valid parameter handle

Outputs String representing the unparsed value of the parameter, as read, without any XML
syntax.

For MATRIX parameters, the values in each row are joined, with matrix elements
appearing in row-major ordering.

For ARRAY parameters, the returned string is language-specific, but it should represent
the structure of the parameter.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

35 of 101

IND-CMS-SUPTR09-SUM-10-E

Postconditions -

Errors None directly.

Notes -

4.2.3.6. Files and Folders

One function is provided to check if a file or folder provided by a parameter exists.

 File exists: returns true if the file exists and false otherwise. The function will raise an error if the parameter
that provides the file is not of type file (or the elements if it is a complex type). For complex types like array
or matrix, the operation will be performed element by element, returning an array or matrix of booleans.

4.2.3.7. Operations with TIME-typed parameters

In order to support parameters of type TIME with the range and precision required by [E2E-ICD], all versions of the
library offer a type called TimeValue (or some language-specific variation, see section 4.3). These objects allow at
least two basic operations:

 Access to the individual components. Currently, access is provided to the year, month, day-of-month,
hour, minute, second and second fraction, all as integers of possibly different types/sizes. This includes
the second fraction which is expressed in nanoseconds.

 Comparison between two instances of the type, which may be implemented in two ways. Where possible,
relational operators (e.g. “eq” or “<”) are provided for the type. Otherwise, OSFI has a single 3-way
comparison function, returning a strict ordering between two instances (i.e. “a” is less than/equal/greater
than “b”).

Query TimeValue year/month/day/hour/minute/second/nanosecond: ()  value

Component ConFM.TimeValue

Generic names X/getX where X is the component name, or direct field access

Precondition The instance has been correctly initialized

Inputs -

Outputs The chosen component value. The returned type may depend on the selected
component.

Postconditions -

Errors None directly.

Notes Month and day of month are 1-based (e.g. the value for January is 1)

Compare TimeValue instances: (other)  result

Component ConFM.TimeValue

Generic names compareTo or cmp, depending on languages

Precondition Both this instance and other have been correctly initialized.

Inputs The instance to compare this instance against.

Outputs Value of a language-dependent type that allows at least three states, representing the
cases “a is less-than b”, “a equals b” and “a is greater than b”. If the type also allows for
the case “a is unordered w.r.t. b”, that value is never returned.

Postconditions -

Errors None directly.

Notes Present in languages that either do not allow operator overloading (Java, C) or provide
such an operator (C++20 operator <=>)

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

36 of 101

IND-CMS-SUPTR09-SUM-10-E

Relational operators for TimeValue instances: (a,b)  result

Component ConFM.TimeValue

Generic names Depends on the language (e.g. the “is distinct” operator is written “!=” in C++ but “/=”
in Fortran)

Precondition Both this instance and other have been correctly initialized.

Inputs TimeValue instances a,b to test

Outputs Boolean value of the relational test (e.g. a < b)

Postconditions -

Errors None directly.

Notes Present in languages that allow operator overloading (C++, Fortran, Matlab, Python).
Some operators may be implemented in terms of others e.g. “!=” in terms of “==”, etc.

Additionally, some language-dependent optional operations may be present, such as:

 Formatting/parsing operations, which convert between strings in CCSDS ASCII format and TimeValue
instances. The parsing step may raise errors for out-of-range values, just like the extraction of a parameter
value from the XML files.

 Conversions to some language-specific type representing time instants. Note that this conversion is
necessarily lossy and/or may raise errors. The reason for this is that TIME parameters can represent leap
seconds while most general-purpose time libraries cannot, with varying behaviours upon encountering
“sec=60”.

Format/print TimeValue instance: ()  str

Component ConFM.TimeValue

Generic names Some variation of “to string”, but some languages have specific syntax for it e.g. the
stream insertion operator in C++.

Precondition The instance has been correctly initialized.

Inputs -

Outputs String representation, in the CCSDS ASCII time code “A”

Postconditions -

Errors None directly.

Notes Additional formats may be made available in certain languages

Parse string into a TimeValue instance: (str)  tv

Component ConFM.TimeValue

Generic names parse

Precondition -

Inputs String formatted like the value of an element of a TIME parameter.

Outputs Parsed TimeValue instance representing the same date.

Postconditions -

Errors If the format is invalid, or the values are out of range (e.g. February the 31st). Note that a
value of “60” for the seconds field is always accepted, no check is made for the validity
of leap seconds.

Notes

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

37 of 101

IND-CMS-SUPTR09-SUM-10-E

4.2.3.8. Summary tables

The analysis of section 2.2.6.2 of [E2E-ICD] and the current implementation of OSFI libraries reveals a set of
functions that are needed to read the parameters that the users can define, which are described in Table 11. The
first two columns of the table list the functions and group them according to their functionality.

The blue cells of the third column of Table 11 shows the functions that are strictly needed to comply with [E2E-ICD]
according to the types of parameters defined in section 2.2.6.2. In contrast, red cells in that column represent
functions that are not strictly required by the ICD but are still quite connected to this functionality core and
provided in at least some languages. An example of this distinction would be the utility functions provided for TIME
parameter values: the ICD only requires that the value be retrievable (component access), but the functions to
compare them without having to first “unpack” all the components are still considered part of this extended API.

The rest of the columns of Table 11 refer to the implementations of the ConFM package for every supported
programming language. A remarkable gap is related to the lack of functions in Fortran to get the attributes of the
parameters, which are planned for addition in the future. In addition, some implementations do not offer the
possibility to access multiple parameters at the same time (either under the same group or all the parameters in
the file), or even parameters from two files (e.g. the GCF and LCF) at once.

Finally, Table 12 shows some functions that are currently implemented by some languages and accessible to the
user, but are not directly connected to the requirements derived from [E2E-ICD] (from the API user point of view).
Thus, they are not deemed part of the public API and could be removed in future releases.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

38 of 101

IND-CMS-SUPTR09-SUM-10-E

Table 11: Functions of the ConFM package

Group Function

[E
2E

-I
C

D
]

C
+

+

C

F
o

rt
ra

n

Ja
va

M
a

tl
a

b

P
yt

h
o

n

F
77

ID
L

Parse
file

Load file Y Y Y 1 Y Y Y Y Y 1 Y
Validate
against XSD

Y Y Y Y Y Y Y 2

Access
params

By path Y Y Y Y Y Y Y Y Y
By group Y Y Y Y Y
Get full list Y Y Y Y Y Y
Existence Y Y Y Y Y Y Y Y

G
e

t
P

ar
am

e
te

r
V

al
u

e

S
c

al
ar

INTEGER Y Y Y Y Y Y Y Y Y
FLOAT Y Y Y Y Y Y Y Y Y
BOOLEAN Y Y Y Y Y Y Y Y Y
STRING Y Y Y Y Y Y Y Y Y
FILE Y Y Y Y Y Y Y Y Y
FOLDER Y Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3
TIME Y Y Y Y Y Y Y

V
e

c
to

r

INTEGER Y Y Y Y Y Y Y Y Y
FLOAT Y Y Y Y Y Y Y Y Y
BOOLEAN Y Y Y Y Y Y Y Y Y
STRING Y Y Y Y Y Y Y Y Y
FILE Y Y Y Y Y Y Y Y Y
FOLDER Y Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3
TIME Y Y Y Y Y Y Y

M
at

ri
x

INTEGER Y Y Y Y Y Y Y Y Y
FLOAT Y Y Y Y Y Y Y Y Y
BOOLEAN Y Y Y Y Y Y Y Y Y
STRING Y Y Y Y Y Y Y Y
FILE Y Y Y Y Y Y Y Y
FOLDER Y Y3 Y3 Y3 Y3 Y3 Y3 Y3
TIME Y Y Y Y Y Y Y

G
e

n
e

ra
l a

rr
ay

 INTEGER Y Y Y Y Y Y Y Y
FLOAT Y Y Y Y Y Y Y Y
BOOLEAN Y Y Y Y Y Y Y Y
STRING Y Y Y Y Y Y Y Y
FILE Y Y Y Y Y Y Y Y
FOLDER Y Y3 Y3 Y3 Y3 Y3 Y3 Y3
TIME Y Y Y Y Y Y Y

Q
u

e
ry

 p
ar

am
e

te
r

at
tr

ib
u

te
s

dimensions Y Y Y Y Y Y
Dimensions Y Y Y Y Y Y Y Y Y
Full path Y Y 4 Y Y Y Y Y Y
Local name Y Y Y Y Y Y Y Y Y
Description Y Y Y Y Y Y Y Y
Units Y Y Y Y Y Y Y
Max Y Y Y Y Y Y Y Y
Min Y Y Y Y Y Y Y Y
Element type Y Y Y Y Y Y Y Y
Is array Y Y Y Y Y Y Y

1 Only a single configuration file may be loaded at once; calling the loading function a second time unloads the
previously loaded file

2 Only if the lxml library is available; otherwise calling validation functions raises an error.

3 The parameter type FOLDER is recognized; functions used to access it are the same as for FILE.

4 The C API always uses the full path to access the parameter properties and values

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

39 of 101

IND-CMS-SUPTR09-SUM-10-E

Group Function

[E
2E

-I
C

D
]

C
+

+

C

F
o

rt
ra

n

Ja
va

M
a

tl
a

b

P
yt

h
o

n

F
77

ID
L

Raw value Y Y Y Y Y
Print Y Y Y Y Y Y

Files File exists Y Y Y Y Y

TI
M

E

va
lu

e
s Components Y Y Y Y Y Y Y

Comparison5 OP 3W OP 3W OP OP
To string Y Y Y Y
From string Y Y Y

Table 12: Additional functions of the ConFM package

Function

[E
2E

-I
C

D
]

C
+

+

C

F
o

rt
ra

n

Ja
va

M
a

tl
a

b

P
yt

h
o

n

F
o

rt
ra

n
 7

7

ID
L

Set value Y Y Y
Tokenize string according to
type

 Y Y

Get complex type (tell apart
old and new format matrices)

 Y Y Y Y

Get extended attribute Y
Set extended attribute Y
Add extended attribute Y
Get path from a Parameter
instance

 Y Y

4.3. Language-specific interfaces

In this section, the process logic of using the libraries in modules source code is shown. It is described for C++, C,
Fortran, Matlab, Python and Java module developers. Note that additional documentation on the APIs available for
several languages is available through the ESA website, although only for the latest version of the library.

4.3.1. C++ Programming Language

OSFI-C++ code is written to comply with the [C++11] standard, although compilation settings may be set for C++14
if Xerces-C++ requires so. A main header file OSFI.h is provided which exposes all public API, but module-specific
headers are also provided.

The implementation of OSFI-C++ is object-oriented, with both the CLP and ConFM modules implemented using
classes: CLP, ParamReader and Parameter are the main ones. The Logger module is mainly function-based and
stores any state globally. In general, errors are communicated through exceptions, although some methods just
log errors to the OSFI log stream and return token values instead.

General description:

 Most classes are directly in the global namespace. New code is generally introduced in the “osfi”
namespace, or children of it.

 Types in [E2E-ICD] are mapped to their reasonable equivalents: INTEGER to int, FLOAT to double, BOOLEAN
to bool and the STRING, FILE and FOLDER types to std::string. In future versions, it is possible that the
arithmetic types will be mapped to a different type (e.g. std::int32_t).

5 The table shows “3W” for languages that implement a 3-way comparison function (e.g. Java’s compareTo), and
“OP” for languages that provide overloaded operators for the TimeValue type.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

40 of 101

IND-CMS-SUPTR09-SUM-10-E

 TIME values are mapped to osfi::confm::TimeValue.

 1-D “list” types are generally mapped to std::vector<T> except in the CLP class. Matrices (described in the
general API as “lists of lists”) are represented by a custom DynamicArray<T> class wrapping a vector of
vectors.

 Access to ARRAY-typed parameters is twofold, implementing both the “getRootNode” and the
“getArrayValue” approaches described in §4.2.3.4. The latter is implemented as getVectorT functions that
take the desired slice indices.

Known issues:

 Currently some OSFI headers import the std namespace (“using namespace std;”) but this is considered
bad form and will be removed in the future. Thus, for future compatibility, do not depend on OSFI
importing any namespaces.

 Large objects are frequently returned directly (lists, vectors). While the penalty in performance may be
reduced by compiler optimizations (RVO, NRVO) and has also recently been ameliorated by move
semantics in C++11, user code should consider this fact when making use of such methods.

 Const correctness of the code is an issue, and it is difficult to effectively utilize const references to OSFI
objects. This is likely to be improved in the future.

4.3.1.1. CLP

The CLP module API is provided by header CLP/CLP.h. The implementation takes the form of a single class “CLP”
which parses command line arguments as passed. No global state is stored and thus multiple instances can
coexist. Furthermore, all parsing is done by the constructor, and accessor functions only return copies of stored
data.

Table 13 details the interface of the CLP module in OSFI-C++.

4.3.1.2. EHLog

The EHLog module API is provided by header EHLog/Logger.h. The implementation provides the functions as
static member functions of a fake class named Logger. Extra data-formatting is implemented by returning C++
streams that the user can append to.

Relevant status variables (debug/color) are initialized at first execution of an output, and stored as global data
from them on. Furthermore, functions operate on the global streams cout and cerr. Thus, thread safety is not
guaranteed in these functions.

Table 14 details the interface of the EHLog module in OSFI-C++.

4.3.1.3. ConFM

The ConFM module API is provided by four headers under the ConFM folder: ArrayNode.h, DynamicArray.h,
Parameter.h and ParamReader.h. Each defines the class of the same name, and the latter header transitively
includes all four. There is also a base.h header that defines common types and operations (TimeValue,
ElementType) in the osfi::confm namespace, which is included by all other ConFM headers.

The ParamReader class is the main access point to the module interface. Each instance is independent and holds
no global state, so several instances can be kept (e.g. for the global and local configuration files). The instance
holds ownership of and provides access to a set of Parameter instances, which are likewise independent of any
other instance. However, thread safety is not guaranteed in any of the functions because they may call the Logger
functions to report errors.

Table 15 details the interface of the ConFM module in OSFI-C++.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

41 of 101

IND-CMS-SUPTR09-SUM-10-E

Table 13: Functions of the CLP module in C++

General operation C++ Prototype Notes

Parse command line
arguments
(“constructor”)

CLP:: CLP(int argc, char* argv[]) The inputs are those provided to the C++ main() function.

Get (full) list of C/I/O
files

list<string> CLP:: getConfFiles() const

Same signatures: getInputFiles and getOutputFiles.

If no file of a type is provided, they return an empty list.

Legacy: get single
configuration file

string CLP:: getConfFile() Should be const. If called in a case with two configuration files,
returns the unparsed string (“file1,file2”).

Table 14: Functions of the EHLog module in C++

General operation C++ Prototype Notes

Show I/W/E/D
message

static void Logger::info(string msg)

Same signatures: warning, error and debug.

The user should not introduce newlines in the string, because it
will break the output format.

Extension: format
I/W/E/D message
with extra data

static ostream& Logger::getInfoStream()

Same signatures: getWarningStream, getErrorStream,
getDebugStream.

The user should not introduce newlines in the output given to
those streams, because it will break the output format.

Show progress
indication

static void Logger::progress(int, int) No validation is performed.

Finish execution [[noreturn]] static void Logger::
finishExecution(int exitCode)

Calls std::exit with the given value as exit code.

Extension: show
quality report

static void Logger::quality(string name, double v)
static void Logger::quality(string name, string v)

The user should not introduce newlines in the strings, because it
will break the output format.

Extension: format
quality report

static ostream& Logger::getQualityStream() The user should not introduce newlines in the output given to
those streams, because it will break the output format.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

42 of 101

IND-CMS-SUPTR09-SUM-10-E

General operation C++ Prototype Notes

Query debug and
colored output.

static bool Logger::isColored()

Same signature: isDebugging

Status set from environment variables DEBUG_MODE and
OSFI_LOG_COLOR on first query.

Table 15: Functions of the ConFM module in C++

General operation C++ Prototype Notes

Load config file ParamReader::ParamReader (const string& xmlFile) Throws std::exception if the file cannot be parsed.

Validate against XSD bool ParamReader::validateAgainst (const string& xsdFile)
const

Throws std::invalid_argument if the schema cannot be parsed.

Extension: validate
against internal
schema

bool ParamReader::validateAgainstInternalSchema() const Returns failure if the schema cannot be found or parsed.

Get parameter by full
path

Parameter ParamReader::getParameter(string)
Parameter& ParamReader::getParameterRef (const string&)

The first form returns a “dummy” parameter if the name is not
found; the second throws std::invalid_argument. The lifetime of
its return value matches that of the ParamReader instance.

Get parameters by
partial path

vector<Parameter> ParamReader::getParameters (string) Returns an empty vector if no parameter matches.

Copies Parameter objects

Get all parameters t_params_map ParamReader::getParameters() The map key is the full path, which is not accessible from within
each Parameter item.

t_params_map is an alias to map<Parameter,string,X> with X a
custom comparer.

Copies Parameter objects

Query existence bool ParamReader::existParameter (string) -

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

43 of 101

IND-CMS-SUPTR09-SUM-10-E

General operation C++ Prototype Notes

Get parameter
parsed value (scalar,
vector, matrix)

#V# Parameter::get#T#Value()
vector<#V#> Parameter::getVector#T#()
DynamicArray<#V#> Parameter::getMatrix#T#()

#T# is one of Int, Double, Boolean, String, File or Time, and #V#
is the corresponding C++/OSFI type (int, double, bool, string,
string, TimeValue).

On parsing error, a log message is emitted and a default value is
returned (see docs). If the getVector#T# functions are used on
an ARRAY parameter, it is flattened to 1D.

