

DEIMOS Space S.L.U.

Ronda de Poniente, 19, Edificio Fiteni VI, 2-2ª

28760 Tres Cantos (Madrid), SPAIN

Tel.: +34 91 806 34 50 / Fax: +34 91 806 34 51

E-mail: deimos@deimos-space.com

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

OOppeenn SSiimmuullaattiioonn FFrraammeewwoorrkk

ooppeennSSFF

AARRCCHHIITTEECCTTUURRAALL DDEESSIIGGNN DDOOCCUUMMEENNTT

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

 Name Function Signature

Prepared by

Enrique del Pozo Technical Manager

Rui Mestre Project Engineer

Reviewed by Ricardo Moyano Review Team

Approved by Ricardo Moyano Project Manager

Signatures and approvals on original

mailto:deimos@space.com?subject=Deimos%20Space

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 2 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

This page intentionally left blank

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 3 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

DDooccuummeenntt IInnffoorrmmaattiioonn

Contract Data

Contract Number: 22852/09/NL/FF

Contract Issuer: ESA/ESTEC

Internal Distribution

Name Unit Copies

Jose Antonio González Abeytua Head of the Earth Observation
Systems Business Unit

1

Ricardo Moyano Earth Observation Systems
Business Development

1

Enrique del Pozo Earth Observation Systems 1

Rui Mestre Earth Observation Systems 1

Internal Confidentiality Level (DMS-COV-POL05)

Unclassified  Restricted  Confidential 

External Distribution

Name Organisation Copies

Raffaella Franco ESA/ESTEC 1

Lavinia Fabrizi ESA/ESTEC 1

Paolo Bensi ESA/ESTEC 1

Archiving

Word Processor: MS Word 2000

File Name: openSF-DMS-ADD-001-22.doc

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 4 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

DDooccuummeenntt SSttaattuuss LLoogg

Issue Change description Date Approved

1.0 First issue of this document 21/12/2009

1.1 Updated according to RID discussion during AR1. The
following RIDs have been responded:

 OSF-AR1-20: Formatting of section 3.1.1.1, in what
respects to the list of model elements.

 OSF-AR1-20: Formatting of Figure 5-17

15/03/2010

1.2 Updated for openSF version 2.0

 Removed Instrument concept

 Added architecture details about the openSF multi-
repository capabilities.

 Added Parameter Editor design

30/06/2010

1.3 Update after openSF v2.0 PDR 15/09/2010

1.4 Update after openSF AR 2

 Added new section for OSFI architecture

 Added diagram showing high level architecture of
openSF and applications related.

12/11/2010

2.0 Updated for openSF V3.0 PDR:

 Added section 5.4 regarding Parallel Processing;

 Added section 3.2.5 covering the design patterns used
to support the parallel processing design;

 Added section 8 on OSFEG – openSF Error

Generation Libraries;

 Added section 5.6 covering the Design approach for

openSF V3 additional functionalities (for the
remaining requirements);

 Added section 5.7 reflecting the Migration to openSF

V3 approach.

18/04/2013

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 5 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

2.1 Update after ESA comments on openSF v3.0 PDR

 Updated section 5.4.1 with details on the precautions
model developers should have for ensuring that
models are parallelizable;

 Added section 5.6.7 with the approach to Simplify
session file and directory names.

 Updated section 5.6.1.5 with a more accurate
definition of a Session for openSF v3.0.

05/06/2013

2.2 Updated after ESA comments on openSF v3 AR meeting.

Implemented the following RIDS:

 OSF-AR3-09: Updated section 8.3.2 with a reference
to the error functions in the SRD;

 OSF-AR3-RF-07: Updated section 4.1 adding the
openSF architecture evolutions through the different
framework versions.

15/01/2014

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 6 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

TTaabbllee ooff CCoonntteennttss

1. Introduction __ 16

1.1. Purpose __ 16

1.2. Scope __ 16

1.3. Document Structure __ 16

1.4. Acronyms and Abbreviations __ 17

1.5. Definitions __ 18

2. Related Documents __ 21

2.1. Applicable Documents __ 21

2.2. Reference Documents __ 21

2.3. Standards __ 22

3. Design Standards __ 23

3.1. UML __ 23

3.1.1. Types of diagrams ___ 23

3.1.1.1. Class diagrams __ 23

3.1.1.2. Sequence diagrams ___ 24

3.2. Design Patterns__ 24

3.2.1. Singleton Pattern __ 25

3.2.2. Factory Pattern ___ 25

3.2.3. Prototype Pattern __ 26

3.2.4. Model-View-Controller Pattern __ 27

3.2.5. Producer-Consumer Problem __ 28

3.2.5.1. Scheduler design pattern ___ 28

3.2.5.2. Producer-consumer design pattern ___ 28

3.2.5.3. Thread Pool design pattern ___ 28

3.3. XML Grammar ___ 30

4. Design Overview __ 31

4.1. Transition from the former to the openSF architecture _________________________________ 32

4.1.1. Architecture Evolution ___ 32

4.1.1.1. openSF 2.0 evolutions __ 33

4.1.1.2. openSF 2.2 evolutions __ 33

4.1.1.3. openSF 3.0 evolutions __ 33

4.2. Functional Requirements ___ 34

4.3. Process View __ 35

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 7 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