Query parameter
attributes

int Parameter:: getNdims()
const vector<int>& Parameter:: getDims() const
Parameter::ElementType Parameter:: getElementType() const
string Parameter::getLocalName()

Same sig.: getPath, getDescription, getUnits, getMax, getMin,
getType

Parameter::ElementType is a C++11 scoped enum (“enum
class”) with the [E2E-ICD] simple types, that is, it does not
represent types ARRAY or MATRIX.

ARRAY access –
getArrayValue API

int Parameter:: getDims(vector<int>)
bool Parameter:: isLeaf(vector<int>)
vector<#V#> Parameter:: getVector#T# (vector<int>)

The vector represents the index of the desired slice. Slices of a
parameter with dimensionality d must have at most d−1 indices,
because a vector is returned for the last dimension.

The getVector#T# functions do not flatten sub-elements: they
only return non-empty values for leaf nodes.

ARRAY access –
ArrayNode API

const ArrayNode& Parameter:: getRootNode() const
ArrayNode Parameter:: getNode(vector<int>)
vector<#V#> ArrayNode:: getVector#T#() const
int ArrayNode:: getDegree() const
const vector<string>& ArrayNode:: getElements() const
const vector<ArrayNode>& ArrayNode:: getChildren() const
bool ArrayNode:: isLeaf() const

For getNode, indices must have at most one dimension less
than the parameter, since the last dimension (leaf node)
contains a vector itself.

getElements returns an empty vector for non-leaf nodes.

getChildren returns an empty vector for leaf nodes.

getDegree returns the size of the vector that is not empty.

The getVector#T# functions do not flatten sub-elements: they
only return non-empty values for leaf nodes.

Extension: query file
existence

DynamicArray<bool> Parameter::fileExists() For FILE parameters. If the parameter is a scalar or vector, a 1x1
or single-row matrix is returned, respectively.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

44 of 101

IND-CMS-SUPTR09-SUM-10-E

General operation C++ Prototype Notes

TIME values element
access

struct TimeValue {
 std::int16_t year;
 std::int8_t month, dom, hour, minute, sec;
 std::int32_t nanosec;

};

Access is provided directly as components of the struct type,
without an actual getter function.

TIME values
comparison

bool operator #OP#(const TimeValue& a, const TimeValue& b) For #OP# in: ==, !=, <, <=, >=, >.

TIME values
formatting

std::string to_string(const TimeValue&);
std::ostream& operator<<(std::ostream&, const TimeValue&);

Formatted as CCSDS ASCII time code “A”.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

45 of 101

IND-CMS-SUPTR09-SUM-10-E

4.3.2. C Programming Language

OSFI-C code is written to comply with the [C99] standard, with optional support for [C11] providing extra features
such as a unified syntax to retrieve parameter values. A single header file OSFIC.h is provided which exposes all
public API.

Except for EHLog which is implemented with free functions similar to the printf family, the design of OSFI-C mostly
revolves around two objects: osfi_clp_args_t contains all data from the CLP module, while osfi_paramreader_t and
its related functions implement the ConFM module. In general, errors are communicated through Boolean return
values.

General description:

 Types in [E2E-ICD] are mapped to their reasonable equivalents: INTEGER to int32_t, FLOAT to double,
BOOLEAN to _Bool (bool with stdbool.h) and the STRING, FILE and FOLDER types to character arrays
(osfi_ownstr/file_t for scalars).

 TIME values are mapped to osfi_timevalue_t, which is a typedef to a struct type that is layout-compatible
with the C++/FFI version.

 Vectors and matrices are represented by a set of types osfi_vecT_t and osfi_matT_t that provide direct
access from C to all elements.

 Access to ARRAY parameters is provided using the the “getArrayValue” approach described in §4.2.3.4. It
is implemented as getArrayLeafT functions that take the desired slice indices.

 Memory is allocated automatically for all data objects, and attached to the lifetime of the objects
mentioned above. Users only need to manually release those two.

Known issues:

 Some error indications (e.g. for a bad parameter value) are not reliable, and instead cause the library to
return a token value. This issue is “inherited” from OSFI-C++ which OSFI-C is wrapping.

4.3.2.1. CLP

All two CLP functions are prefixed by “osfiClp”. All data is stored in a single structure that is readable from C
without further function calls. Table 16 details the interface of the CLP module in OSFI-C.

4.3.2.2. EHLog

All EHLog functions are prefixed by “osfiLogger”, and they relay calls to the related C++ versions. Thus, status
variables (debug/color) are initialized at first execution of an output and stored as global data from them on.
Furthermore, functions operate on the global C++ output and error streams, which may or may not be
synchronized with the C conterparts. Thread safety is not guaranteed in these functions.

Table 17 details the interface of the EHLog module in OSFI-C.

4.3.2.3. ConFM

All ConFM functions are prefixed by “osfiConFm”. The main entry point to the API is “osfiConFmCfgFileOpen”,
which returns a pointer to an OSFI-allocated struct that is required by all other functions.

Whenever memory must be allocated for a result, OSFI performs the allocation itself, and attaches the block to
the osfi_paramreader_t object. Thus, the user does not need to allocate any objects when calling into the ConFM
module, and all memory attached to an object is freed when “osfiConFmCfgFileClose” is called on it.

Table 18 details the interface of the ConFM module in OSFI-C.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

46 of 101

 IND-CMS-SUPTR09-SUM-10-E

Table 16: Functions of the CLP module in C

General operation C Prototype Notes

Parse command line
arguments
(“constructor”)

osfi_clp_args_t* osfiClpParseArgs(int argc, char* argv[]); Returns a null pointer in case of error, and an OSFI-allocated
object otherwise.

Get (full) list of C/I/O
files

osfi_clp_args_t* clp = …;
clp->input->files[clp->input->count-1]

The structure contains three fields “input”, “output” and “config”
that each contain two members “count” and “files” with the
number and paths of each type of file.

Language-specific:
free OSFI-C
resources

void osfiClpFree(osfi_clp_args_t* args); Destroys the given instance.

Table 17: Functions of the EHLog module in C

General operation C Prototype Notes

Show I/W/E/D
message (also,
extension: format
I/W/E/D message
with extra data)

void osfiLoggerInfo(char *format,...)

Same signatures: osfiLoggerInfo, osfiLoggerError and
osfiLoggerDebug.

The user should not introduce newlines in the output given to
those streams, because it will break the output format

Show progress
indication

void osfiLoggerprogress(int, int) No validation is performed.

Finish execution _Noreturn void osfiLoggerfinishExecution(int exitCode) Calls exit with the given value as exit code.

The _Noreturn attribute is only declared if the C version
reported by the compiler (__STDC_VERSION__) is at least C11
(value greater than or equal to 201112L).

Extension: show
quality report

void osfiLoggerQuality(char *name, double v)
void osfiLoggerQualityDouble(char *name, char *v)

The user should not introduce newlines in the strings, because it
will break the output format.

Table 18: Functions of the ConFM module in C

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

47 of 101

 IND-CMS-SUPTR09-SUM-10-E

General
operation

C Prototype Notes

Load config file osfi_paramreader_t* osfiConFmCfgFileOpen(
const char* path)

Returns a null pointer if errors prevent reading the file.

Validate against
XSD

enum osfi_confm_val_res osfiConFmValidateSchema(
osfi_paramreader_t* pr,

 const char* schemaFile)

The result enum has three values for “validation passed”, “validation ran but
failed” and “validation could not run”.

Query all
parameters in a
configuration file

bool osfiConFmGetAllParams(
osfi_vecString_t **out,
osfi_paramreader_t *pr)

The vec is OSFI-allocated, the caller only needs to provide space for a pointer. It
contains a list of the full paths of all parameters in the file.

Query
parameters under
a specific group
name

bool osfiConFmGetChildParams(
osfi_vecString_t **out,
osfi_paramreader_t *pr,
const char *group)

The vec is OSFI-allocated, the caller only needs to provide space for a pointer. It
contains a list of the full paths of all parameters that are children, direct or
indirect, of group.

Query parameter
existence

bool osfiConFmParamExists(
osfi_paramreader_t* pr,

 const char* param)

-

Query parameter
element type

osfi_confm_param_type osfiConFmParamElementType(
osfi_paramreader_t *pr,
const char *param)

The enum contains the [E2E-ICD] simple types, that is, it does not represent types
ARRAY or MATRIX. Returns a flag value if the mentioned parameter does not exist.

Query parameter
structure type

bool osfiConFmParamIsArray(
osfi_paramreader_t *pr,
const char *param)

-

Query parameter
dimensions

bool osfiConFmParamDimensions(
osfi_vecInteger_t **out,
osfi_paramreader_t *pr,
const char *param)

The vec is OSFI-allocated, the caller only needs to provide space for a pointer.
Rows and columns are defined as dimensions #2 and #1, respectively, according
to [E2E-ICD].

Query parameter
attributes

bool osfiConFmParamLocalName(
osfi_ownstr_t **out,
osfi_paramreader_t *pr,
const char *param)

The string is OSFI-allocated, the caller only needs to provide space for a pointer.
Same signature: Description, MinValue, MaxValue, Units, RawValue

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

48 of 101

 IND-CMS-SUPTR09-SUM-10-E

General
operation

C Prototype Notes

[C11] Get
parameter parsed
value

bool osfiConFmParamValue(
<generic>* dest,
osfi_paramreader_t* pr,
const char* param)

bool osfiConFmParamArrayLeaf(
<generic>* dest,
osfi_paramreader_t *pr,
const char *param,
int depth,
const int node[depth])

Generic functions that redirect to the typed getters of the right structure
defined below, depending on the type of the “dest” argument. Not defined if
OSFI was built without C11 support.

The return value is false on any error, and in that case the status of “*dest” is
undefined. Otherwise, OSFI writes to “*dest”, allocating a new vec/mat object if
needed, and registers it to be cleaned up with “pr”.

Get parameter
parsed value
(scalar)

bool osfiConFmParamValue#T#(
#V#* dest,
osfi_paramreader_t* pr,
const char* param)

#T# is one of Integer, Double, Boolean, Time, String or File, and #V# is the
corresponding C type, namely int32_t, double, bool, struct osfi_timevalue,
osfi_ownstr_t* and osfi_ownfile_t* respectively. Note that for the last two, the
caller only needs to provide space for a pointer.

Get parameter
parsed value
(vector)

bool osfiConFmParamVector#T#(
osfi_vec#T#_t** dest,
osfi_paramreader_t* pr,
const char* param)

typedef struct {
int count;
#V# values[];

} osfi_vec#T#_t;

#T# is one of Integer, Double, Boolean, Time, String or File. Note that the caller
only needs to provide space for a pointer since the vec object is OSFI-allocated.

The vec object contains the number of elements and then the array of elements
themselves, directly accessible. Note that for String and File, #V# here is char*.

Get parameter
parsed value
(matrix)

bool osfiConFmParamMatrix#T#(
osfi_mat#T#_t** dest,
osfi_paramreader_t* pr,
const char* param)

typedef struct {
int count, rows, cols;
#V# values[];

} osfi_mat#T#_t;

Same as for the vector getters. The buffer used is a 1-D array, not an array of
arrays (except for strings). Matrix elements are written to it in row-major order.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

49 of 101

 IND-CMS-SUPTR09-SUM-10-E

General
operation

C Prototype Notes

ARRAY access –
getArrayValue
API

int osfiConFmParamNodeSize(
osfi_paramreader_t *pr,
const char *param,
int depth,
const int node[depth])

bool osfiConFmParamNodeIsLeaf(
osfi_paramreader_t *pr,
const char *param,
int depth,
const int node[depth])

bool osfiConFmParamArrayLeaf#T#(
osfi_vec#T#_t** dest,
osfi_paramreader_t *pr,
const char *param,
int depth,
const int node[depth])

In all cases, “depth” is the number of elements in the input array “node”.
Together, both parameters represent the concept of a list of ints.

For the getParamArrayLeaf#T# functions, same notes as for the non-ARRAY
vector getters. Furthermore, they do not flatten sub-elements: they only return
non-empty values for leaf nodes.

TIME values
element access

struct osfi_timevalue {
int16_t year;
int8_t month, dom, hour, minute, sec;
int32_t nanosec;

};

Access is provided directly as components of the struct type, without an actual
getter function.

TIME values
comparison

int osfiTimevalue_cmp(const struct osfi_timevalue
*a, const struct osfi_timevalue *b);

The result is negative if *a<*b, positive if *a>*b, and zero if they are equal. Null
pointers are accepted, and they compare as less-than any non-null value.

Language-
specific: free
OSFI-C resources

int osfiConFmCfgFileClose(
osfi_paramreader_t* pr)

Destroys the given object, and any memory allocated by any ConFM call where it
was the “pr” argument.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

50 of 101

 IND-CMS-SUPTR09-SUM-10-E

4.3.3. Fortran Programming Language

The OpenSF integration libraries for Fortran language are designed to comply with the [F2003] standard. They
mimic the design pattern (object oriented) and functions of the C++ implementation. It is to be highlighted that
the Fortran libraries rely on the FFI library, which in turn calls the C++ implementation. However, due to the
particularities of the Fortran language, there are certain differences that shall be noted.

If should be noted that OSFI-Fortran libraries use standard Fortran 2003 features thoroughly. In particular, FINAL
subroutines are used to provide automatic clean-up of OSFI objects, and both the implementation and the
examples use automatic left-hand side reallocation on assignment. This feature means that it is not necessary to
explicitly allocate an ALLOCATABLE variable or array that is being assigned: if it is not allocated or the size is
incorrect, it is automatically deallocated (if needed) and reallocated to the new, correct size. Before Fortran 2003
this was not the case, and some compilers keep the old behavior even when compiling new code. Make sure to
look at your compiler documentation to enable “realloc_lhs” or “Fortran 2003 standard compliant mode”.

General description:

 Five modules are provided: OSFI, OSFI_base, OSFI_EHLog, OSFI_CLP and OSFI_ConFM. The first includes
all others, while the second declares some shared elements and data types.

 Types in [E2E-ICD] are mapped as follows: INTEGER to (default) integer, FLOAT to double precision and
BOOLEAN to (default) logical. The STRING, FILE and FOLDER types are all mapped to a character variable
with LEN=* on input and LEN=: on output (as a deferred-length allocatable output argument or return). In
future versions, it is possible that the arithmetic types will be defined to use a specific KIND (instead of
default integer).

 TIME values are mapped to a derived type OSFI_TimeValue that is interoperable with the C++/FFI version.
Its components, which are integers, are defined with C-interoperable kinds (e.g. C_INT16_T).

 1-D “list” and 2-D “list of list” types are generally mapped to arrays and matrices of the corresponding
Fortran type, except in the case of strings. Since an array or matrix of character variables would all share
the same length (because the length is part of the type), a derived type OSFI_Str is provided whose only
member is a deferred-length allocatable character variable. Thus, a 1D list of strings is a Fortran array of
OSFI_Str instances.

 Access to ARRAY-typed parameters is provided using the “getArrayValue” approach described in §4.2.3.4.
It is implemented in the form of getVectorT functions that take the desired slice indices.

 Error conditions are reported in one of two ways: some functions return an object instance (e.g. of type
CLP, Parameter) and this object instance has an isValid method that returns a logical value. In other cases,
the Fortran functions of which the C++ equivalent can raise them have an optional output parameter
called “stat”. If this parameter is given, it will have a value of zero on successful execution, and nonzero
on error.

Known issues:

 Some functions of the C++ OSFI libraries do not raise exceptions when a problem is detected. Thus, in this
case the Fortran function using it will not be able to report the problem and make it visible in to the module
developer. Nevertheless, the C++ functions always write warnings when such thing happens, so the user
is able to know if something has gone wrong. Future releases of the OSFI libraries will fix these bugs in the
C++ implementation

4.3.3.1. CLP

The CLP module API is provided by module OSFI_CLP. The implementation takes the form of a single class “CLP”
which parses command line arguments as provided by the Fortran runtime. Unlike in other OSFI implementations,
this one does not allow user code to replace the arguments to be parsed. No global state is stored and thus
multiple instances can coexist. Furthermore, all parsing is done by the “constructor”, and accessor functions only
return copies of stored data.

Table 13 details the interface of the CLP module in OSFI-Fortran.

4.3.3.2. EHLog

The EHLog module API is provided by module OSFI_EHLog, which contains free subroutines (not type-bound
procedures). Relevant status variables (debug/color) are initialized at first execution of an output, and stored as

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

51 of 101

 IND-CMS-SUPTR09-SUM-10-E

global data from them on. Furthermore, functions operate on the global output and error streams (from C++).
Thus, thread safety is not guaranteed in these functions.

Note that no custom formatting routines are available: in order to write a formatted string to the OSFI log in Fortran,
use code must first render it into a string by using Fortran internal-file write statements.

Table 14 details the interface of the EHLog module in OSFI-Fortran.

4.3.3.3. ConFM

The ConFM module API is provided by module OSFI_ConFM. It defines the two derived types OSFI_ParamReader
and OSFI_Parameter.

The ParamReader class is the main access point to the module interface. Each instance is independent and holds
no global state, so several instances can be kept (e.g. for the global and local configuration files). The instance
holds ownership of and provides access to a set of Parameter instances, which are likewise independent of any
other instance. However, thread safety is not guaranteed in any of the functions because they may call the Logger
functions to report errors.

Table 15 details the interface of the ConFM module in OSFI-Fortran.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

52 of 101

 IND-CMS-SUPTR09-SUM-10-E

Table 19: Functions of the CLP module in Fortran

General operation Fortran procedure “interface” Notes

Parse command line
arguments
(“constructor”)

Function OSFI_CommandLineParser() Result(newClp)
Type(OSFI_CommandLineParser) newClp

On error, the returned object has newClp%isValid set to false and
calling any getter functions returns empty arrays.

Get (full) list of C/I/O
files

Subroutine getConfFiles(this, files[, stat])
Class(OSFI_CommandLineParser),Intent(In) ::this
Type(OSFI_Str), Allocatable :: files
Integer, Optional :: stat
Intent(Out) :: files, stat

Same signatures: getInputFiles and getOutputFiles.

If no file of a type is provided, the subroutines still allocate “files”
(to an empty array) and set “stat” to zero if present.

On error, “files” is not allocated and “stat” (if present) is set to
nonzero.

Table 20: Functions of the EHLog module in Fortran

General operation Fortran procedure “interface” Notes

Show I/W/E/D
message

Subroutine osfi_info(message)
Character(len=*), Intent(In) :: message

Same signatures: warning, error and debug.

The user should not introduce newlines in the string, because it
will break the output format.

Show progress
indication

Subroutine osfi_progress(n, m)
Integer, Intent(In) :: n, m

No validation is performed.

Finish execution Subroutine osfi_finishExecution(errorCode)
Integer, Intent(In) :: errorCode

Calls the C++ equivalent to this function – beware if Fortran
runtime-specific termination actions are required.

Extension: show
quality report

Subroutine osfi_qualityReport(name, value)
Character(*), Intent(In) :: name
! Either type is accepted (generic interface)
Character(*), Intent(In) :: value
Double precision, Intent(In) :: value

The user should not introduce newlines in the strings, because it
will break the output format.

Query debug mode Logical Function osfi_logger_isDebugging() Status set from environment variables DEBUG_MODE on first
query or write to OSFI output.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

53 of 101

 IND-CMS-SUPTR09-SUM-10-E

Table 21: Functions of the ConFM module in Fortran

General operation Fortran procedure “interface” Notes

Test if instance is
valid

Logical Function isValid(this)
Class(OSFI_Handle), Intent(In) :: this

Both OSFI_ParamReader and OSFI_Parameter extend
OSFI_Handle. Returns true if the handle is valid, that is, if the
constructor completed without errors.

Load config file Function OSFI_ParamReader(fileName[, stat])
 Result(this)
Character(*), Intent(In) :: fileName
Integer, Intent(Out), Optional :: stat
Type(OSFI_ParamReader) :: this

On success, returns a valid instance and, if stat is present, sets it
to zero.

On error, returns an invalid instance and, if stat is present, sets it
to a nonzero value.

Validate against XSD Logical Function validateAgainst(pr, xsdFile
 [, stat])
Class(OSFI_ParamReader), Intent(In) :: pr
Character(*), Intent(In) :: xsdFile
Integer, Intent(Out), Optional :: stat

Combinations of: (return value, stat) are (.true., 0) for a passed
validation, (.false., 0) for a validation that ran but did not pass;
and (.false., nonzero) if the validation could not run, e.g. because
the XSD could not be parsed.

Extension: validate
against internal
schema

Logical Function validateAgainstInternalSchema
 (pr[, stat])
Class(OSFI_ParamReader), Intent(In) :: pr
Integer, Intent(Out), Optional :: stat

Result as above.

Get parameter by full
path

Function getParamRef(pr, paramName[, stat])
Class(OSFI_ParamReader), Intent(In) :: pr
Character(*), Intent(In) :: paramName
Integer, Intent(Out), Optional :: stat
Type(OSFI_Parameter) :: getParamRef

On success, returns a valid instance and, if stat is present, sets it
to zero.

On error, returns an invalid instance and, if stat is present, sets it
to a nonzero value.

Query existence Logical Function existParameter(pr, paramName) Same argument types as getParamRef.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

54 of 101

 IND-CMS-SUPTR09-SUM-10-E

General operation Fortran procedure “interface” Notes

Get parameter
parsed value (scalar,
vector, matrix)

Function get#T#Value(p[, stat]) Result(out)
#V# :: out

Function getVector#T#(p[, stat]) Result(out)
#V#, Allocatable :: out(:)

Function getMatrix#T#(p[, stat]) Result(out)
#V#, Allocatable :: out(:,:)

! Common parameter “p” is the “this” argument:
Class(OSFI_Parameter), Intent(In) :: p
Integer, Intent(Out), Optional :: stat

#T# is one of Int, Double, Boolean, String, File or Time. #V# is the
corresponding type according to the type mapping (integer,
double precision, logical, character or OSFI_TimeValue).

Note that #V# for string types is:

 For scalar getter: Character(len=:), adding the
Allocatable attribute

 For vector/matrix getters: Type(OSFI_Str)

On a parsing error, a log message is emitted and a default value
is returned (see docs). If stat is present, it is set to nonzero on
error, or zero on success.

ARRAY access –
getArrayValue API

Integer Function getDims(p, node)
Logical Function isLeaf(p, node)
Function getVector#T#(p, node[, stat]) Result(out)

Integer, Intent(Out), Optional :: stat
#V#, Allocatable :: out(:)

! Common parameters: (“p” is the “this” argument)
Class(OSFI_Parameter), Intent(In) :: p
Integer, Intent(In) :: node(:)

The vector represents the index of the desired slice. Slices of a
parameter with dimensionality d must have at most d−1 indices,
because a vector is returned for the last dimension.

The getVector#T# functions do not flatten sub-elements: they
only return non-empty values for leaf nodes, that is, those for
which isLeaf returns true.

#V# is the same as for the non-ARRAY vector getter functions,
and the “stat” parameter of the getter function works the same
as described there.

Extension: query file
existence

Function getFileExists(p, stat) Result(out)
Class(OSFI_Parameter), Intent(In) :: p
Integer, Intent(Out), Optional :: stat
Logical, Allocatable :: out(:,:)

For FILE parameters. If the parameter is a scalar or vector, a 1x1
or single-row matrix is returned, respectively.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

55 of 101

 IND-CMS-SUPTR09-SUM-10-E

General operation Fortran procedure “interface” Notes

Query parameter
attributes

Function getDims(p) Result(dims)
Integer, Allocatable :: dims(:)

Function getElementType(p) Result(elType)
Type(OSFI_ParamElemType) :: elType

Function getPath(p) Result(path)
Character(len=:), Allocatable :: path

Logical Function isArray(p)
! The common parameters is the “this” argument

Class(OSFI_Parameter), Intent(In) :: p

OSFI_ParamElemType is a derived type with an integer field
“repr” which approximates an enumeration. It represents the
[E2E-ICD] simple types, that is, it does not contain values for
types ARRAY or MATRIX.

Same signature as getPath: getLocalName, getDescription,
getUnits, getMinValue, getMaxValue, getRawValue.

TIME values element
access

Type, Bind(C) :: OSFI_TimeValue
Integer(C_INT16_T) year
Integer(C_INT8_T) month, dom, hour, minute, sec
Integer(C_INT32_T) nanosec

End Type OSFI_TimeValue

Access is provided directly as components of the derived type,
without an actual getter function.

TIME values
comparison

Interface Operator(#OP#)
Module Procedure internal_name

End Interface

For #OP# in: ==, /=, <, <=, >=, >. The alternative operator names
(e.g. .EQ. or .GE.) also work

The internal names for the procedures need not be visible to the
API user, but the operators are marked as Public.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

56 of 101

 IND-CMS-SUPTR09-SUM-10-E

4.3.4. Fortran 77 Programming Language

Warning: OSFI-F77 is deprecated. It is no longer in active development, and this section is no longer updated.

Since almost no F77-only compilers remain in the market, it is recommended to use the OpenSF integration
libraries for Fortran instead (see 4.3.3).

4.3.4.1. CLP

Steps for using the Command Line Parser module.

1. Init the Command Line Parser using the subroutine OCLP()

2. Access the fields with one of the following methods:

• OCLPNC(nconf): get the number of configuration files

• OCLPNI(nin): get the number of input files

• OCLPNO(nout): get the number of output files

• OCLPGC(i, fname): get configuration file “i”

• OCLPGI(i, fname): get input file “i”

• OCLPGO(i, fname): get output file “i”

4.3.4.2. EHLog

Steps for using the Error Handler and Logging module.

1. Use the provided subroutines to generate logs:

• OLERR(mess): error message

• OLINFO(mess): information message

• OLWAR(mess): warning message

• OLDEB(mess): debug message

• OLPROG(n,m): progress message (step n of m)

• OLFE(errcod): finish execution with error code “errcod”

• OLQC(vname,value): quality with message

• OLQD(vname,value): quality with double value

4.3.4.3. ConFM

Steps for using the Configuration File Manager module.

1. Initialise the param-reader using the following subroutine:

• OPREAD(cnfile,scfile,stat)

2. Use one of the following subroutines to access the parameter values or properties:

• OPEX(pname, pexist): check if a parameter exists

• OPGPR(pname, rows): get number of rows

• OPGPC(pname, cols): get number of columns

• OPDOUB(dvalue, pname): get double parameter

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

57 of 101

 IND-CMS-SUPTR09-SUM-10-E

• OPINT(ivalue, pname): get integer parameter

• OPBOOL(bvalue, pname): get boolean parameter

• OPFILE(fvalue, length, pname): get file parameter

• OPSTR(svalue, length, pname): get string parameter

• OPINV(vector, vsize, pname): get integer vector

• OPDBV(vector, vsize, pname): get double vector

• OPBLV(vector, vsize, pname): get boolean vector

• OPSTRV(vector, vsize, pname): get string vector

• OPFLV(vector, vsize, pname): get file vector

• OPINM(vector, rows, cols, pname): get integer matrix

• OPDBM(vector, rows, cols, pname): get double matrix

• OPBLM(vector, rows, cols, pname): get boolean matrix

3. Close param reader:

• OPCLS()

4.3.5. IDL Programming Language

Warning: OSFI-IDL is deprecated. It is no longer in active development, and this section is no longer updated.

Before using the IDL library for OSFI, it is necessary to compile the corresponding modules: ‘CLP.pro’, ‘Logger.pro’,
‘Parameter.pro’ and ‘ConFM.pro’ so that all functions are available for IDL.

These files are located in: <OSFI_INSTDIR>/include/IDL/

A possible example is:

.COMPILE '/home/abma/OSFI/include/IDL/CLP.pro'

.COMPILE '/home/abma/OSFI/include/IDL/Logger.pro'

.COMPILE '/home/abma/OSFI/include/IDL/Parameter.pro'

.COMPILE '/home/abma/OSFI/include/IDL/ConFM.pro'

Once these files have been compiled, the developer can define objects of these classes in his own module, and
run it.

4.3.5.1. CLP

Steps for using the Command Line Parser module:

1. Create an object of the CLP class passing it as arguments the configuration files, the input files and the output
files. It is important to pass these arguments in the correct order.

2. Access the fields with one of the following methods:

• getConfFiles(): Return all the configuration files inside a matrix

• getInputFiles(): Return all the input files inside a matrix

• getOutputFiles(): Return all the output files inside a matrix

• getConfFile(index): Return the configuration file at the position ‘index’.

• getInputFile(index): Return the input file at the position ‘index’.

• getOutputFile(index): Return the output file at the position ‘index’.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

58 of 101

 IND-CMS-SUPTR09-SUM-10-E

3. Destroy the object once not needed.

An example of this procedure is shown below:

CLP = OBJ_NEW('CLP', ConfFiles, InputFiles, OutputFiles)
InputFiles = CLP->getInputFiles()
OutputFiles = CLP->getOutputFiles()
ConfFiles = CLP->getConfFiles()
Input = CLP->getInputFile(2)
Output = CLP->getOutputFile(3)
Conf = CLP->getConfFile(0)
OBJ_DESTROY, CLP

4.3.5.2. Logger

Steps for using the Logging module:

1. Create an object of the Logger class passing it as argument the debug mode (On=1 or Off=0).

2. Use one of its methods to show different types of messages in stdout:

• error, message: Shows an error message in openSF format

• warning, message: Shows a warning message in openSF format

• info, message: Shows an information message in openSF format

• debug, message: Shows a debug message in openSF format if debug mode is activated

• progress, step, nsteps: Shows the progress of the module in openSF format

• finishExecution: Shows that the module has finished with an information message

• qualityReport, name, value: Shows a variable and its value

• setDebugMode, debugMode: Set the debug mode property (On=1, Off=0).

3. Destroy the object once not needed.

An example of this procedure is shown below:

LOG = OBJ_NEW('Logger', DebugMode)
LOG->Info, "This is an info message"
LOG->warning, "This is a warning message"
LOG->error, "This is an error message"
LOG->debug, "This is a debug message"
LOG->progress, 2, 21
LOG->qualityReport, 'a', 23
OBJ_DESTROY, LOG

4.3.5.3. ConFM

Steps for using the Configuration File Manager module:

1. Create an object of the ConFM class passing the name of the XML configuration file.

2. Optionally, check for a parameter existence with a given name:

xmlObj->ExistParameter('los.LOS.name')

3. Obtain a parameter of the configuration file by their complete name, using the associated method of ConFM
class:

parameter = GetParameter, path

 This method returns an instance of an object of the Parameter Class.

4. Access the parameter values using several methods:

• getPath(): Returns the path of the parameter

• getName():Returns the name of the parameter

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

59 of 101

 IND-CMS-SUPTR09-SUM-10-E

• getDescription():Returns the description of the parameter

• getType():Returns the type of the parameter

• getUnits():Returns the units of the parameter

• getNDims():Returns the number of dimensions of the parameter

• getDims():Returns the dimensions of the parameter

• getValue():Returns the value of the parameter

• getMin():Returns the minimum value of the parameter

• getMax():Returns the maximum value of the parameter

• print: Shows all the attributes of the parameter in stdout

5. Destroy the objects of classes ConFM and Parameter once not needed.

An example of this procedure is shown below:

xmlObj = OBJ_NEW('ConFM', Conf)
xmlPar = xmlObj->GetParameter('los.LOS.name')
print, xmlPar->GetPath()
print, xmlPar->GetValue()
xml->print
OBJ_DESTROY, xmlPar
OBJ_DESTROY, xmlObj

4.3.6. Matlab Programming Language

OSFI-Matlab code is tested to work in Matlab 2019a. The implementation is pure Matlab, not depending any MEX
code, although XML parsing does depend on Java and thus will not work if Matlab is started without a JVM. Its
design is object-oriented, and in general error conditions are communicated through Matlab errors, although
some methods just log errors to the OSFI log and return token values instead.

General description:

 Types in [E2E-ICD] are mapped to their reasonable equivalents: INTEGER to int32, FLOAT to double and
BOOLEAN to logical. The STRING, FILE and FOLDER types can be chosen to map to either char vectors
(and cell arrays thereof) or string scalars and arrays, depending on a parameter passed to ConFM.

 TIME parameters are mapped to a TimeValue class.

 1-D “list” types are generally mapped to vector-shaped matrices or cell arrays containing the appropriate
types. Matrices (described in the general API as “lists of lists”) are represented by actual matrices or
matrix-shaped cell arrays.

 Access to ARRAY-typed parameters is provided with the “getArrayValue” approach described in §4.2.3.4.

 In order to use OSFI in Matlab the library must be accessible through the Matlab path. Either it must be
deployed in a folder in the path or it must be available in a folder known to the script so it can be added
to it. Look at §3.5.3 for more information on this.

Known issues:

 Support for post-R2016b string arrays is only partially implemented. Currently string arrays are supported
only in the CLP module.

4.3.6.1. CLP

The CLP module API is provided by the single class “CLP”. The class parses command line arguments as passed.
No global state is stored and thus multiple instances can coexist. Furthermore, all parsing is done by the
constructor, and accessor functions only return copies of the stored data.

The CLP module respects the type (character vector or string array) of its input arguments, and offers the outputs
in the same format. An error arises if some inputs are character vectors and others are string arrays.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

60 of 101

 IND-CMS-SUPTR09-SUM-10-E

Table 28 details the interface of the CLP module in OSFI-Matlab

4.3.6.2. EHLog

The EHLog module API is provided by the single class “Logger”. Unlike other OSFI implementations, functions are
instance method, not static, and thus several instances of the logger can coexist with different settings. Output
does not support coloring, and other relevant status variables (debug mode) are initialized on construction.

Inputs to the Logger module may be character vectors or string arrays. Different calls can use different input types.

Table 29 details the interface of the EHLog module in OSFI-Matlab.

4.3.6.3. ConFM

The ConFM module API is provided by the ConFM and Parameter classes. ConFM is the main access point to the
interface. Each instance is independent and holds no global state, so several instances can be kept (e.g. for the
global and local configuration files).

A piece of local state is kept, selecting between character vectors and string arrays for the output properties e.g.
a parameter name. This is chosen at construction time with an optional TextType argument. Note, however, that
this only applies to the outputs and properties offered by ConFM and Parameter. Inputs to those functions can be
given in either form. For example, a ConFM object can be created with TextType set to “string” but still use
character vectors in the call to getParameter.

The ConFM class provides access to a set of Parameter instances, which are likewise independent of any other
instance. The main API they offer is the getValue function which returns the parsed value of the parameter. For
ARRAY parameters, this is in the form of nested cell arrays reproducing the structure in the XML.

An additional way to access ARRAY parameters is provided through the getArrayValue function, which can be
passed a set of indices and returns the corresponding slice of the structure that getValue would have returned.
Calling getArrayValue with a series of indices is equivalent to calling getValue and then applying those indices to
the result; the main difference is that with getArrayValue, the indexing is applied before parsing.