4.3.1. Models and simulations ___ 35

4.3.2. Session __ 35

4.3.3. Product tool __ 36

4.3.4. Multiple Simulation Repository __ 36

4.4. Deployment View __ 37

5. System Design __ 39

5.1. Design Method __ 39

5.2. System Decomposition __ 39

5.2.1. application ___ 40

5.2.2. mmi __ 41

5.2.2.1. presentation ___ 42

5.2.2.1.1. images ___ 44

5.2.2.2. controller ___ 45

5.2.2.2.1. domainConnectors __ 45

5.2.3. domain __ 47

5.2.3.1. managers ___ 49

5.2.3.2. elements ___ 53

5.2.4. database ___ 54

5.3. Session Execution Components Description __ 60

5.3.1. SessionMgr __ 61

5.3.1.1. Type __ 61

5.3.1.2. Purpose __ 61

5.3.1.3. Function ___ 61

5.3.1.4. Super-class ___ 62

5.3.1.5. Dependencies ___ 62

5.3.1.6. Interfaces __ 62

5.3.2. SessionExecutor __ 62

5.3.2.1. Type __ 62

5.3.2.2. Purpose __ 62

5.3.2.3. Function ___ 62

5.3.2.4. Super-class ___ 62

5.3.2.5. Dependencies ___ 62

5.3.2.6. Interfaces __ 63

5.3.3. ModelChainExecutor __ 63

5.3.3.1. Type __ 63

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 8 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

5.3.3.2. Purpose __ 63

5.3.3.3. Function ___ 63

5.3.3.4. Super-class ___ 64

5.3.3.5. Dependencies ___ 64

5.3.3.6. Interfaces __ 64

5.3.4. Logger __ 65

5.3.4.1. Type __ 65

5.3.4.2. Purpose __ 65

5.3.4.3. Function ___ 65

5.3.4.4. Super-class ___ 65

5.3.4.5. Dependencies ___ 65

5.3.4.6. Interfaces __ 65

5.3.5. IOMgr __ 65

5.3.5.1. Type __ 65

5.3.5.2. Purpose __ 66

5.3.5.3. Function ___ 66

5.3.5.4. Super-class ___ 66

5.3.5.5. Dependencies ___ 66

5.3.5.6. Interfaces __ 66

5.3.6. ToolMgr __ 66

5.3.6.1. Type __ 66

5.3.6.2. Purpose __ 67

5.3.6.3. Function ___ 67

5.3.6.4. Super-class ___ 67

5.3.6.5. Dependencies ___ 67

5.3.6.6. Interfaces __ 67

5.4. Parallel Processing ___ 68

5.4.1. OpenSF Multicore Adaptation ___ 68

5.4.1.1. Precautions to ensure safe model parallelization __________________________________ 69

5.4.2. Parallel Model Execution Components Description ___________________________________ 71

5.4.3. ParallelScheduler __ 72

5.4.3.1. Type __ 72

5.4.3.2. Purpose __ 72

5.4.3.3. Function ___ 72

5.4.3.3.1. Related functional issues ___ 72

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 9 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

5.4.3.4. Super-class ___ 72

5.4.3.5. Dependencies ___ 73

5.4.3.6. Interfaces __ 73

5.4.4. ParallelEventManager __ 73

5.4.4.1. Type __ 73

5.4.4.2. Purpose __ 73

5.4.4.3. Function ___ 73

5.4.4.4. Super-class ___ 73

5.4.4.5. Dependencies ___ 73

5.4.4.6. Interfaces __ 73

5.4.5. ExecutionModelSet __ 74

5.4.5.1. Type __ 74

5.4.5.2. Purpose __ 74

5.4.5.3. Function ___ 75

5.4.5.4. Super-class ___ 75

5.4.5.5. Dependencies ___ 75

5.4.5.6. Interfaces __ 75

5.4.6. ModelExecutionThreadMgr ___ 76

5.4.6.1. Type __ 76

5.4.6.2. Purpose __ 76

5.4.6.3. Function ___ 76

5.4.6.4. Super-class ___ 76

5.4.6.5. Dependencies ___ 76

5.4.6.6. Interfaces __ 76

5.4.7. ModelExecutionThread ___ 76

5.4.7.1. Type __ 76

5.4.7.2. Purpose __ 76

5.4.7.3. Function ___ 77

5.4.7.4. Super-class ___ 77

5.4.7.5. Dependencies ___ 77

5.4.7.6. Interfaces __ 77

5.4.8. ModelExecutionThreadSet __ 77

5.4.8.1. Type __ 77

5.4.8.2. Purpose __ 77

5.4.8.3. Function ___ 78

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 10 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