Table 30 details the interface of the ConFM module in OSFI-Matlab.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

61 of 101

 IND-CMS-SUPTR09-SUM-10-E

Table 22: Functions of the CLP module in Matlab

General operation Matlab function Notes

CLP class

Parse command line
arguments
(“constructor”)

clp = CLP(varargin) The function initializes the object by parsing the arguments. The
resulting properties will be string arrays if the inputs are strings,
or cellstr if the inputs are char vectors.

Get (full) list of C/I/O
files

files = clp.confFiles

Same signatures: inputFiles and outputFiles.

Class property whose value is a cellstr or a string array. If no files
of a type are provided, an empty cell/array is returned.

For configuration files, a missing GCF or LCF is represented by a
0-length char vector, or a missing string.

Legacy: get C/I/O
files concatenated

file = clp.getConfFiles()
Same signatures: getInputFile and getOutputFile.

Returns the corresponding full C/I/O files list joined by commas.
Deprecated

Legacy: get single
C/I/O file

file = clp.getConfFile(index)

Same signatures: getInputFile and getOutputFile.

Returns files{index} where files is the corresponding full C/I/O
files list. Deprecated

Legacy: number of
C/I/O files

num = clp.nConfFiles()

Same signatures: nInputFiles and nOutputFiles.

Returns length(files) where files is the corresponding full C/I/O
files list. Deprecated

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

62 of 101

 IND-CMS-SUPTR09-SUM-10-E

Table 23: Functions of the EHLog module in Matlab

General operation Matlab Function Notes

Logger class

Initialize EHLog log = Logger () Parses the DEBUG_MODE environment variable.

Show I/W/E/D
message

log.info(message)

Same signatures: warning, error and debug.

The user should not introduce newlines in the string, because it
will break the output format.

Show progress
indication

log.progress(step, nSteps) No validation is performed.

Finish execution log.finishExecution([exitCode]) If exitCode is provided, calls exit(exitCode).

Otherwise, throws an error to exit.

Extension: show
quality report

log.qualityReport(name, value) The user should not introduce newlines in the strings, because it
will break the output format.

Extension: set debug
mode

log.setDebugMode(debug) -

Extension: set output
to file

log.setStandAlonMode(standAlone) If true, further outputs of the Logger object will be written to a
file in the current working directory named “.tmpLogFile”.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

63 of 101

 IND-CMS-SUPTR09-SUM-10-E

Table 24: Functions of the ConFM module in Matlab

General operation Matlab Function Notes

ConFM class

Load config file cfm = ConFM(fileName, ["TextType", txt])
cfm.parseFile(fileName)

An error is raised if the file cannot be found, or if it cannot be
parsed as a configuration file. Using parseFile replaces the
stored parameter map in the ConFM object.

If txt is “char” or the TextType argument is not given, ConFM and
the Parameter objects will return char vectors. If txt is “string”,
the returned values will use string arrays.

Validate against XSD valOk = cfm.validateAgainst(xsdFile) Throws an error if the schema file cannot be loaded or parsed.

Extension: validate
against internal
schema

valOk = cfm.validateAgainstInternalSchema() Throws an error if the linked schema cannot be loaded.

Get parameter by full
path

P = cfm.getParameter(name) Returns a Parameter instance. Throws an error if the path is not
found.

Get all parameters map = cfm.getParameters() Returns a containers.Map instance with string keys and
Parameter values.

Parameter class

Get parameter raw
value

p.getRawValue() For non-ARRAY parameters, the return value is the unparsed
string value (for matrices, rows are joined).

For ARRAY parameters, a structure of cell arrays reproducing
the XML structure is returned. Each cell may contain other cells
or a 2-element cell {nElems, stringVal}.

Get parameter
parsed value with
automatic or forced
type

val = p.getValue([ParamType]) For non-ARRAY parameters, the return value is a matrix or cell
array of the type corresponding to the declared type.

For ARRAYs, a nested structure of cell arrays is returned, where
the last level contains a vector of data elements.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

64 of 101

 IND-CMS-SUPTR09-SUM-10-E

General operation Matlab Function Notes

ARRAY access val = p.getArrayValue(varargin) Each element in varagin is interpreted as a subindex into the
structure of cell arrays returned by getValue. The last element
may also index into the data itself.

Query parameter
dimensionality

ndims = p.getNdims()
dims = p.getDims()

The second returns a vector of sizes, while the first returns the
length of that vector.

Query parameter
element type

pt = p.getType() Returns a value from ParamType, an enumerated class that
represents the [E2E-ICD] simple types, that is, it does not contain
values for types ARRAY or MATRIX.

Query parameter
attributes

val = p.getLocalName()

Same signature: getPath, getDescription, getUnits, getMax, getMin

All return strings. Note: getMin/getMax used to return numeric
values until OSFI 3.10.0.

TimeValue class

TIME values
component access

yr = tv.year
% Same for month, dom, hour, minute, sec, nanosec

The actually stored types are int16 for year, int32 for nanosec
and int8 for all other properties.

TIME values
comparison

logical = tv1 #OP# tv2 For #OP# in eq, ne, lt, le, ge, gt. For a non-scalar “self” or
“value”, produces the appropriate logical matrix.

TIME values
formatting

char_or_cell = char(tv)
str = string(tv)

Formatted as CCSDS ASCII time code “A”. For a non-scalar
“self”, produces a cell-array of strings (if the “char” function is
used) or a string array (for “string”)..

TIME values parsing tv = TimeValue.parse(str) Not valid for a string array or cell array of strings (use “cellfun”
or “arrayfun” as appropriate). Throws an error on an invalid
format or out-of-range value.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

65 of 101

 IND-CMS-SUPTR09-SUM-10-E

4.3.7. Python Programming Language

OSFI-Python code is written to work on Python 3.8 [Python3.8] or greater. The implementation is pure Python, not
depending on native OSFI libraries.

The design is object-oriented; with both the CLP and ConFM modules implemented using classes: CLP,
ParamReader and Parameter are the main ones. On the other hand, the Logger module defines a set of functions
and stores its state “globally” in the module itself. In general, errors are communicated through exceptions,
although some methods just log errors to the OSFI log stream and return token values instead.

General description:

 All classes are in the “OSFI” package.

 Types in [E2E-ICD] are mapped to their reasonable equivalents: INTEGER to int, FLOAT to float, BOOLEAN
to bool and the STRING, FILE and FOLDER types to str (in both Python 2 and 3).

 TIME values are mapped to a custom TimeValue class.

 1-D “list” types are generally mapped to either lists or tuples. Matrices (described in the general API as
“lists of lists”) are indeed represented by lists of lists.

 Access to ARRAY-typed parameters is provided with the “getArrayValue” approach described in §4.2.3.4.

 In order to use OSFI in Python the library must be accessible through the import path. Either it must be
deployed in a folder in PYTHONPATH or it must be available in a folder known to the script, so that it can
add the folder to sys.path as needed. Look at §3.5.3 for more information on this.

Known issues:

 The XSD validation functions require the presence of the lxml library. If this is not available, the xml.etree
library will be used for parsing, but calling any XSD validation-related function will raise
NotImplementedError.

Note that, in the detailed API tables, the functions are described with type annotations and (where applicable)
keyword-only arguments as supported in Python 3.5+, as if the typing and typing.io packages had been imported.
However, since compatibility with older versions was only removed recently, the actual functions may be written
without type annotations. Similarly, keyword-only arguments may still be implemented as **kwargs where any
unknown arguments trigger an error.

4.3.7.1. CLP

The CLP module API is provided by the single class “CLP” in module CLP. The class parses command line
arguments as passed. No global state is stored and thus multiple instances can coexist. Furthermore, all parsing
is done by the constructor, and accessor functions only return copies of the stored data.

Table 28 details the interface of the CLP module in OSFI-Python.

4.3.7.2. EHLog

The EHLog module API is provided by functions in module Logger. Relevant status variables (debug/color) are
initialized at first execution of an output, and stored as global data from them on. Furthermore, functions operate
on the global streams sys.stdout and sys.stderr. Thus, thread safety is not guaranteed in these functions.

Table 29 details the interface of the EHLog module in OSFI-Python.

4.3.7.3. ConFM

The ConFM module API is provided by the ParamReader and Parameter classes. ParamReader is the main access
point to the interface. Each instance is independent and holds no global state, so several instances can be kept
(e.g. for the global and local configuration files).

The ParamReader class provides access to a set of Parameter instances, which are likewise independent of any
other instance. However, thread safety is not guaranteed in any of the functions because they may call the Logger
functions to report errors.

There is a generic function getValue which returns the parsed value of the parameter, considering the
dimensionality declared in the XML. Thus, a 1x1 integer matrix with value “1” will return the list-of-list-of-int result

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

66 of 101

 IND-CMS-SUPTR09-SUM-10-E

[[1]]. If this is undesired, specific functions are available to override the dimensionality and the type. For ARRAY-
typed parameters, getValue returns a structure of nested lists with the parsed values of each node from the XML.

Furthermore, sliced access to ARRAY parameters is provided through the getArrayValue function, which can be
passed a set of indices and returns the corresponding slice of the structure that getValue would have returned.
Calling getArrayValue with a series of indices is equivalent to calling getValue and then applying those indices to
the result; the main difference is that with getArrayValue, the indexing is applied before parsing.

Table 30 details the interface of the ConFM module in OSFI-Python.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

67 of 101

 IND-CMS-SUPTR09-SUM-10-E

Table 25: Functions of the CLP module in Python

General operation Type-annotated Python Function Notes

Parse command line
arguments
(“constructor”)

CLP.__init__(self: CLP, argv: List[str] = None) If None is given in argv, the function will use the value of sys.argv
instead.

Get (full) list of C/I/O
files

CLP.getConfFiles(self: CLP) -> List[str]

Same signatures: getInputFiles and getOutputFiles.

If no file of a type is provided, they return an empty list.

Legacy: get single
configuration file

CLP.getConfFile(self: CLP) -> str If called in a case with two configuration files, returns the
unparsed string (“file1,file2”).

Table 26: Functions of the EHLog module in Python

General operation Type-annotated Python Function Notes

Show I/W/E/D
message

info(msg: str) -> None

Same signatures: warning, error and debug.

The user should not introduce newlines in the string, because it
will break the output format.

Extension: format
I/W/E/D message
with extra data

getInfoStream() -> TextIO

Same signatures: getWarningStream, getErrorStream,
getDebugStream.

The user should not introduce newlines in the output given to
those streams, because it will break the output format.

Show progress
indication

progress(step: int, nSteps: int) -> None No validation is performed.

Finish execution finishExecution(exitCode: int) -> None Calls sys.exit with the given value as exit code.

Extension: show
quality report

qualityReport(name: str, value: Any) The user should not introduce newlines in the strings, because it
will break the output format.

Extension: format
quality report

getQualityStream() -> TextIO The user should not introduce newlines in the output given to
those streams, because it will break the output format.

Query debug and
colored output.

isColored() -> bool

Same signature: isDebugging

Status set from environment variables DEBUG_MODE and
OSFI_LOG_COLOR on first query.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

68 of 101

 IND-CMS-SUPTR09-SUM-10-E

Table 27: Functions of the ConFM module in Python

General operation Type-annotated Python Function Notes

Load config file ParamReader.__init__(self, xmlFile: str) An exception is raised if the file cannot be found, or if it cannot
be parsed as a configuration file.

Validate against XSD ParamReader.validateAgainst(self, xsdFile: str) -> bool Raises an exception if the schema file cannot be loaded or
parsed as valid XSD.

Extension: validate
against internal
schema

ParamReader.validateAgainstInternalSchema(self) Returns failure if the schema cannot be found or parsed.

Get parameter by full
path

ParamReader.getParameter(self, name: str) -> Parameter Returns null if the name is not found.

Get parameters by
partial path

ParamReader.getParameters(self, groupName: str)
-> List[Parameter]

Returns an empty list if no parameter matches.

Get all parameters ParamReader.getAllParameters(self) -> Dict[str, Parameter] The map key is the full path, which is not accessible from within
each Parameter item.

Query existence ParamReader.existParameter(self, name:str) -> bool -

Get parameter
parsed value with
automatic
dimensionality and
possibly type

Parameter.getValue(self, asType: ParamType = None)
-> ValType

ValType
= V # for scalars
= List[V] # for vectors
= List[List[V]] # for matrices
= List[X] # for ARRAY, where X is V or List[X]

V is the parsed type corresponding to for asType, or, it if is
None, to the declared element type.

If the parsed element type is called T, the return type depends
on the declared dimensionality, as described on the left. For
ARRAYs, a nested structure of lists is returned, where the last
level is of type List[T]

Get parameter
parsed value (scalar,
vector, matrix)

Parameter.get#T#Value(self) -> V
Parameter.getVector#T#(self) -> List[V]
Parameter.getMatrix#T#(self) -> List[List[V]]

#T# is one of Int, Double, Boolean, String or File, and V is the
corresponding type (int, float, bool, str, str).

On parsing error, a log message is emitted and a default value is
returned (see docs). If the getVector#T# functions are used on
an ARRAY parameter, it is flattened to 1D.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

69 of 101

 IND-CMS-SUPTR09-SUM-10-E

General operation Type-annotated Python Function Notes

ARRAY access Parameter.getArrayValue(self, *indices,
asType: ParamType = None) -> ValType

ValType is as defined for getValue.

Each element in indices is interpreted as a subindex into the
structure returned by getValue. The last element may also index
into the data itself.

Get parameter raw
value

Parameter.getRawValue(self) -> RawType For non-ARRAY parameters, the return value is the unparsed
string value (for matrices, rows are joined).

For ARRAY parameters, a structure of nodes reproducing the
XML is returned.

Extension: query file
existence

Parameter.fileExists(self) -> List[List[bool]] For FILE parameters. If the parameter is a scalar or vector, a 1x1
or single-row matrix is returned, respectively.

Query parameter
attributes

Parameter.getNdims(self) -> int
Parameter.getDims(self) -> List[int]
Parameter.getElementType(self) -> ParamType
Parameter.getLocalName(self) -> str

Same signature as getLocalName: getPath, getDescription,
getUnits, getMax, getMin, getType

ParamType is an enum with the [E2E-ICD] simple types, that is, it
does not represent types ARRAY or MATRIX.

TIME values
component access

class TimeValue:
__slots__ = ('year', 'month', 'dom', 'hour', 'minute',
'sec', 'nanosec')

The actually stored type is int.

TIME values
comparison

TimeValue.__#OP#__(self, value) -> bool For #OP# in eq, lt, le, ge, gt (ne is automatic)

TIME values
formatting

TimeValue.__format__(self, format) -> str
TimeValue.__repr__(self) -> str

Only “a” is accepted as a format specifier, producing CCSDS
ASCII time code “A”.

TIME values parsing @staticmethod
TimeValue.parse(str) -> TimeValue

Throws an error on an invalid format or out-of-range value.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

70 of 101

 IND-CMS-SUPTR09-SUM-10-E

4.3.8. Java Programming Language

OSFI-Java code targets Java SE 7, with the language specification defined in [Java8]. The library is presented as a
single JAR file which does not have any external dependencies. The JAR is also an OSGi bundle, which exports the
package “esa.opensf.osfi”.

The implementation of OSFI-Java is object-oriented, with both the CLP and ConFM modules implemented using
classes: CLP, ParamReader and Parameter are the main ones. The Logger module is mainly static method-based
and stores its state globally. In general, errors are communicated through exceptions, although some methods
just log errors to the OSFI log stream and return token values instead.

General description:

 All classes are directly in the “esa.opensf.osfi” package.

 Types in [E2E-ICD] are mapped to their reasonable equivalents: INTEGER to int, FLOAT to double, BOOLEAN
to boolean and the STRING, FILE and FOLDER types to java.lang.String.

 TIME parameters are mapped to a custom class TimeValue.

 1-D “list” types are generally mapped to either java.util.List<T> or arrays. Matrices (described in the
general API as “lists of lists”) are represented by arrays of arrays.

 Access to ARRAY-typed parameters is provided implementing the “getRootNode” approach described in
§4.2.3.4.

Known issues: none for the moment

4.3.8.1. CLP

The CLP module API is provided by the single class “CLP”. The class parses command line arguments as passed.
No global state is stored and thus multiple instances can coexist. Furthermore, all parsing is done by the
constructor, and accessor functions only return copies of the stored data.

Table 28 details the interface of the CLP module in OSFI-Java.

4.3.8.2. EHLog

The EHLog module API is provided by the “fake” class “Logger”. The implementation provides the functions as
static methods of that class.

Relevant status variables (debug/color) are initialized at first execution of an output, and stored as global data
from them on. Furthermore, functions operate on the global streams System.out and System.err. Thus, thread
safety is not guaranteed in these functions.

Table 29 details the interface of the EHLog module in OSFI-Java.

4.3.8.3. ConFM

The ConFM module API is provided by the ParamReader, Parameter and ArrayNode classes. ParamReader is the
main access point to the module interface. Each instance is independent and holds no global state, so several
instances can be kept (e.g. for the global and local configuration files).

The ParamReader class provides access to a set of Parameter instances, which are likewise independent of any
other instance. However, thread safety is not guaranteed in any of the functions because they may call the Logger
functions to report errors.

Parsing code employs primitive arrays as much as possible, avoiding boxing large quantities of data. Thus, the
getVector and getMatrix functions return primitive arrays for types INTEGER, FLOAT and BOOLEAN.

Access to ARRAY parameters is provided through the ArrayNode class. It is an abstract class, defined as
ArrayNode<Es,S>. Es is the data type contained, and S is the actual type of the node, since it will be a subclass of
ArrayNode6. In particular, nodes are always instances of either of two concrete subclasses:

6 S is sometimes called a CRTP type parameter, using terminology borrowed from C++ and its Curiously Recursive Template
Pattern.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

71 of 101

 IND-CMS-SUPTR09-SUM-10-E

 ArrayNode.Raw, which contains String data. This represents the structure of the parameter read in the XML
and has methods to parse the contents into either an array (flattening the structure to one dimension in
depth-first order) or a parsed node which keeps the structure but contains parsed data.