5.4.8.4. Super-class ___ 78

5.4.8.5. Dependencies ___ 78

5.4.8.6. Interfaces __ 78

5.4.9. ThreadPool __ 78

5.4.9.1. Type __ 78

5.4.9.2. Purpose __ 78

5.4.9.3. Function ___ 78

5.4.9.4. Super-class ___ 78

5.4.9.5. Dependencies ___ 79

5.4.9.6. Interfaces __ 79

5.5. Graphical User Interface Design ___ 79

5.5.1. Window Design ___ 80

5.5.2. GUI Standards __ 82

5.5.3. Components, Libraries and Tools ___ 82

5.5.4. Generic Functions, Dialogues and Displays ___ 82

5.6. Design approach for openSF V3 additional functionalities ______________________________ 84

5.6.1. Framework revision for flexible session management _________________________________ 84

5.6.1.1. Simplification of the management of the model chains _____________________________ 84

5.6.1.2. Select model versions for a simulation execution _________________________________ 84

5.6.1.3. Bypass/switch-off models __ 85

5.6.1.4. Rerun a session from a previous point __ 85

5.6.1.5. Flexible session management design approach ___________________________________ 85

5.6.2. Removal of logs from database ___ 86

5.6.3. Removing intermediate data during simulation execution ______________________________ 86

5.6.4. Capability to copy elements ___ 87

5.6.5. Export capability __ 87

5.6.6. Defining openSF elements externally __ 88

5.6.6.1. Importing external definitions __ 88

5.6.6.2. Defining elements – XML file format __ 88

5.6.7. Simplify session file and directory names ___ 89

5.7. Migration to openSF V3 __ 90

6. OpenSF Parameter Management System __ 91

6.1. Parameter Editor Overview ___ 91

6.2. Parameter management system __ 91

6.2.1. Parameter Rules - Grammar Definition ___ 91

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 11 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

6.2.2. Parameter Editor __ 92

6.2.3. Road from S3-OSPS to openSF __ 92

6.3. Parameter Editor – Design Overview ___ 92

6.3.1. Parameter Editor - Functional Requirements __ 93

6.4. Parameter Editor – System Design__ 94

6.4.1. Design Method ___ 94

6.4.2. System Decomposition ___ 94

6.4.2.1. domain __ 96

6.4.2.1.1. Parameter ___ 97

6.4.2.1.1.1. Type __ 97

6.4.2.1.1.2. Purpose ___ 97

6.4.2.1.1.3. Function ___ 97

6.4.2.1.1.4. Dependencies ___ 97

6.4.2.1.1.5. Interfaces __ 97

6.4.2.1.2. RulesInterface ___ 98

6.4.2.1.2.1. Type __ 98

6.4.2.1.2.2. Purpose ___ 98

6.4.2.1.2.3. Function ___ 98

6.4.2.1.2.4. Dependencies ___ 98

6.4.2.1.2.5. Interfaces __ 98

6.4.2.2. manager __ 100

6.4.2.3. view ___ 100

6.4.3. GUI design ___ 101

7. OSFI – openSF Integration Libraries __ 103

7.1. Introduction ___ 103

7.2. Integration Libraries Design __ 104

7.2.1. CLP ___ 104

7.2.2. EHLog ___ 105

7.2.3. ConFM __ 105

7.3. OSFI Other programming languages __ 106

7.3.1. OSFI wrappers – C, Fortran 90 and Fortran 77 ______________________________________ 106

7.3.2. OSFI Matlab __ 107

7.3.2.1. OpenSF Integration: Executing Matlab models __________________________________ 108

7.3.3. OSFI IDL __ 108

7.3.3.1. idl-model __ 109

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 12 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

7.3.3.2. OpenSF Integration: Executing IDL models ____________________________________ 109

8. OSFEG – openSF Error Generation Libraries ______________________________________ 111

8.1. Error generation libraries overview __ 111

8.2. Error generation libraries architecture ___ 111

8.3. OpenSF error generation libraries specification ______________________________________ 112

8.3.1. Error definition files __ 112

8.3.2. Error Functions __ 112

8.4. Error Generation Libraries Design __ 112

8.4.1. ErrorSources __ 112

8.4.2. Error Functions __ 114

9. Traceability Matrixes ___ 116

9.1. Direct Traceability __ 116

9.2. Inverse Traceability ___ 121

LLiisstt ooff TTaabbllees

Table 1: Applicable documents ... 21

Table 2: Reference documents .. 21

Table 3: Standards ... 22

Table 4: List of operations of the ModelMgr class.. 50

Table 5: List of operations of the SimMgr class.. 51

Table 6: List of operations of the SessionMgr class .. 51

Table 7: List of operations of the Database class .. 55

Table 8: List of operations of the ConnectionControl class .. 59

Table 9: List of SessionExecutor class operations .. 63

Table 10: List of operations in ModelChainExecutor class interface .. 64

Table 11: List of operations of the Logger class ... 65

Table 12: list of IOMgr class public operations .. 66

Table 13: list of ToolMgr class public operations ... 67

Table 14: List of ParallelScheduler class public operations .. 73

Table 15: List of ParallelEventManager class public operations .. 74

Table 16: List of operations in ExecutionModelSet class public interface ... 75

Table 17: List of operations in ModelExecutionThreadMgr class public interface .. 76

Table 18: List of operations in ModelExecutionThread class public interface ... 77

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 13 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Table 19: List of operations in ModelExecutionThreadSet class public interface .. 78

Table 20: List of operations in ThreadPool class public interface .. 79

Table 21: list of Parameter class public operations ... 97

Table 22: list of RulesInterface public operations ... 98

Table 23: Direct Traceability Table ... 116

Table 24: Inverse Traceability Table ... 121

LLiisstt ooff FFiigguurreess

Figure 3-1: Class diagram ... 23

Figure 3-2: Singleton pattern example .. 25

Figure 3-3: Factory Pattern example ... 26

Figure 3-4 Prototype pattern example ... 26

Figure 3-5: A simple diagram depicting the relationship between the Model, View, and Controller 27

Figure 3-6 Thread Pool pattern example ... 29

Figure 4-1: openSF High Level Architecture .. 32

Figure 4-2: Use cases diagram... 34

Figure 4-3: Sequence of simulation stages .. 35

Figure 4-4: Session describing a sequence of simulations .. 36

Figure 4-5: Definition of a processing chain ... 37

Figure 4-6: Definition of a simulation ... 37

Figure 4-7 OpenSF deployment diagram .. 38

Figure 5-1: High-level package diagram ... 39

Figure 5-2: openSF.application class diagram .. 41

Figure 5-3: openSF.mmi package diagram .. 42

Figure 5-4: openSF.mmi.presentation package diagram ... 43

Figure 5-5: openSF.mmi.presentation package class diagram .. 44

Figure 5-6: openSF.mmi.controller package diagram ... 45

Figure 5-7: openSF.controller.domainConnectors package class diagram .. 46

Figure 5-8: openSF.domain package diagram ... 48

Figure 5-9: openSF.domain class diagram .. 49

Figure 5-10: openSF.domain.managers class diagram .. 50

Figure 5-11: openSF.domain.elements Class Diagram ... 54

Figure 5-12: openSF.database class diagram .. 55

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 14 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 5-13: Database diagram.. 60

Figure 5-14: SessionMgr class diagram .. 61

Figure 5-15: ModelChainExecutor class hierarchy for parallel model execution ... 71

Figure 5-16: Main window appearance ... 80

Figure 5-17: Main window appearance showing internal frames and scroll panel ... 81

Figure 5-18: Detail of main menu bar ... 81

Figure 5-19: Detail of a menu, showing menu items ... 81

Figure 5-20: Detail of a contextual menu .. 82

Figure 5-21: File chooser dialogue .. 83

Figure 5-22: Dialogue example ... 83

Figure 5-23 Simple model chain ... 84

Figure 5-24 Model chain with different model versions ... 84

Figure 5-25 Run simulation from Model B ... 85

Figure 5-26: Removing intermediate data of a simulation .. 87

Figure 6-1: Parameter Editor high level use cases... 93

Figure 6-2: Parameter Editor High Level Architecture diagram ... 95

Figure 6-3: openSFpms.domain packages diagram ... 96

Figure 6-4: openSFpms.parameter class diagram .. 98

Figure 6-5: openSFpms.domain.rules class diagram ... 99

Figure 6-6: openSFpms.manager packages diagram ... 100

Figure 6-7: openSFpms.view packages diagram ... 101

Figure 6-8: Parameter Editor draft interface .. 102

Figure 6-9: Rule Editor draft interface .. 102

Figure 7-1: OSFI Integration with openSF .. 103

Figure 7-2: OSFI common packages ... 104

Figure 7-3: CLP class diagram .. 104

Figure 7-4: Logger class diagram .. 105

Figure 7-5: ConFM class diagram ... 106

Figure 7-6: OSFI wrapper, implementation diagram .. 107

Figure 7-7: OSFI Matlab Implementation diagram ... 108

Figure 7-8: Matlab Model Execution .. 108

Figure 7-9: OSFI IDL implementation diagram .. 109

Figure 7-10: IDL model execution modes. .. 110

Figure 8-1: OSFEG deployment .. 111

Figure 8-2: OSFEG main packages ... 112

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 15 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 8-3: ErrorSources class diagram .. 113