 ArrayNode.Parsed<A> which contains data of type A, where A will be an array type. This is done because
Java generics cannot be primitives, so A could not be e.g. “int”, but it can be int[] because array types are
objects.

The parent class ArrayNode, and thus both subtypes of nodes, contain methods to navigate the tree structure:
getDataAt(indices) and getSubNodeAt(indices) are the main features, which can be explored in the
documentation.

Table 30 details the interface of the ConFM module in OSFI-Java.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

72 of 101

 IND-CMS-SUPTR09-SUM-10-E

Table 28: Functions of the CLP module in Java

General
operation

Java Method Notes

Parse command
line arguments
(“constructor”)

CLP.CLP(String[] args) The input is the array provided to the
entry point.

Get (full) list of
C/I/O files

List<String> CLP.getConfFiles()

Same signatures: getInputFiles and
getOutputFiles.

If no file of a type is provided, they
return an empty list.

Legacy: get
single
configuration file

String CLP.getConfFile() If called in a case with two
configuration files, returns the
unparsed string (“file1,file2”).

Extension: parse
string to files

List<String> CLP.parseFiles(String arg)
throws Exception

Deprecated.

Table 29: Functions of the EHLog module in Java

General
operation

Java Method Notes

Show I/W/E/D
message

static void Logger.info(String msg)

Same signatures: warning, error and debug.

The user should not introduce
newlines in the string, because it
will break the output format.

Show
progress
indication

static void Logger.progress(int, int) No validation is performed.

Finish
execution

static void
Logger.finishExecution(int exitCode)

Calls System.exit with the given
value as exit code.

Extension:
show quality
report

static void Logger.qualityReport(String name,
double value)

static void Logger.qualityReport(String name,
String value)

The user should not introduce
newlines in the strings, because it
will break the output format.

Query debug
and colored
output.

static boolean Logger.isColored()

Same signature: isDebugging

Status set from environment
variables DEBUG_MODE and
OSFI_LOG_COLOR on first query.

Table 30: Functions of the ConFM module in Java

General
operation

Java Method Notes

Load config
file

ParamReader.ParamReader (String xmlFile) throws
FileNotFoundException,
XMLParser.ParseException

The first exception is thrown if the
file cannot be found, the second if
it cannot be parsed as a
configuration file.

Validate
against XSD

boolean ParamReader.validateAgainst
(String xsdFile)

Throws IllegalArgumentException
if the schema file cannot be loaded
or parsed.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

73 of 101

 IND-CMS-SUPTR09-SUM-10-E

General
operation

Java Method Notes

Extension:
validate
against
internal
schema

boolean
ParamReader.validateAgainstInternalSchema()

Returns failure if the schema
cannot be found or parsed.

Get
parameter by
full path

Parameter ParamReader.getParameter(String name) Returns null if the name is not
found.

Get
parameters
by partial
path

List<Parameter> ParamReader.getParameters
(String groupName)

Returns an empty list if no
parameter matches.

Get all
parameters

Map<String, Parameter>
ParamReader.getAllParameters()

The map key is the full path, which
is not accessible from within each
Parameter item.

Query
existence

boolean ParamReader.existParameter(String name) -

Get
parameter
parsed value
(scalar,
vector,
matrix)

#V# Parameter.get#T#Value()
#V#[] Parameter.getVector#T#()
#V#[][] Parameter.getMatrix#T#()

#T# is one of Int, Double, Boolean,
String or File, and #V# is the
corresponding type (int, double,
boolean, String, String).

On parsing error, a log message is
emitted and a default value is
returned (see docs). If the
getVector#T# functions are used
on an ARRAY parameter, it is
flattened to 1D.

Extension:
query file
existence

boolean[][] Parameter.fileExists() For FILE parameters. If the
parameter is a scalar or vector, a
1x1 or single-row matrix is returned,
respectively.

Query
parameter
attributes

int Parameter.getNdims()
List<Integer> Parameter.getDims()
Parameter.ParamType Parameter.getElementType()
String Parameter.getLocalName()

Same sig.: getPath, getDescription, getUnits, getMax,
getMin, getType

Parameter.ParamType is an enum
with the [E2E-ICD] simple types,
that is, it does not represent types
ARRAY or MATRIX.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

74 of 101

 IND-CMS-SUPTR09-SUM-10-E

General
operation

Java Method Notes

ARRAY
access –
ArrayNode
API

ArrayNode.Raw
Parameter.getRootNode()

ArrayNode.Parsed<#V#[]>
ArrayNode.Raw.getTree#T#()

#V#[] ArrayNode.Raw.getVector#T#()
<Es> Es ArrayNode<Es,?>.getData()
<Es> Es ArrayNode<Es,?>.getDataAtSub(int... idxs)
<S> S ArrayNode<?,S>.getSubNodes()
<S> S ArrayNode<?,S>.getSubNodeAt(int... idxs)
int ArrayNode.getDim()
List<Integer> ArrayNode.getDimsEnvelope()
boolean ArrayNode.isDataNode()

The parameter returns an
ArrayNode.Raw element, which
contains String data (without
splitting).

Raw ArrayNodes can be parsed
either by flattening to 1D
(getVector#T#) or by keeping its
structure (getTree#T#) obtaining
an ArrayNode.Parsed<#V#[]>
element, which contain arrays of
type #V# (possibly primitive).

The other methods can be applied
to either subclass: Es will be String
in Raw nodes and an array in
Parsed nodes. S will be the same
type of node that is receiving the
call (Raw/Parsed).

The return value of
getDimsEnvelope is the
rectangular envelope of the
dimensions of the structure at that
node.

TIME values
component
access

class TimeValue /*…*/ {
public final short year;
public final byte month, dom, hour, minute,
sec;
public final int nanosec;
/*…*/

}

Access is provided directly as
components of the struct type,
without an actual getter function.
However, the fields are themselves
immutable.

TIME values
comparison

// Implementing Comparable<TimeValue>
int TimeValue.compareTo(TimeValue o)
boolean TimeValue.equals(Object other)

The result is negative if a<b,
positive if a>b, and zero if the
instances are equal. Per the
contract of Comparable,
compareTo does not accept nulls
(throws an exception). On the other
hand, using equals where this is
non-null and other is null
gracefully returns false.

Extension:
TIME values
formatting

String TimeValue.toString() Formatted as CCSDS ASCII time
code “A”.

4.4. Additional Features

4.4.1. Debug Mode

Debug mode logs are activated creating the environment variable “DEBUG_MODE” and setting it to “On”. By
default, if this variable is not present, no debug logs are shown during the execution.

export DEBUG_MODE=On

4.4.2. Coloured Logs

OSFI provides a mechanism to colour logs when the module is run from command line (only for Unix terminals).

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

75 of 101

 IND-CMS-SUPTR09-SUM-10-E

Coloured logs are activated creating the environment variable “OSFI_LOG_COLOR” and setting it to “On”.

export OSFI_LOG_COLOR=On

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

76 of 101

 IND-CMS-SUPTR09-SUM-10-E

4.5. Examples of use

4.5.1. C++ Programming Language

Here is an example of C++ code that uses the different modules of the integration libraries.

#include "OSFI.h"
#include <iostream>
#include <iomanip>
#include <string>

using namespace std;

int main(int argc, char * argv[])
try {
 CLP clp{argc, argv}; // Parse command line arguments

 cout << "input files = ";
 for (auto& if : clp.getInputFiles())
 cout << if << ", ";
 cout << endl;

 const string lcf = clp.getConfFiles().back();
 ParamReader reader (lcf); // Parse LCF
 Logger::info("Printing whole parameters file");
 reader.print();

 DynamicArray<int> mi = reader.getParameter("mat").getMatrixInt();
 for (int i = 0, n = mi.getRows(); i < n; i++) {
 for (int j = 0, m = mi.getColumns(); j < m; j++) {
 cout << setw(4) << mi(i,j) << '\t';
 }
 cout << endl;
 }

 Logger::info("vec");
 for(double d : reader.getParameter("vec").getVectorDouble())
 cout << fixed << setw(4) << setprecision(1) << d << '\t';
 cout << endl;
 return 0;
} catch (const std::exception& e) {
 Logger::getErrorStream() << "Module failed: " << e.what() << endl;
 Logger::finishExecution(1);
}

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

77 of 101

 IND-CMS-SUPTR09-SUM-10-E

4.5.2. C Programming Language

Here is an example of C code that uses the different modules of the integration libraries.

#include <stdio.h>
#include <stdlib.h>

#include "OSFIC.h"

// Usage: ./example -g exampleFile.xml
int main(int argc, char *argv[]) {
 // Parse the input arguments
 osfi_clp_args_t* args = osfiClpParseArgs(argc, argv);
 if (!args) {
 osfiLoggerError("CLP::Error parsing command Line\n");
 return 1;
 }

 // Assert we have a config file and parse it
 osfi_paramreader_t* pr;
 if (args->config->count == 0
 || !(pr = osfiConFmCfgFileOpen(->config->files[0])) {
 osfiLoggerError("could not parse the config file!");
 return 1;
 }

 // Find and show some parameters
 const char init_year_path[] = "los.LOS.initialTime.year";
 int init_year = 0;
 if (osfiConFmParamValue(&init_year, pr, init_year_path)) {
 printf("initial year at <%s>: %d\n", init_year_path, init_year);
 }

 const char matrix_path[] = "matrix5x4";
 osfi_matInteger_t* matrix;
 if (osfiConFmParamMatrixInteger(&matrix, pr, matrix_path)) {
 printf("matrix at <%s>:\n", matrix_path);
 for (int i = 0; i < matrix->rows; ++i) {
 for (int j = 0; j < matrix->cols; ++j) {
 printf("%4d", matrix->values[i * matrix->cols + j]);
 }
 printf("\n");
 }
 }

 // Clean-up
 osfiConFmCfgFileClose(pr);
 osfiClpFree(args);
 return 0;
}

4.5.3. Fortran Programming Language

Here is an example of Fortran code that uses the different modules of the integration libraries.

Program f90Example
 ! Include the OSFI modules, fully or partially
 Use OSFI_ConFM
 Use OSFI_CLP
 Use OSFI, Only: osfi_error, osfi_info, osfi_finishExecution

 Type(OSFI_CommandLineParser) clp
 Type(OSFI_STR), Allocatable, Dimension(:) :: &
 cfgFiles, inputFiles, outputFiles
 Character(*), Parameter :: matPar = "sensor.NumericModel.polyParX"
 Double precision, Allocatable :: doubleMatrix(:,:)
 Character(1) tmp
 Integer :: i, err

 clp = OSFI_CommandLineParser()
 If (clp%isValid()) Call clp%getConfFiles(cfgFiles)
 If (.not. allocated(cfgFiles)) Then

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

78 of 101

 IND-CMS-SUPTR09-SUM-10-E

 Call osfi_error('Command line arguments were not parsed')
 Call osfi_finishExecution(1)
 End If
 Do i=1, size(cfgFiles)
 Write (tmp, '(I1)') i
 Call osfi_info("Cfg File ("//tmp//") = "//cfgFiles(index)%str)
 End Do

 ! ConFM Module Example
 pr = OSFI_ParamReader(cfgFiles(1)%str)
 If (.Not. pr%isValid()) then ! Triggered if the file is not found or cannot be parsed
 Call osfi_error('Could not read file ' // confFiles(1)%str)
 Call osfi_finishExecution(2)
 End If
 Call osfi_info("Printing whole parameters file")
 Call pr%print()

 p = pr%getParamRef(matPar, stat=err)
 If (err == 0) doubleMatrix = p%getMatrixDouble(stat=err)
 If (err /= 0) Then
 Call osfi_error('Could not find or parse ' // matPar)
 Call osfi_finishExecution(3)
 End If
 Do i=1,size(doubleMatrix,1) ! Write row by row
 Write(*,*) doubleMatrix(i,:)
 End Do
End Program

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

79 of 101

 IND-CMS-SUPTR09-SUM-10-E

4.5.4. Fortran 77 Programming Language

Warning: OSFI-F77 is deprecated. It is no longer in active development, and this section is no longer updated.

Here is an example of Fortran 77 code that uses the different modules of the library.

 program test
 implicit none
 INTEGER nconf, stat, i, j, nrows, ncols, p
 CHARACTER*255 fname, tmp
 LOGICAL*1 pexist, bmatrix(255)

c---- TEST OSFI COMMAND LINE PARSER
 call OCLP()
c Get number of configuration files and print their names
 call OCLPNC (nconf)
 WRITE(tmp, '(I2)') nconf
 call OLINFO ('Number of configuration files: '//tmp)
 DO i = 1, nconf
 call OCLPGC (i, fname)
 WRITE (tmp,'(I2)') i
 call OLINFO ('Configuration file '//tmp(1:2)//': '//fname)
 END DO

c---- TEST OSFI LOGGER
 call OLINFO (' TESTING LOGGER')
 call OLPROG(3,4)
 call OLERR('Test OSFI Error Message')
 call OLWAR('Test OSFI Warning Message')
 call OLDEB('Test OSFI Debug Message')

c---- TEST OSFI PARAM READING
 call OPREAD('exampleFile.xml','',stat)
 if (stat.NE.1) call OLERR('Error Parsing '//cnfile)

c---- Check if parameter exists
 call OPEX ('los.LOS.polyParY', pexist)
 WRITE (tmp,'(L1)') pexist
 call OLINFO('Parameter exists: '//tmp(1:1))
c---- READING INTEGER SCALAR PARAMETER
 call OPINT(ivalue, 'earth.Earth.demType')
 WRITE(*,*) "Integer parameter value: ", ivalue
c---- READING BOOLEAN MATRIX PARAMETERS
 call OPBLM (bmatrix, nrows, ncols, 'los.LOS.flagsMatrix')
 DO i=1,nrows
 DO j=1, ncols
 p = (i-1)*ncols + j
 WRITE (*,*) 'row=', i, ' col=', j, ' ==> ', bmatrix(p)
 END DO
 END DO

c---- Close OSFI param-reader
 call OPCLS()
 end

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

80 of 101

 IND-CMS-SUPTR09-SUM-10-E

4.5.5. IDL Programming Language

Warning: OSFI-IDL is deprecated. It is no longer in active development, and this section is no longer updated.

Here is an example of IDL code that uses the different modules of the library.

; openSF Integration Libraries (OSFI)

PRO test_IDL, ConfFiles, InputFiles, OutputFiles, DebugMode

IF N_PARAMS() LT 3 THEN BEGIN
 EXECUTION_MODE = GETENV('IDL_EXECUTION_MODE')
 IF (STRCMP(EXECUTION_MODE, 'SAV') NE 1) THEN $
 print, 'Number of arguments not valid'
ENDIF

IF N_PARAMS() EQ 3 THEN $
 DebugMode = 0

;Show some logs
print, ''
print, 'Show some logs examples using Logger class...'
LOG = OBJ_NEW('Logger', DebugMode)
LOG->Info, "This is an info message"
LOG->warning, "This is a warning message"
LOG->debug, "This is a debug message"
LOG->progress, 2, 21
LOG->qualityReport, 'a', 23

;Show configuration files, inputs and outputs using CLP
print, ''
print, 'Parsing configuration, input and output files using CLP class...'
CLP = OBJ_NEW('CLP', ConfFiles, InputFiles, OutputFiles)
InputFiles = CLP->GetInputFiles()
OutputFiles = CLP->GetOutputFiles()
ConfFiles = CLP->GetConfFiles()
Input = CLP->GetInputFile(2)
IF (N_ELEMENTS(ConfFiles) EQ 1) THEN BEGIN
 Conf = CLP->getConfFile(0)
ENDIF ELSE BEGIN
 Conf = CLP->getConfFile(1)
ENDELSE

LOG->Info, "Configuration files: " + ConfFiles
LOG->Info, "Input files: " + InputFiles
LOG->Info, "Output files: " + OutputFiles
LOG->Info, "Configuration file: " + Conf
LOG->Info, "Input file: " + Input
 success = 1

;Parse XML file and check read values
print, ''
print, 'Parsing XML file and checking that read values are correct...'
xmlObj = OBJ_NEW('ConFM', Conf)

xmlPar = xmlObj->GetParameter('los.LOS.name')
IF (STRCMP(xmlPar->GetValue(), 'my LOS') EQ 1) THEN BEGIN
 print, 'Parameter: ' + xmlPar->GetPath() + ' --> OK'
ENDIF ELSE BEGIN
 print, 'Parameter: ' + xmlPar->GetPath() + ' --> No OK'
 success = 0
ENDELSE

xmlPar = xmlObj->GetParameter('los.LOS.polyParY')
value = xmlPar->GetValue()
result = [1,2,3,4,5,6,7,8,9,10,11,12]
IF max(value-result) EQ min(value-result) THEN BEGIN
 print, 'Parameter: ' + xmlPar->GetPath() + ' --> OK'
ENDIF ELSE BEGIN
 print, 'Parameter: ' + xmlPar->GetPath() + ' --> No OK'
 success = 0
ENDELSE

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

81 of 101

 IND-CMS-SUPTR09-SUM-10-E

xmlPar = xmlObj->GetParameter('los.LOS.initialTime.year')
value = xmlPar->GetValue()
IF value EQ 2009 THEN BEGIN
 print, 'Parameter: ' + xmlPar->GetPath() + ' --> OK'
ENDIF ELSE BEGIN
 print, 'Parameter: ' + xmlPar->GetPath() + ' --> No OK'
 success = 0
ENDELSE

xmlPar = xmlObj->GetParameter('los.LOS.missionNames')
value = xmlPar->GetValue()
result = ['BioMass','Premier','CoreH2O']
IF where(strcmp(value, result) NE 1) EQ -1 THEN BEGIN
 print, 'Parameter: ' + xmlPar->GetPath() + ' --> OK'
ENDIF ELSE BEGIN
 print, 'Parameter: ' + xmlPar->GetPath() + ' --> No OK'
 success = 0
ENDELSE

OBJ_DESTROY, xmlPar
OBJ_DESTROY, xmlObj
OBJ_DESTROY, CLP
OBJ_DESTROY, LOG

print, ''

IF success EQ 1 THEN $
 print, 'Successful test' $
ELSE $
 print, 'Failed test'

END

4.5.5.1. IDL licenses

IDL provides three types of licenses in function of the needs of the user:

 IDL development: Full license for IDL that allows to the user to use all its functionalities. Users can access to
the IDL Development Environment, the IDL command line, and having the ability of compiling and executing

IDL .pro files.

 IDL runtime: Allows executing IDL programs precompiled and saved as .SAV files without any type of
restriction.

 IDL virtual machine: It is a free license that allows to the user to execute IDL programs precompiled and saved
as .SAV files. This kind of license has a few restrictions, like displaying a splash screen on startup, callable IDL
applications are not available...

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

82 of 101

 IND-CMS-SUPTR09-SUM-10-E

4.5.6. Matlab Programming language

Here is an example of Matlab code that uses the different modules of the integration libraries.

function CloudsDetection (varargin)

% Check input arguments
if (nargin<3)
 error ('number of argumets not valid');
end

%--
% OSFI Initialization and parameter reading
%--
% Add OSFI path
OSFI_MATLAB = '<OSFI_INSTDIR>/include/Matlab/';
addpath (OSFI_MATLAB);

% Init CLP and Logger
clp = CLP(varargin{:});
log = Logger();
log.setDebugMode(true);

% Get inputs, outputs and configuration files using
inputFolder = clp.inputFiles(1);
outFile = clp.outputFiles(1);
confFile = clp.confFiles(1);

% Parse configuration files and read all the parameters
log.info (['Reading configuration parameters from ' confFile]);
cfm = ConFM (confFile);

brightness_threshold = cfm.getParameter ('thresholds.brightness').getValue;
NDSI_threshold = cfm.getParameter ('thresholds.NDSI').getValue;
temperature_threshold = cfm.getParameter ('thresholds.temperature').getValue;
composite_threshold = cfm.getParameter ('thresholds.composite').getValue;
filter5_threshold = cfm.getParameter ('thresholds.filter5').getValue;
filter6_threshold = cfm.getParameter ('thresholds.filter6').getValue;
filter7_threshold = cfm.getParameter ('thresholds.filter7').getValue;
filter8_threshold = cfm.getParameter ('thresholds.filter8').getValue;

%--
% Module Processing Core
%--
% Read input images
log.info ('Reading input files');
BLUE = imread ([inputFolder '/B10.TIF']); % blue-green band
GREEN = imread ([inputFolder '/B20.TIF']); % green
RED = imread ([inputFolder '/B30.TIF']); % red
NIR = imread ([inputFolder '/B40.TIF']); % near infrared
MIR1 = imread ([inputFolder '/B50.TIF']); % mid-infrared
TIR = imread ([inputFolder '/B60.TIF']); % thermal infrared
MIR2 = imread ([inputFolder '/B70.TIF']); % mid-infrared
[rows cols] = size (BLUE);

% Process images
log.info ('Processing images');
OUT = [];
NDSI = (GREEN - MIR1)./(GREEN + MIR1);
composite = (1 - MIR1).*TIR;
filter5 = NIR./RED;
filter6 = NIR./GREEN;
filter7 = NIR./MIR1;
filter8 = MIR1./TIR;

NO_CLOUD = (RED<brightness_threshold)|(NDSI>NDSI_threshold)|(TIR>temperature_threshold);
AMBIGUOUS =
((composite>composite_threshold)|(filter5>filter5_threshold)|(filter6>filter6_threshold)|(filter7<fi
lter7_threshold));
WARM_CLOUD = (filter8>filter8_threshold);
COLD_CLOUD = (filter8<=filter8_threshold);

OUT = AMBIGUOUS*50;

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

83 of 101

 IND-CMS-SUPTR09-SUM-10-E

pos = find (OUT==0);
OUT(pos) = WARM_CLOUD(pos)*150 + COLD_CLOUD(pos)*255;
OUT = OUT.*not(NO_CLOUD);

% Write data
log.info ('Writing output data');
imwrite (uint8(OUT), outFile);

end

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

84 of 101

 IND-CMS-SUPTR09-SUM-10-E

4.5.7. Python Programming Language

Here is an example of Python code that uses the different modules of the integration libraries assuming that they
are available either in the directory in which the interpreter is running, or in the list of directories contained in the
PYTHONPATH environment variable or in the sys.path search path.

#!/usr/bin/env python3
from OSFI.ParamReader import ParamReader
from OSFI.CLP import CLP
from OSFI import Logger

def main(argv=None):
 matrixIntParam = 'los.LOS.polyParY'
 vectorDoubleParam = 'los.LOS.iDomain'

 try:
 clp = CLP(argv) # If given None, CLP will read sys.argv

 # Show conf files, inputs and outputs using CLP
 cf = clp.getConfFiles()
 Logger.info ('Configuration files: ' + ', '.join(cf))
 inf = clp.getInputFiles ()
 Logger.info ('Input files: ' + ', '.join(inf))
 outf = clp.getOutputFiles ()
 Logger.info ('Output files: ' + ', '.join(outf))

 # Read the local configuration file
 reader = ParamReader(cf[1])
 Logger.info("Printing whole parameters file")
 reader.write()

 mi = reader.getParameter(matrixIntParam).getMatrixInt()
 Logger.info(matrixIntParam)
 for i in range(len(mi)):
 for j in range(len(mi[0])):
 print("[{0}][{1}] = {2}".format(i, j, mi[i][j]))

 vd = reader.getParameter(vectorDoubleParam).getVectorDouble()
 Logger.info(vectorDoubleParam)
 print(vd)

 return 0
 except Exception as e:
 Logger.error("TestModule failed: " + str(e))
 Logger.finishExecution(1)

if __name__ == "__main__":
 main() # CLP will read sys.argv itself

And here is the same example using the installed OSFI Python package as described in section 3.5.3.

As it can be seen, the only lines modified have been the import statements which are now done from the OSFI
package, being all the rest of the code exactly the same as in the previous approach.

#!/usr/bin/env python
from OSFI.ParamReader import ParamReader
from OSFI.CLP import CLP
from OSFI import Logger

def main(argv=None):
 matrixIntParam = 'los.LOS.polyParY'
 vectorDoubleParam = 'los.LOS.iDomain'

 try:
 clp = CLP(argv) # If given None, CLP will read sys.argv

 # Show conf files, inputs and outputs using CLP
 cf = clp.getConfFiles()
 Logger.info ('Configuration files: ' + ', '.join(cf))
 inf = clp.getInputFiles ()
 Logger.info ('Input files: ' + ', '.join(inf))

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

85 of 101

 IND-CMS-SUPTR09-SUM-10-E

 outf = clp.getOutputFiles ()
 Logger.info ('Output files: ' + ', '.join(outf))

 # Read the local configuration file
 reader = ParamReader(cf[1])
 Logger.info("Printing whole parameters file")
 reader.write()

 mi = reader.getParameter(matrixIntParam).getMatrixInt()
 Logger.info(matrixIntParam)
 for i in range(len(mi)):
 for j in range(len(mi[0])):
 print("[{0}][{1}] = {2}".format(i, j, mi[i][j]))

 vd = reader.getParameter(vectorDoubleParam).getVectorDouble()
 Logger.info(vectorDoubleParam)
 print(vd)

 return 0
 except Exception as e:
 Logger.error("TestModule failed: " + str(e))
 Logger.finishExecution(1)

if __name__ == "__main__":
 main() # CLP will read sys.argv itself

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

86 of 101

 IND-CMS-SUPTR09-SUM-10-E

4.5.8. Java Programming Language

Below is an example of Java code that uses the different modules of the integration libraries.

import java.util.List;

import esa.opensf.osfi.CLP;
import esa.opensf.osfi.Logger;
import esa.opensf.osfi.ParamReader;
import esa.opensf.osfi.Parameter;

public class TestModel {

 public static void main(String[] args) {
 try {
 CLP clp = new CLP(args);
 List<String> cf = clp.getConfFiles();
 Logger.info ("Configuration files: " + cf);
 Logger.info ("Input files: " + clp.getInputFiles());
 Logger.info ("Output files: " + clp.getOutputFiles());

 ParamReader cfm = new ParamReader(cf.get(1)); // Parse LCF
 Parameter param = cfm.getParameter ("los.LOS.iDomain");
 double[] valueVectorDouble = param.getVectorDouble();
 for (int i = 0; i < valueVectorDouble.length; i++) {
 System.out.println(valueVectorDouble[i]);
 }

 param = cfm.getParameter ("matrix5x4");
 int[][] matrix = param.getMatrixInt();
 for (int i = 0; i < matrix.length; i++) {
 for(int j = 0; j< matrix[i].length; j++) {
 System.out.println(matrix[i][j]);
 }
 }
 } catch (Exception e) {
 Logger.error("TestModule failed: " + e.getMessage());
 Logger.finishExecution(1);
 }
 }
}

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

87 of 101

 IND-CMS-SUPTR09-SUM-10-E

5. COMPATIBILITY WITH PREVIOUS VERSIONS

Each release of OSFI is not guaranteed to be source or (for compiled languages) binary-compatible with previous
versions. However, we do strive to keep source compatibility where possible, so that upgrading to a new version
consists only of rebuilding against the latest OSFI. In particular, releases with the same minor version (e.g. 3.5.x)
should be source-compatible.

In order to ease the upgrade path from previous versions of OSFI, this section details the incompatible API changes
since the last version for each language. Note that, in general, only breaking changes are detailed here, with
“breaking” defined as changes that cause a previously building source to fail to build, or to build but stop working.
There may be other changes with a “soft” upgrade path, like deprecated functionality that raises a warning about
the appropriate upgrade path. Such functionality will only appear in this section when it is finally removed from
OSFI.

5.1. Migrating from OSFI 3.4 to 3.5

5.1.1. All/multiple Languages

Removal of support for attribute “ndims” (all languages)

Affected API: ParamReader/ConFM, Parameter constructors, Parameter.getDims

The “ndims” attribute was never part of [E2E-ICD], but it was recognized by and affected parsing behavior in several
OSFI implementations. This attribute has been completely removed from OSFI 3.5, and is now ignored if present
in configuration files. In particular, functions like Parameter.getDims now return consistent values across
languages, while getNdims returns the length of the vector/list returned by getDims.

Given a file like with a parameter like the following:

<!-- Old-style array, one dimension but ndims=2 -->
<parameter name="x" ndims="2" dims="3" type="INTEGER">
 1 2 3
</parameter>

Implementations would previously have returned a variety of dimension arrays from getDims depending on
whether “ndims” was being parsed or not (e.g. [3 0] in C++, [3 1] or [1 3] in other languages). In the new version, the
“ndims” attribute is ignored and all implementations concur that the parameter shown is a vector of dimension 3.

As a consequence of the above changes, the constructors for Parameter instances in all languages no longer
accept the “ndims” argument. In languages where arguments are purely positional, this is a breaking change that
may either prevent building or fail at runtime, depending on the language. However, in most cases user code
should not call Parameter constructors directly, so the impact to user code is likely to be small.

Parameter constructors now take different argument types (all languages)

Affected API: Parameter constructors

The specific effects depend on the language, but the “dims” argument is now a language-specific dynamic array
instead of a string. For example, the argument has the type vector<int> in C++ and List<Integer> in Java, while in
Matlab/Python an array/sequence of integral values is expected.

Scalar parameters now have zero dimensions (all languages)

Affected API: Parameter.getNdims, Parameter.getDims

For scalar parameters that do not have an explicit “dims” attribute, the default is to return zero from getNdims and
the language-specific version of an empty integer list from getDims. This may be a breaking change for many users
which may expect getNdims to never return zero, or for the dims return value to always have at least one element.

Xerces-C++ is now used privately (C++/FFI, C, Fortran)

Affected API: most OSFI-C++ headers

Xerces-C++ is the XML library used by OSFI-C++, and indirectly by OSFI-C, OSFI-Fortran and the deprecated OSFI-
F77 to perform the low-level parsing of the configuration files. Until the previous version, this was an open fact

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

88 of 101

 IND-CMS-SUPTR09-SUM-10-E

exhibited by the OSFI CMake configuration and its headers. However, in the interest of encapsulation and a
possible future move to a different XML library, the new version uses Xerces-C privately, as an implementation
detail.

This means that, among other things, CMake target XercesC::XercesC is no longer part of the
INTERFACE_LINK_LIBRARIES specification of OSFI-C++, so client executables or libraries declared to link against
one of the mentioned OSFIs will not automatically get to the Xerces-C include path and library7 injected in its own
build settings.

This may be a significant breaking change if the user code attempts to perform its own XML parsing using Xerces
but does not link against it itself, instead relying on the OSFI dependency. User code that uses Xerces should thus
depend on it directly.

5.1.2. C++

Internal files and classes removed from public interface

Affected API: class ParameterParsingException (moved to different header), class StrX, class WriteErrorHandler,
all functions in VectorTypes.h (removed), class XMLparser and macros in vt100.h (moved to private sources folder),
class ParamReader and class UsageReader (inheritance tree modified).

The following headers have been removed, so trying to include them is now an error:

 ConFM/ParameterParsingException.h, but not the class of the same name, which has been moved to the
ConFM/ParamReader.h header

 ConFM/StrX.h, along with the class of the same name

 ConFM/VectorTypes.h, including functions intVector, doubleVector, fileVector, atob, str, boolVector and
fileFormattedValue

 ConFM/WriteErrorHandler.h, along with the class of the same name

 ConFM/XMLparser.h, along with the class of the same name

 EHLog/vt100.h

These classes and/or functions were implementation details of other OSFI code, so they have been removed,
either from the public API exported by the library, or altogether sicne they were made redundant by code rewrite.
In particular, public API classes ParamReader and UsageReader no longer inherit from XMLparser, using it privately
instead.

Xerces-C++ headers are no longer included by OSFI headers

Affected API: most OSFI-C++ headers

As detailed in the previous section, Xerces-C++ is now used privately in the CMake definition of the OSFI-C++
library. This means, among other things, that executables or libraries linking to OSFI will not get the Xerces include
paths automatically, which forces OSFI to remove any mention of them from its own public headers.

Thus, user code using any Xerces type or function (e.g. XMLCh, DOMDocument) needs to ensure that the proper
Xerces-C++ headers are included directly.

5.1.3. C

Removed some included headers from OSFIC.h, added include guard

Affected API: none directly (“collateral damage”)

The OSFI C interface has been pruned and redundant code has been removed from the headers. In particular, the
main C header is now wrapped in a double inclusion guard with the macro OSFI_C_INTERFACE. However,
references to stdio.h and stdarg.h have been removed from OSFIC.h. Thus, code that inadvertently used
functions or definitions from those files but did not include them directly will fail to build.

7 If OSFI is built as a static library, it is possible that the Xerces-C++ library will still be a transitive dependency, since in many
platforms static libraries are merely “object archives” and not truly “linked” until they are introduced into an executable or
dynamic library.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

89 of 101

 IND-CMS-SUPTR09-SUM-10-E

The solution is consistently including whatever headers your code uses, even if you think/know that they are
already included by third party library headers.

#include "OSFIC.h" // No longer includes stdio.h (FILE, fopen)
#include <stdio.h> // Insert this or the module will no longer build

int main(int, const char**) {
 FILE* f = fopen("work.dat", "wb"); // Will no longer work
 //...
 return 0;
}

Bugfix in matrix getters output arguments for sizes

Affected API: all osfiConFMGetMatrix(T)Values functions, osfiConFMfileExist.

A bug causing matrix sizes to be incorrectly returned by OSFI-C matrix getters has been fixed. However, for code
that depended on the returned (flipped) value of the “rows” and “columns” output arguments to those functions,
the change will be breaking.

It should be noted that the osfiConFMGetColumns and osfiConFMGetRows functions did not exhibit this bug, so
their return values have not changed.

5.1.4. Fortran

No breaking API changes exist between versions 3.4 and 3.5 of OSFI-Fortran, although the API continues to be
fleshed out with new functions.

However, some bugs related to the bridge between Fortran and C++ (mostly off-by-one errors) have been fixed,
which may be considered a breaking change if the code depended on a workaround.

5.1.5. Java

Renaming of OSFI package

Affected API: all of OSFI-Java

A major breaking change is that the OSFI-Java classes are now under a package named “esa.opensf.osfi” instead
of simply “osfi”, in application of ESA Java coding guidelines. This change obviously breaks both source and binary
compatibility, but the fix is simply renaming references accordingly in both import statements and fully-qualified
names:

import osfi.Parameter; // Remove this
import esa.opensf.osfi.Parameter; // Replace with this

Parameter returns primitive arrays where appropriate

Affected API: Parameter.getVectorT and getMatrixT, with T = (Int, Double, Boolean)

After an overhaul of parameter parsing, the Parameter class will no longer return arrays of boxed types like Integer
or Boolean. Instead, those methods will return arrays of primitive types. Types that return arrays of strings are not
affected. This change speeds up parsing of large parameter arrays, since the process directly generates primitive
arrays with contiguous values, instead of arrays of references to possibly scattered values.