Figure 8-4: Analytical hierarchy class diagram ... 114

Figure 8-5: RandomFunctions hierarchy class diagram .. 115

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 16 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

11.. IINNTTRROODDUUCCTTIIOONN

11..11.. PPuurrppoossee

This is the Architectural Design Document (ADD) for the openSF project as derived from the system

requirements identified in [AD-SRD], and contains:

 Specification and introduction to design standards used for openSF.

 Description of the top-level architecture of openSF.

 Description of the major components of the system.

 Forward and inverse traceability matrices between ADD components and system requirements.

OpenSF has been developed using UML for modelling and Java as programming language. In addition

it shall support models/algorithms written in C/C++, FORTRAN 77/90, Matlab or IDL.

11..22.. SSccooppee

The scope of openSF is to provide scientific users a framework that eases the orchestration and

integration process of algorithm models within a complete E2E simulation chain:

 Consolidate the software engineering approach and architecture coming from the former ECSIM

framework.

 Complete and improve the framework documentation.

This document shows all the software design issues for the development of openSF in response to the

user requirements as defined in the Statement of Work [AD-SoW], and all related documentation.

This document is produced as part of the Acceptance Review (AR) Data Package. Therefore, it is

applicable to the project from the AR onwards.

11..33.. DDooccuummeenntt SSttrruuccttuurree

The document is structured as follows:

 Section 1 contains this introduction.

 Section 2 contains the list of applicable and reference documents, as well as the applicable standards

to the project.

 Section 3 explains the design standards that shall be adopted for the architectural design. Here are

presented the class diagrams and design patterns that are used in the next sections.

 Section 4 defines some useful general concepts to understand the solution reached in this moment of

the design process. Overall, openSF is composed by models, simulations and sessions. Note that

there is a logic sequence: simulations are made of models and sessions are made of simulations.

 Section 5 is a brief description of the system and its relationship with the surrounding components,

that is, to provide a view of the system in its context.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 17 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

 Section 6 explains the design of the Parameter Editor. This tool is aimed to ease the simulation

definition and to provide a consistency checking mechanism prior launching the simulation chain.

This section also contains a detailed architecture description of this openSF optional component.

This software application has been developed in the frame of the Sentinel 3 Optical Simulator

project (S3-OSPS contract TAS-F-1550001670).

 Section 7 contains the architecture design of the openSF Integration Libraries, OSFI from now on.

 Section 8 contains the architecture design of the openSF Error Generation Libraries, OSFEG from

now on;

 Section 9 contains the forward and backward traceability matrices mapping system requirements

with software architectural components identified in the previous section.

Through this document every term or component concerning the openSF software solution is written in

italics to better sign them up.

11..44.. AAccrroonnyymmss aanndd AAbbbbrreevviiaattiioonnss

The acronyms and abbreviations used in this document are the following ones:

Acronym Description

AD
Architectural Design

Applicable Document

ADD Architectural Design Document

API Application Programming Interface

AR
Acceptance Review

Analysis of Requirements

CM
Configuration Management

Configuration Manager

COTS Commercial Off-The-Shelf

DBMS Database Management System

DMS DEIMOS Space

E-R Entity Relationship

GUI Graphical User Interface

I/F Interface

I/O Input/Output

ICD Interface Control Document

MDI Multiple Document Interface

MMI Man-Machine Interface

OO Object-Oriented

OOAD Object-Oriented Analysis and Design

OOP Object-Oriented programming

PMS Parameter Management System

RD Reference Document

SCVR Software Code Verification Report

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 18 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Acronym Description

SDD Software Design Definition (Document)

SOW Statement Of Work

SPR Software Problem Report

SR Software Requirements

SRD Software Requirements Document

ST System Test

SUM System User Manual

SVTS Software Validation Test Specification

SVVP Software Verification & Validation Plan

SW Software

TBC To Be Confirmed

TBD To Be Defined / Decided

TN Technical Note

UML Unified Modelling Language

VTS Verification/Validation Test Specification

VTP Verification/Validation Test Procedure

VTR Verification/Validation Test Report

V&V Verification & Validation

11..55.. DDeeffiinniittiioonnss

The definitions of the specific terms used in this document are the following ones:

Definition Meaning

Batch mode It is the capability of the simulator to perform consecutive runs without continuous

interactions with the user. Batch mode checks the agreement or not between the

output of a given module and the input by the next one in the sequence of the

simulation. Several modes of executions can be performed:

 Iteratively, executing one or more simulations

 Iteratively, executing the same simulation several times depending on the

parameters configuration

 Same as above but by executing a batch script.