Parameter p = ...;
Integer[][] val = p.getMatrixInt(); // Remove this
int[][] val = p.getMatrixInt(); // Replace with this

A possible secondary effect of this change is that primitive arrays do not play nicely with some collection-utility
methods such as java.util.Arrays.asList, so code that relied on such methods to wrap the returned arrays with a
List<T> will no longer work.

The solution is twofold: if your module is using Java 8+, you can probably switch processing code to the Stream
API, using Arrays.stream() and IntStream instead of Arrays.asList() and List<Integer>. Otherwise, or if a List of a
wrapper type is absolutely required, you can either do the conversion yourself or use a supporting library like
Guava.

https://github.com/google/guava/wiki/PrimitivesExplained

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

90 of 101

 IND-CMS-SUPTR09-SUM-10-E

// This won’t work anymore b/c java.util.Arrays does not produce
// a List<Integer> from an int[] argument – T must extend Object!
List<Integer> li = Arrays.asList(p.getVectorInt());

// Solution 1, for Java 8+: switch to Stream API and work with it
// either directly or as a way to obtain a List.
IntStream is = Arrays.stream(p.getVectorInt());
int minPosVal = is.filter(v -> v>0).min().orElse(0); // Work directly
List<Integer> li1 = is.boxed().collect(Collectors.toList()); // List

// Solution 2a: manual conversion to Integer array
List<Integer> li2a = new ArrayList<>();
for (int v : p.getVectorInt())
 li2.add(v);

// Solution 2b: automatic conversion/wrapping with utility methods
// from external libraries e.g. Guava or Apache Commons Lang.
List<Integer> li2b = Ints.asList(p.getVectorInt()); // From Guava

New API for ARRAY-typed variables

Affected API: Parameter.getArrayValue (removed)

The parsing of structured types in OSFI-Java has been rewritten in this version. The previous API was incoherent
with the rest of the OSFI-Java interface, since unlike the other functions to retrieve a value, the getArrayValue
function provided a single point without the possibility to get a typed result, always returning an Object array.

Furthermore, the previous implementation introduced a confusing permutation of dimensions for 3-D arrays,
relabeling the outermost dimension of such an array as the “third” dimension instead of the first as would be
customary in Java.

The new API is introduced under the name getArrayRootNode, and is similar in design to the C++ version. It
exposes a tree of ArrayNode.Raw instances that can be navigated starting from the 1st dimension (formerly the 3rd)
or parsed in a type-safe fashion into either a flattened array V[] or a parsed tree structure ArrayNode<V[]>. See
§4.3.8 for the detailed interface.

Given a configuration file with a parameter like:

<parameter name="arr" dims="2" type="ARRAY" elementType="INTEGER"…>
 <parameter dims="3" type="ARRAY">
 <parameter dims="4" type="ARRAY">1 2 3 4</parameter>
 <parameter dims="4" type="ARRAY">5 6 7 8</parameter>
 <parameter dims="4" type="ARRAY">9 10 11 12</parameter>
 </parameter>
 <parameter dims="2" type="ARRAY">
 <parameter dims="4" type="ARRAY">-1 -2 -3 -4</parameter>
 <parameter dims="4" type="ARRAY">-5 -6 -7 -8</parameter>
 </parameter>
</parameter>

Previous versions of the OSFI-Java API would have consumed the parameter with code similar to the following:

Parameter p = pr.getParameter("arr");

// Both calls return Object[] with Integer elements, not Integer[]!
Object[] a = p.getArrayValue(0, 1)); // row=0, thirdDimension=1
System.out.println(Arrays.toString(a)); // Prints “[-1, -2, -3, -4]”

Object[] b = p.getArrayValue(1)); // row=1, thirdDimension=0
System.out.println(b[2]); // Prints “7”

// Obtaining an array of primitives requires copying the data
int[] b_prim = new int[b.length];
for (int i=0; i < b.length; ++i)
 b_prim[i] = b[i]; // Auto-unboxing in Java 5+

However, in the new API the array root node does return primitive arrays (int[], etc.) for the appropriate element
types. User code may choose to retrieve and parse only a certain slice of the parameter, as in the first example; or
to parse the full parameter and then access whatever slices are needed, as in the second example.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

91 of 101

 IND-CMS-SUPTR09-SUM-10-E

Parameter p = pr.getParameter("arr");

// Now, getArrayRootNode returns an ArrayNode.Raw instance, which
// can be indexed first and then parsed partially...
ArrayNode.Raw raw = p.getArrayRootNode()
int[] a = raw.getSubNodeAt(1,0).getVectorInt(); // layer=1, row=0
System.out.println(Arrays.toString(a)); // Prints “[-1, -2, -3, -4]”

// ... or parsed as a full tree and then indexed into.
ArrayNode<int[],?> parsed = raw.getTreeInt();
int[] b = parsed.getDataAtSub(0, 1);
System.out.println(b[2]) // Prints “7”

Collection classes replaced by interfaces in API

Affected API: CLP, ParamReader.getParameters, Parameter.getDims (ArrayList to List),
Parameter.getOtherAttributes (HashMap to Map).

Instead of taking and/or returning concrete collection classes (ArrayList, HashMap), the API now works with the
corresponding interface (List, Map) in order to improve encapsulation. In cases where the API takes one such
argument, existing code is source-compatible, but for return values the compilation may fail if use code expects
a collection class to be returned.

ArrayList<Parameter> params = pr.getParameters("group"); // Old
List<Parameter> params = pr.getParameters("group"); // New

Internal classes and methods removed from public interface

Affected API: Vt100, XMLParser, Logger.readFile

These classes were implementation details of Logger and ParamReader, respectively, so they have been removed
from the public API exported by the library. If your code absolutely must use such a class, you can find it in the
OSFI source.

5.1.6. Python

As in other languages, the parameter parsing code was rewritten in this version of OSFI-Python. Most of the
changes are non-breaking, such as the fact that getMatrixX functions no longer raise Exception but the subclass
TypeError.

Removal of the duplicated “constructor” in Parameter

Affected API: Parameter.init (removed), Parameter.__init__

As part of the removal of support for the “ndims” attribute, the function Parameter.init was also removed from the
OSFI-Python interface. This was an unpythonic pseudo-constructor that allowed a Parameter object to be
“reinitialized” after being created. Instead, if changes are needed to the basic attributes of a Parameter object, it
should be replaced with a newly initialized one. The main breaking change could surface if it was paramount that
the same instance of the class was modified.

For example, if a module variable is created and then the code wants to re-initialize the parameter, Python will
assume that the assignment to the name (when using the new constructor-based syntax instead of the old
function) creates a local variable instead. In this case, the workaround is simply telling Python that the variable to
be assigned to is the module-scoped one, using the “global” keyword as in the example.

Note, however, that this is still a workaround, since the module-scoped variable no longer points to the same
instance of Parameter as it did before.

Create a module-level Parameter object and then write to it
p = Parameter(…) # Create with some data at module level

def func_that_alters_module_var(newVal, newLen):
 # Previously: reinitialize with special function
 p.init("name", "description", "INTEGER", newVal,
 "", "", "", "1", str(newLen), None)

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

92 of 101

 IND-CMS-SUPTR09-SUM-10-E

 # New version: replace object with constructor
 global p # So that we don’t create a local variable p instead
 p = Parameter("name", "description", "INTEGER", newVal, newLen)

Parameter constructor arguments renamed

Affected API: Parameter.__init__

The following arguments to the Parameter constructor have been renamed:

 aName  name

 aDescription  description

 aType  elType

 aValue  value

Since the mentioned arguments are compulsory, the renaming will not affect user code providing them via
positional syntax, but it is a breaking change for code that tries to pass the old parameters via keywords.

Getters for scalar values now return None on failure

Affected API: Parameter.get(T)Value function, for all T

The previous version of OSFI returned a type-specific default value if the parameter value could not be parsed.
This could result in correct but unintuitive behavior, like “true” being parsed as False (since the correct value is
only “TRUE”, in capitals). Instead, the new version returns None in such situations.

While this change is compatible in many common situations, like Boolean evaluation, it may be breaking
depending on the usage made by user code and the version of Python, as shown in the example below:

val = pr.getParameter("param").getIntValue()

This code for a user code-specific default will still be valid
v = val if val else 7
The new None return also allows telling an actual “0” from an error
v = val if val is not None else 7

However, this will fail in Python 3, since NoneType is no longer
comparable to int
sig = 1 if val >= 0 else -1

New API for ARRAY-typed variables

Affected API: Parameter.getArrayValue, Parameter.getValue

Like in other languages, the parsing of structured types has been reimplemented in this version. In 3-D arrays, the
first dimension in the file is no longer permuted to the 3rd dimension in the parameter, so for any code that read
such arrays, this change is breaking.

Given a configuration file with a parameter like:

<parameter name="arr" dims="2" type="ARRAY" elementType="INTEGER"…>
 <parameter dims="3" type="ARRAY">
 <parameter dims="4" type="ARRAY">1 2 3 4</parameter>
 <parameter dims="4" type="ARRAY">5 6 7 8</parameter>
 <parameter dims="4" type="ARRAY">9 10 11 12</parameter>
 </parameter>
 <parameter dims="2" type="ARRAY">
 <parameter dims="4" type="ARRAY">-1 -2 -3 -4</parameter>
 <parameter dims="4" type="ARRAY">-5 -6 -7 -8</parameter>
 </parameter>
</parameter>

The indices used to address the sections of the array change so that the dimension that is actually first in the file
also becomes the first in the code, instead of being permuted. The combination of that behavior with the defaulting
of the “third dimension” (actually first) to 1 will cause different results, since the new API will, if insufficient indexes
are given to return a single vector or element, return a cell array with subtree of values.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

93 of 101

 IND-CMS-SUPTR09-SUM-10-E

p = pr.getParameter("arr")

Previous syntax with “third dimension” for the outermost layer
print(p.getArrayValue(0, 1)) # row, thirdDimension -> “[-1,-2,-3,-4]”
print(p.getArrayValue(1)) # row=1, thirdDimension=0 -> “[5,6,7,8]”

Currently, the same slices must be addressed like:
print(p.getArrayValue(1, 0)) # Now prints “[-1,-2,-3,-4]”
print(p.getArrayValue(0, 1)) # Now prints “[5,6,7,8]”

The function also allows returning larger slices or single elements
print(p.getArrayValue(1)) # Prints “[[-1,-2,-3,-4],[-5,-6,-7,-8]]”
print(p.getArrayValue(0,2,3)) # Now prints “12”

Furthermore, the getRawValue function that returns the unparsed value of the parameter will now return an
ArrayNode instance that allows user code to examine the structure of the unparsed strings at each level of the
parameter.

The getValue function now returns the parsed value

Affected API: Parameter.getValue

The function returning the raw (unparsed) value of a parameter has been renamed getRawValue for uniformity
across OSFI implementations. The getValue function now returns the parsed value with the declared type (which
can be overridden) and dimensionality/structure.

Create a module-level Parameter object and then write to it
p = pr.getParameter('integerParam')

rawVal = p.getValue() # This was a string before, but is now an int
rawVal = p.getRawValue() # This is a string
intVal = p.getValue() # New interface for general parsed value
dblVal = p.getValue(asType=ParamType.FLOAT) # Type can be overridden

The actual return type of the new getValue depends on the dimensionality and ARRAY-ness of the parameter: a
scalar parameter will return a single instance of the correct type, while a vector (matrix) will return a list (of lists)
of such instances. The return value for ARRAY parameters is the same as calling getArrayValue, that is, nested lists
representing the parameter structure in the XML.

5.1.7. Matlab

New Parameter parsing engine: removal of N/A and str2num usage

Affected API: ConFM, Parameter

Previously, many fields of a Parameter instance used the str2num function to parse inputs. In particular, the dims,
min and max properties, and also the value for numeric and Boolean parameters, were parsed in this manner.

This implementation caused several Matlab-specific inputs to be allowed, like “1” and “0” for Boolean parameters
or “6+2” for a numeric parameter. However, it is also an important security problem, since any Matlab code
(possibly malicious) was also a valid input. Thus, it has been removed as part of a complete overhaul of parsing in
the new OSFI-Matlab, which is now a much closer match to [E2E-ICD]. This means that, among other changes:

 Structured types no longer consider the “N/A” string as a missing element placeholder. For string-like
types, it is interpreted as a normal value, while for other types it triggers an error.

 Boolean parameters only accept “TRUE” or “FALSE” as values.

 Integer parameters reject non-integer values like “3.7”, “Inf” or “NaN”.

While not a syntactic API break in the sense of changing the names or arguments of the functions in the OSFI-
Matlab interface; this is an important modification to the semantics of the API and thus may cause modules that
depended on some specific behavior of the previous version to fail with an unchanged configuration file. In
general, a file that was able to be parsed by a non-Matlab OSFI in a previous release should still be parseable with
the new Matlab engine.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

94 of 101

 IND-CMS-SUPTR09-SUM-10-E

New Parameter parsing engine: types of values

Affected API: Parameter.getValue, Parameter.getArrayValue

In order to more closely match the specification in [E2E-ICD], the new parsing engine returns values of Matlab type
int32 instead of double if a parameter is of type INTEGER. This change may be breaking in certain cases where
arrays of values are compared.

p = pr.getParameter('integerParam');

valueOk = p.getValue() - [1 2 3]; % Error: integer - double vector
valueOk = p.getValue() - int32([1 2 3]); % New format

New API for ARRAY-typed variables

Affected API: Parameter.getArrayValue

Like in other languages, the parsing of structured types has been reimplemented in this version. In 3-D arrays, the
first dimension in the file is no longer permuted to the 3rd dimension in the parameter, so for any code that read
such arrays, this change is breaking.

Given a configuration file with a parameter like:

<parameter name="arr" dims="2" type="ARRAY" elementType="INTEGER"…>
 <parameter dims="3" type="ARRAY">
 <parameter dims="4" type="ARRAY">1 2 3 4</parameter>
 <parameter dims="4" type="ARRAY">5 6 7 8</parameter>
 <parameter dims="4" type="ARRAY">9 10 11 12</parameter>
 </parameter>
 <parameter dims="2" type="ARRAY">
 <parameter dims="4" type="ARRAY">-1 -2 -3 -4</parameter>
 <parameter dims="4" type="ARRAY">-5 -6 -7 -8</parameter>
 </parameter>
</parameter>

The indices used to address the sections of the array change so that the dimension that is actually first in the file
also becomes the first in the code, instead of being permuted. The combination of that behavior with the defaulting
of the “third dimension” (actually first) to 1 will cause different results, since the new API will, if insufficient indexes
are given to return a single vector or element, return a cell array with subtree of values.

p = pr.getParameter('arr');

% Previous syntax with “third dimension” for the outermost layer
disp(p.getArrayValue(1, 2)); % row, thirdDimension -> “[-1 -2 -3 -4]”
disp(p.getArrayValue(2)); % row=2, thirdDimension=1 -> “[5 6 7 8]”

% Currently, the same slices must be addressed like:
disp(p.getArrayValue(2, 1)); % Now prints “[-1 -2 -3 -4]”
disp(p.getArrayValue(1, 2)); % Now prints “[5 6 7 8]”

% The function also allows returning larger slices or single elements
disp(p.getArrayValue(2)); % Prints “{[-1 -2 -3 -4] [-5 -6 -7 -8]}”
disp(p.getArrayValue(1,3,4)); % Now prints “12”

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

95 of 101

 IND-CMS-SUPTR09-SUM-10-E

5.2. Migrating from OSFI 3.5 to 3.6

5.2.1. All/multiple languages

CLP can now return special missing values for configuration files

Affected API: CLP getConfigFiles

With the introduction of CLIv2 and official support for modules without local or global configuration files, the call
to get the configuration files may return elements that do not correspond to an actual file.

CLIv2 inputs always return a 2-element list where the first and second elements correspond to the GCF and LCF
respectively, and each may be missing. The CLIv1 parser now also allows inputs such as “gcf,” that will produce a
2-element list with a missing second element.

The actual representation of these missing elements depends on the language:

 C++, C, Fortran: empty (0-length) strings.

 Java, Python: null/None elements.

 Matlab: for string inputs, the missing string, as generated by the missing function8 and converted to string
array type. For char vector inputs, which do not allow this representation, empty (0-length) char vectors.

Reorganization of “include” type files

Affected API: C++ and Fortran

In the generated binaries package, or the installed directory structure, the OSFI-C++ include files and OSFI-Fortran
module files were previously placed directly under the resulting “include” folder. However, after this change they
are placed in subfolders named “osfi-cpp” and “osfi-fortran” respectively.

This change does not affect users that rely on CMake to build their OSFI-dependent code, since the relevant target
properties have been adapted. However, users who build their code via some other means (e.g. manual Makefiles
or some other build system) may need to adapt the include and/or Fortran module paths in their compilation
settings.

Note that the C header file was not moved to a subfolder because it is a single file.

5.2.2. C++

CLP getter methods are now const-qualified

Affected API: CLP getConfig/Input/OutputFiles

This is a source-compatible but possibly binary-incompatible change, so rebuilding the module against the new
OSFI should work as-is.

5.2.3. C

No further incompatible changes (see also the changes for all languages in section 5.2.1).

5.2.4. Fortran

No further incompatible changes (see also the changes for all languages in section 5.2.1).

5.2.5. Java

Support for Java 7 dropped (in v3.5.5)

Affected API: all

With the end of “premium” support for Java 7 in 20199, support for it was dropped. Building OSFI-Java now requires
at least Java 8, and its code may use elements new to Java 8 both internally and in the API.