Configuration

File

A small XML file that contains all the parameters necessary to execute a model. A

configuration file instance must comply with the corresponding XML schema

defined at model creation time.

Framework Software infrastructures designed to support and control the simulation definition

and execution. It includes the GUI, domain and database capabilities that enable to

perform all the functionality of the simulator.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 19 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Definition Meaning

Model Executable entity that can take part in a simulation. A model can be understood,

broadly speaking, also as an “algorithm”. Basically, it contains the recipe to produce

products function of inputs. A model contains also several rules to define the input,

output and associated formats. Furthermore, its behaviour is controlled by one

configuration file. Overall, the architecture of a model consists of:

 The source code and its binary compiled counterpart

 A configuration file with its parameters

 An input file that characterizes its inputs

 An output file that characterizes its outputs

Models are not considered part of the framework.

Namespace A logic entity used by the openSF Parameter Editor to specify a new parameter

group. The number of namespaces in a configuration file is not limited but it is

mandatory to specify at least one (XML root tag).

Namespaces are specified as XML tags within a rules/configuration file.

OSFI To integrate an external model into openSF, the models need to fulfill a series of

interface requirements. The Open Simulation Framework Integration Libraries (OSFI

from now on) will be used to ease the integration of models into the framework.

The Integration Libraries activity will provide the model developer with a set of

routines with a well-defined public interface hiding the implementation details. This

set of routines is currently available in C++, ANSI C, Fortran 90 and 77, Matlab

scripting language and IDL.

Parameter A constant whose value characterizes a given particularity of a model. Parameters

are user-configurable, they are fixed before launching a model and, for practical

reasons, and not all of them shall be accessible from the HMI.

Repository Set of entities involved in a single simulation chain. The entities found within a

repository are descriptors, stages, parameters, models, sessions, simulations and

tools. As functionality since openSF version 2, users can switch between different

mission repositories within the same openSF instance.

Rule A constraint or relationship applied to the parameters involved in a simulation chain.

This entity is used to ensure the parameter consistency before executing a simulation

chain.

Session A session is defined as an execution of a simulation, an ordered set of simulations or

an iterative execution of simulation(s) with different parameter values. There are no

restrictions on how to concatenate these simulations, they do not have to be

compatible between them but, if necessary, the final output files of a simulation can

be used by the following simulation.

Simulation A simulation is understood as a list of models (or even a model alone) that is run

sequentially and produces observable results.

Stage Entity that defines a phase in a simulation process. The stage order definition specifies

the logic of the simulation sequence so a model must have associated a stage and a

simulation will run the models of a stages series.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 20 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Definition Meaning

Tool A tool is an external executable file that performs a given action to a certain group of

files. Used into the openSF platform and associated to a certain file extension these

tools can be called to perform off-line operations to products involved in simulations.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 21 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

22.. RREELLAATTEEDD DDOOCCUUMMEENNTTSS

22..11.. AApppplliiccaabbllee DDooccuummeennttss

The following table specifies the applicable documents that shall be complied with during project

development.

Table 1: Applicable documents

Reference Code Title

[AD-SRD] openSF-DMS-SRD-001 OpenSF System Requirements Document

[AD-SUM] openSF-DMS-SUM-001 OpenSF System User Manual

[AD-ICD] openSF-DMS-ICD-001 OpenSF Interface Control Document

[AD-SVS] openSF-DMS-SVS-001 OpenSF System Validation Specification

[AD-SoW] EOP-SFP/2009-07-1404/MAr Statement of Work for the OpenSF end-to-end

Simulation Framework Maintenance

[AD-CCN1] EOP-SFP/2012-12-1686/PB/ag Change Request for the openSF V3 activities

description.

22..22.. RReeffeerreennccee DDooccuummeennttss

The following table specifies the reference documents that shall be taken into account during project

development.

Table 2: Reference documents

Reference Code Title Issue

[RD UML] ISBN 0-201-57168-4 The Unified Modelling Language User Guide,

Grady Booch, James Rumbaugh, Ivar Jacobson.

-

[RD ECSIM

ICD]

ECSIM-DMS-TEC-ICD01-R EarthCARE Simulator Interface Control

Document

-

[RD-OSFI-DM] OSFI-DMS-TEC-DM OpenSF Integration Libraries Developers Manual -

[RD GOF] ISBN 0-201-63361-2 Design Patterns: Elements of Reusable Object-

Oriented Software. E. Gamma, R. Helm, R.

Johnson and J. Vlissides

-

[RD SWING] http://java.sun.com/javase/technol

ogies/desktop/

JAVA SWING technologies overview -

[RD SWING

API]

http://java.sun.com/j2se/1.6.0/docs

/guide/swing/

JAVA SWING API specifications -

http://java.sun.com/javase/technologies/desktop/
http://java.sun.com/javase/technologies/desktop/
http://java.sun.com/j2se/1.6.0/docs/guide/swing/
http://java.sun.com/j2se/1.6.0/docs/guide/swing/

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 22 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Reference Code Title Issue

[RD GAL

MMI]

GAL-TD-GLI-SYST-A/1070 Guidelines for the development of man/machine

interfaces for GALILEO applications

1

22..33.. SSttaannddaarrddss

The following table specifies the standards that shall be complied with during project development.

Table 3: Standards

Reference Code Title Issue

[ECSS-E40C] ECSS-E-ST-40C Space engineering - Software 3 - 6 March

2009

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 23 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

33.. DDEESSIIGGNN SSTTAANNDDAARRDDSS

33..11.. UUMMLL

The Unified Modelling Language (UML) has quickly become the de-facto standard for building Object-

Oriented software.

UML is a graphical language for visualizing, specifying, constructing, and documenting the artefacts of

a software-intensive system. UML offers a standard way to write a system’s blueprints, including

conceptual aspects such as business processes and system functions as well as concrete aspects such as

programming language statements, database schemas, and reusable software components.

The main diagrams used in UML are described in the following sections, and in particular, in the design

of openSF. For more information the reader is referred to any of the books and Internet links available in

the extensive documentation about UML.

33..11..11.. TTyyppeess ooff ddiiaaggrraammss

33..11..11..11.. CCllaassss ddiiaaggrraammss

Class diagrams are widely used to describe the types of objects in a system and their relationships. They

model class structure and contents using design elements such as classes, packages and relationships.

The Class Model is at the core of object-oriented development and design – it expresses both the

persistent state and the behaviour of the system. A class encapsulates a state (attributes) and offers

services called methods to manipulate that state (behaviour). Good object-oriented designs limit direct

access to class attributes and offers services, which manipulate attributes on behalf of the caller. This

hiding of data and exposing of services ensures data updates are only done in one place and according to

specific rules – for large systems the maintenance burden of code which has direct access to data

elements in many places is extremely high.

The top compartment contains the class name; if the class is abstract the name is italicised. The middle

compartment contains the class attributes. The bottom compartment contains the class methods (also

called operations). Like the class name, if a method is abstract, its name is italicised. Depending on the

level of detail desired, it is possible to omit the properties and show only the class name and its methods,

or to omit both the properties and methods and show only the class name. This approach is illustrated in

the figure below, whose initial version was already presented in Figure 3-1.

Figure 3-1: Class diagram

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 24 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Class diagrams can consist of the following model elements:

 Packages. They are used to structure the model. They can also be placed into class diagrams to

show this hierarchy more explicitly. Classes can then be nested inside them. Or they can exclusively

be used in a diagram to express the interdependencies of packages.

 Dependencies between packages. This expresses that could be classes within a package using

classes from the package it depends on.

 Classes. Classes are the most important concept of object-orientation and as well as of UML.

Classes hold operations and attributes and have relations to other classes via association or

inheritance relations. It has a few properties of its own like its name, a stereotype and a visibility, but

the more important aspect is its relation to other classes.

 Inheritance relations. Between interfaces or between classes. This is not allowed between an

interface and a class. A class can inherit properties and operations from a parent class or super-class.

 Implementation relations. Only between interfaces and classes.

 — Association relations. Associations are relations between classes. This type of relations can be

specialized to an aggregation or a composition.

33..11..11..22.. SSeeqquueennccee ddiiaaggrraammss

Sequence diagrams represent a dynamic view of the system, showing object interaction in a time-based

sequence of calls to methods provided by objects. They are used to cover all the operations offered to

the user through the use cases. The operations exchanged in sequence diagrams are provided by objects

(classes) represented in class diagrams.

A sequence diagram therefore shows a sequence of operation usage between class instances presenting

how operations exported by class instances are used in a timely manner. It is constituted by:

 Objects (shown as a box plus a vertical bar) must correspond to instances of classes from the class

usage diagram.

 Events (shown as a horizontal arrow) have to correspond to provide operations according to usage

associations in the class usage diagram. Operations are labelled with the operation name used from

the corresponding object.

33..22.. DDeessiiggnn PPaatttteerrnnss

Design patterns form a cohesive language that can be used to describe classic solutions to common

object-oriented design problems. By using design patterns to solve programming problems, the proper

perspective on the design process can be maintained.

The Gang of Four described in [RD GOF] patterns as "a solution to a problem in a context". These three

things – problem, solution, and context – are the essence of a pattern. For documenting the pattern it is

additionally useful to give the pattern a name, to consider the consequences using the pattern will have,

and to provide an example. Different cataloguers use different templates to document their patterns.