8 See the Mathworks reference for the missing function.

9 See the Oracle Java support schedule/roadmap

https://mathworks.com/help/matlab/ref/missing.html
https://archive.is/Djk0x

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

96 of 101

 IND-CMS-SUPTR09-SUM-10-E

Removal of “stream” methods in Logger

Affected API: Logger getXStream functions

The “get stream” methods in OSFI-Java seemed to be loosely patterned after those in the C++ version. However,
they are unnecessary since the standard library already provides a way of using the basic functions to produce
general output, via String.format.

Furthermore, those functions as defined were problematic and cumbersome to use, unlike their counterparts in
C++, since they generated an obscure type that had to be transformed into a String and manually written to the
standard output.

// Before
System.out.println(Logger.getInfoStream() + v + " is " + num);
// After
Logger.info(String.format("%s is %f", v, num));

5.2.6. Python

Support for Python 2 dropped (in v3.5.4)

Affected API: all

With the end of life of CPython 2.7 in 202010, OSFI-Python deprecated support for the Python 2 line. Thus, OSFI-
Python now requires at least Python 3.6, and may use its capabilities both internally (e.g. f-strings) and externally
(e.g. type annotations).

Non-package based imports are deprecated

Affected API: all

Prior to version 3.5.4, OSFI-Python was provided directly as module files directly on the global namespace. From
then on, an “OSFI” package was also provided, so depending on how OSFI-Python was installed/provided and how
the sys.path variable was set up, users could import OSFI modules directly or via the package.

From version 3.6.0 on, the non-package import of OSFI modules is deprecated and no longer supported. All OSFI
modules may from now on use code incompatible with the direct import (e.g. package-relative imports).

Before, with the OSFI modules directly in sys.path
import Logger
With the OSFI folder in sys.path, or using the wheel package
from OSFI import Logger

5.2.7. Matlab

Support for Matlab R2018b or earlier is deprecated

Affected API: all

The reference environment used for developing and testing OSFI is now Matlab R2019a, versus R2013b for prior
versions. Support for versions earlier than R2017a is definitely removed, due to the usage of double-quoted string
arrays in the sources.

Function-based queries to CLP are deprecated

Affected API: CLP

The following functions have been deprecated, because they have similar names to those in the generic definition
of the API, but were different in terms of the implementation:

 getConfFiles, getInputFiles, getOutputFiles: instead of providing access to the individual files, these
legacy functions actually returned a single char vector with all relevant files joined by commas.

 nConfFiles, nInputFiles, nOutputFiles: these functions return the number of files for each type of file.

10 See PEP-373, detailing the release schedule and end-of-life dates for CPython 2.7.

https://peps.python.org/pep-0373/

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

97 of 101

 IND-CMS-SUPTR09-SUM-10-E

 getConfFile, getInputFile, getOutputFile: these functions take an index and return the ith file of the
relevant type.

The replacement is to access the relevant properties of the CLP object directly. Those are named confFiles,
inputFiles and outputFiles, respectively. They are string arrays if the CLP object was initialized using strings, or
cell arrays of char vectors otherwise.

% Before, with CLP object clp
for i = 1:clp.nInputFiles
 disp(clp.getInputFile(i))
% After, with CLP object created using char vectors
for i = 1:length(clp.inputFiles)
 disp(clp.inputFiles{i}) % Or inputFiles(i) if using strings

5.3. Migrating from OSFI 3.6 to 3.7

OSFI 3.7 only contains new features and bug corrections, no features in the API have been either deprecated or
removed in this version.

5.4. Migrating from OSFI 3.7 to 3.8

5.4.1. All/multiple languages

Reference environments updated

See the changes to section 3.3. In particular, the breaking change is that the minimum version of CMake that can
be used to build OSFI has been raised to 3.16.

Also, the Dockerfile providing the Linux reference environment has been updated.

5.4.2. Java

Deprecation of internal function

Affected API: Logger.printMessage

The mentioned method was never intended to be public, and has been marked as deprecated. In a future version,
it will be removed with no further warning.

5.4.3. Python

Support for Python 3.6 dropped

Affected API: all

With the end of life of CPython 3.6 in December 2021 (see PEP-494), OSFI-Python now requires at least Python 3.7,
and may use its capabilities both internally (e.g. data classes) and externally (e.g. forward references in type
annotations).

5.5. Migrating from OSFI 3.8 to 3.9

5.5.1. All/multiple Languages

Deprecation of function “getName” (all languages)

Affected API: ConFM Parameter

The getName operation available in Parameter returned different values depending on the language: in some it
returned just the local/last part of the name, while in others it returned the full path. Two new functions have been
introduced to the API in order to have a uniform behaviour across all languages:

 getLocalName returns just the local name (last part of the name) of the parameter.

https://peps.python.org/pep-0494/

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

98 of 101

 IND-CMS-SUPTR09-SUM-10-E

 getPath returns its fully qualified name.

The original getName function is now deprecated in all languages and may be removed in the future, so user code
needs to be modified to explicitly choose the desired result. This has been indicated in the Doxygen/Javadoc
documentation, and also in the following language-specific ways:

 C++: the function is marked with the [[deprecated]] attribute (if using C++14) that may produce a compiler
warning on usages.

 Java: the function is annotated with @Deprecated, with the same effect as C++.
 Python: the function emits a DeprecationWarning
 Matlab: the function emits a warning with id OSFI:Parameter:DeprecatedAPI.

5.5.2. C++

DynamicArray API modified for safety

Until version 3.8, DynamicArray provided access to its elements with a row-oriented API based on operator[], which
returned potentially mutable references to the vectors storing the items in each row. From OSFI 3.9 onwards, this
is considered an implementation detail of the class, so the following changes have been made to the API:

 The non-const overload of operator[] has been removed directly, since it allowed the caller to break class
invariants (e.g. by resizing individual rows).

 The const overload has been deprecated, both in documentation and (if using C++14) with the
[[deprecated]] attribute. It will be removed in a future release.

 In their place, an operator() taking two indices (row and column) has been introduced. Both const and
mutable overloads are provided.

 In addition, for similarity with other containers, an at() member function has been provided with const and
mutable overloads. It works similarly to operator() but it is guaranteed to throw when either index is out
of the valid range.

This means that the following changes need to be applied to user code:

DynamicArray<int> mi = // Read from a MATRIX parameter, for example
const DynamicArray<double>& cmd = // Same

// Old code
std::cout << mi[2][5] << cmd[1][7]; // May get deprecation warnings
mi[2][5] = -1; // Will no longer compile, mi[2] is const vector&
mi[2].resize(10); // Same

// New code
std::cout << mi(2,5) << cmd(1,7); // operator() returns [const] T&
mi.at(2,5) = -1; // at() throws if out of range
// The per-row resize is no longer possible

5.5.3. Matlab

Logger constructor parameter deprecated

Calling the Logger constructor with one argument never did anything, and is now deprecated for future removal.
User code should use the constructor without arguments. For now, the constructor emits a warning with id
OSFI:EHLogger:DeprecatedAPI if called with any arguments.

5.6. Migrating from OSFI 3.9 to 3.10

5.6.1. All/multiple languages

Incompatible bugfixes in Parameter.getDims

In the Python and C++ versions of the libraries (and the related C and Fortran versions), the “dimensions” of an
ARRAY parameter were considered to be just the outermost dimension. Since 3.10, the dimensions of an ARRAY
parameter are the rectangular envelope of the actual dimensions, in all languages.

There is no explicit workaround, other than explicitly looking at the first dimension.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

99 of 101

 IND-CMS-SUPTR09-SUM-10-E

5.6.2. C

New CLP API

The old CLP and ConFM API has been deprecated because it was cumbersome to use in a safe way. Instead, users
should transition to the new API. The old API is still available for now, although it will be removed in a future version.

Most calls to the old CLP functions become much simpler in the new API: the single function osfiClpParseArgs
returns a pointer to an OSFI-allocated structure where all types of files can be queried without extra allocations.

// Before: manual memory management by the caller
char inpFiles[3][MAX_LENGTH_FILE_NAME+1];
int numFiles;
osfiCLP(argc, argv); // Initialize CLP component
osfiCLPGetInputFiles(inpFiles, &numFiles);
if (numFiles != 3) {…}
// Use inpFiles
osfiCommonClose()

// After: OSFI manages memory
osfi_clp_args* args = osfiClpParseArgs(argc, argv);
if (!args || args->input->count != 3) {…}
// Use args->input->files
osfiClpFree(args);

New ConFM API

For the same reasons as CLP, the old ConFM API has been deprecated. Instead, users should transition to the new
API which is safer and easier to use. The old API is still available, although it will be removed in a future version.

In the new API, more than one configuration file can be open at once, so the initialization function returns a pointer
to an OSFI-allocated struct of type osfi_paramreader_t that must be passed to all other calls.

Reading values is now safer and simpler, since the module no longer must allocate memory. Instead, OSFI does
so as needed, attaching it to the lifetime of the “pr” object. All such blocks are freed when osfiConFmCfgFileClose
is called with that instance, so the module must either keep it open, or copy the data to its own memory.

// Before: manual memory allocation
if (!osfiConFMReadConfigFile("file.xml")) {…}

double fltVal; // Scalar parameter
osfiConFMGetDoubleValue(&fltVal, "paramPath");
printf("Scalar float parameter = %g\n", floatParam, fltVal);

// Matrix Parameters
int m = osfiConFMGetRows(matPar), n = osfiConFMGetColumns(matPar);
int * imat = malloc(m * n * sizeof(int)); // Manual memory management
int rows, cols;
osfiConFMGetMatrixIntegerValues(imat, &rows, &cols, "matrix5x4");
for (i = 0; i < rows; i++) {
 for (j = 0; j < cols; j++)
 printf("M[%d][%d] = %d\n", i, j, imat[i*cols+j]);
}
free(intMat); // Manual free
osfiCommonClose();

// After: OSFI allocates memory
osfi_paramreader_t* pr = osfiConFmCfgFileOpen("file.xml");
if (!pr) {…}

double fltVal; // Scalar parameter
if (!osfiConFmParamValue(&fltVal, pr, "paramPath")) {…}
printf("Scalar float parameter = %g\n", floatParam, fltVal);

osfi_matInteger_t* imat; // Matrix Parameters
if (!osfiConFmParamValue(&imat, pr, "matrix5x4")) {…}
for (i = 0; i < imat->rows; i++) {
 for (j = 0; j < imat->cols; j++)
 printf("M[%d][%d] = %d\n", i, j, imat->values[i*imat->cols+j]);
}
osfiConFmCfgFileClose(pr); // All other memory freed here

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

100 of 101

 IND-CMS-SUPTR09-SUM-10-E

5.6.3. Python

Incompatible bugfix in Parameter.getPath

Previously, Parameter.getPath was incorrectly implemented, and returned results equivalent to what calling
Parameter.getLocalName should return. The latter raised an exception in most cases. Now, both methods return
the intended value.

5.6.4. Matlab

Incompatible change in Parameter.getMin/getMax

Previously, Parameter.getMin and getMax returned the numerical value of the properties, as parsed by str2double.
This was problematic for TIME parameters, which can have min/max values but could not be parsed this way. Since
3.10, they return the unparsed value, like in all other languages.

The workaround is to parse these raw values manually, if the user desires.

OSFI

Developer’s Manual

OPENSF-DMS-OSFI-DM

1.26

28/05/2025

Indra Deimos

101 of 101

 IND-CMS-SUPTR09-SUM-10-E

END OF DOCUMENT

	Document Status Log
	Table of Contents
	List of Figures
	List of Tables
	1. INTRODUCTION
	1.1. Purpose
	1.2. Scope
	1.3. Acronyms and Abbreviations

	2. RELATED DOCUMENTS
	2.1. Applicable Documents
	2.2. Reference Documents
	2.3. Standards

	3. GETTING STARTED
	3.1. Introduction
	3.2. Conventions used in this Manual
	3.2.1. <OSFI_INSTDIR>
	3.2.2. $E2E_HOME
	3.2.3. Data Types

	3.3. Initial Requirements
	3.3.1. System Requirements
	3.3.2. Software Requirements
	3.3.2.1. IDL
	3.3.2.2. Matlab
	3.3.2.3. Python

	3.4. Installation
	3.4.1. Build Instructions
	3.4.2. Packaging and/or Installation
	3.4.3. Python and Matlab Packages

	3.5. Building and Distribution of Modules with OSFI
	3.5.1. C++, C and Fortran
	3.5.2. Java
	3.5.3. Python and Matlab
	3.5.3.1. CMake-based redistribution
	3.5.3.2. Usage of Python and Matlab packages

	4. OPENSF INTEGRATION LIBRARIES
	4.1. Architectural Overview
	4.2. OSFI Common Packages
	4.2.1. Command Line Parser (CLP)
	4.2.2. Logger (EHLog)
	4.2.3. Configuration File Manager (ConFM)
	4.2.3.1. Parsing and validating configuration files
	4.2.3.2. Finding and accessing parameters
	4.2.3.3. Get parameter value (for non-ARRAY parameters)
	4.2.3.4. Access parameter values (for ARRAY parameters)
	4.2.3.5. Query parameter attributes
	4.2.3.6. Files and Folders
	4.2.3.7. Operations with TIME-typed parameters
	4.2.3.8. Summary tables

	4.3. Language-specific interfaces
	4.3.1. C++ Programming Language
	4.3.1.1. CLP
	4.3.1.2. EHLog
	4.3.1.3. ConFM

	4.3.2. C Programming Language
	4.3.2.1. CLP
	4.3.2.2. EHLog
	4.3.2.3. ConFM

	4.3.3. Fortran Programming Language
	4.3.3.1. CLP
	4.3.3.2. EHLog
	4.3.3.3. ConFM

	4.3.4. Fortran 77 Programming Language
	4.3.4.1. CLP
	4.3.4.2. EHLog
	4.3.4.3. ConFM

	4.3.5. IDL Programming Language
	4.3.5.1. CLP
	4.3.5.2. Logger
	4.3.5.3. ConFM

	4.3.6. Matlab Programming Language
	4.3.6.1. CLP
	4.3.6.2. EHLog
	4.3.6.3. ConFM

	4.3.7. Python Programming Language
	4.3.7.1. CLP
	4.3.7.2. EHLog
	4.3.7.3. ConFM

	4.3.8. Java Programming Language
	4.3.8.1. CLP
	4.3.8.2. EHLog
	4.3.8.3. ConFM

	4.4. Additional Features
	4.4.1. Debug Mode
	4.4.2. Coloured Logs

	4.5. Examples of use
	4.5.1. C++ Programming Language
	4.5.2. C Programming Language
	4.5.3. Fortran Programming Language
	4.5.4. Fortran 77 Programming Language
	4.5.5. IDL Programming Language
	4.5.5.1. IDL licenses

	4.5.6. Matlab Programming language
	4.5.7. Python Programming Language
	4.5.8. Java Programming Language

	5. COMPATIBILITY WITH PREVIOUS VERSIONS
	5.1. Migrating from OSFI 3.4 to 3.5
	5.1.1. All/multiple Languages
	Removal of support for attribute “ndims” (all languages)
	Parameter constructors now take different argument types (all languages)
	Scalar parameters now have zero dimensions (all languages)
	Xerces-C++ is now used privately (C++/FFI, C, Fortran)

	5.1.2. C++
	Internal files and classes removed from public interface
	Xerces-C++ headers are no longer included by OSFI headers

	5.1.3. C
	Removed some included headers from OSFIC.h, added include guard
	Bugfix in matrix getters output arguments for sizes

	5.1.4. Fortran
	5.1.5. Java
	Renaming of OSFI package
	Parameter returns primitive arrays where appropriate
	New API for ARRAY-typed variables
	Collection classes replaced by interfaces in API
	Internal classes and methods removed from public interface

	5.1.6. Python
	Removal of the duplicated “constructor” in Parameter
	Parameter constructor arguments renamed
	Getters for scalar values now return None on failure
	New API for ARRAY-typed variables
	The getValue function now returns the parsed value

	5.1.7. Matlab
	New Parameter parsing engine: removal of N/A and str2num usage
	New Parameter parsing engine: types of values
	New API for ARRAY-typed variables

	5.2. Migrating from OSFI 3.5 to 3.6
	5.2.1. All/multiple languages
	CLP can now return special missing values for configuration files
	Reorganization of “include” type files

	5.2.2. C++
	CLP getter methods are now const-qualified

	5.2.3. C
	5.2.4. Fortran
	5.2.5. Java
	Support for Java 7 dropped (in v3.5.5)
	Removal of “stream” methods in Logger

	5.2.6. Python
	Support for Python 2 dropped (in v3.5.4)
	Non-package based imports are deprecated

	5.2.7. Matlab
	Support for Matlab R2018b or earlier is deprecated
	Function-based queries to CLP are deprecated

	5.3. Migrating from OSFI 3.6 to 3.7
	5.4. Migrating from OSFI 3.7 to 3.8
	5.4.1. All/multiple languages
	Reference environments updated

	5.4.2. Java
	Deprecation of internal function

	5.4.3. Python
	Support for Python 3.6 dropped

	5.5. Migrating from OSFI 3.8 to 3.9
	5.5.1. All/multiple Languages
	Deprecation of function “getName” (all languages)

	5.5.2. C++
	DynamicArray API modified for safety

	5.5.3. Matlab
	Logger constructor parameter deprecated

	5.6. Migrating from OSFI 3.9 to 3.10
	5.6.1. All/multiple languages
	Incompatible bugfixes in Parameter.getDims

	5.6.2. C
	New CLP API
	New ConFM API

	5.6.3. Python
	Incompatible bugfix in Parameter.getPath

	5.6.4. Matlab
	Incompatible change in Parameter.getMin/getMax

	END OF DOCUMENT