Different cataloguers also use different names for the different parts of the pattern. Each catalogue also

varies somewhat in the level of detail and analysis devoted to each pattern.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 25 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

The design of openSF makes only use of creational patterns, which prescribe the way objects are

created. These patterns are used when a decision must be made at the time a class is instantiated.

Typically, the details of the classes that are instantiated – what exactly are they, how, and when they are

created – are encapsulated by an abstract super-class and hidden from the client class, which knows only

about the abstract class or the interface it implements. The specific type of the concrete class is typically

unknown to the client class.

The design patterns used in the design of this System are expressed as stereotypes in the UML form.

33..22..11.. SSiinngglleettoonn PPaatttteerrnn

The singleton design pattern is used to restrict instantiation of a class to only one object. This is useful

when exactly one object is needed to coordinate actions across the system. Sometimes it is generalized

to systems that operate more efficiently when only one or a few objects exist.

Singleton

-sing leton : Singleton

-Singleton() : Sing leton

+getInstance() : Sing leton

+doSomething ()

Figure 3-2: Singleton pattern example

The singleton pattern is implemented by creating a class with a method that creates a new instance of

the object if one does not exist. If an instance already exists, it simply returns a reference to that object.

To make sure that the object cannot be instantiated any other way, the constructor is made either private

or protected. Note the distinction between a simple static instance of a class and a singleton. Although a

singleton can be implemented as a static instance, it can also be lazily constructed, requiring no memory

or resources until needed.

The singleton pattern must be carefully constructed in multi-threaded applications. If two threads are to

execute the creation method at the same time when a singleton does not yet exist, they both must check

for an instance of the singleton and then only one should create the new one. If the programming

language has concurrent processing capabilities the method should be constructed to execute as a

mutually exclusive operation.

An example for the usage of this pattern shall be the Logger class, where different classes need to access

to the same log session when reporting the simulation messages during the session execution.

33..22..22.. FFaaccttoorryy PPaatttteerrnn

In addition to the Singleton pattern, another common example of a creational pattern is the Factory

Method. This pattern is used when it must be decided at run-time which one of several compatible

classes is to be instantiated.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 26 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 3-3: Factory Pattern example

33..22..33.. PPrroottoottyyppee PPaatttteerrnn

The Prototype design pattern consists on the cloning of an object avoiding the creation of it. This pattern

is used when the cost of creating a new object is large and the clone of it is preferred.

Regarding the development of the framework this design pattern has been used in the visualization

package when domain elements need to be edited or visualized and the cost of creation is large as it

implies a SQL transaction.

Figure 3-4 shows a diagram illustrating a simple example that makes use of this design pattern.

Figure 3-4 Prototype pattern example

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 27 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

33..22..44.. MMooddeell--VViieeww--CCoonnttrroolllleerr PPaatttteerrnn

Model-View-Controller (MVC) is a design pattern used in software engineering. In complex computer

applications that present lots of data to the user, one often wishes to separate data (Model) and user

interface (View) concerns, so that changes to the user interface do not impact the data handling, and that

the data can be reorganized without changing the user interface. The Model-View-Controller design

pattern solves this problem by decoupling data access and business logic from data presentation and user

interaction, by introducing an intermediate component: the Controller.

Figure 3-5: A simple diagram depicting the relationship between the Model, View, and
Controller

The MVC design pattern (aka the MVC paradigm) is one of the oldest described patterns. It is usually

based on top of smaller design patterns used in coordination with each other, such as the Observer

pattern, the Command pattern, the Factory pattern, and the Facade pattern.

It is common to split an application into separate layers: presentation (UI), domain, and data access. In

MVC, the layers become: View (UI), Controller, domain, and data access. The MVC pattern sees

domain and data access as one single component: the Model.

MVC encompasses more of the architecture of an application than is typical for a design pattern. The

components of the MVC pattern are:

 Model: the domain-specific representation of the information on which the application operates.

The model is another name for the domain layer. Domain logic adds meaning to raw data (e.g.,

calculating if today is the user’s birthday, or the totals, taxes and shipping charges for shopping cart

items).

Many applications use a persistent storage mechanism (such as a database) to store data. MVC does

not specifically mention the data access layer because it is understood to be underneath or

encapsulated by the Model component.

 View: renders the model into a form suitable for interaction, typically a user interface element.

MVC is often seen in web applications, where the view is the HTML page and the code which

gathers dynamic data for the page.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 28 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

 Controller: processes and responds to events, typically user actions, and may invoke changes on the

model and view.

Though MVC comes in different flavours, control flow generally works as follows:

1. The user interacts with the user interface in some way (e.g., user presses a button)

2. A controller handles the input event from the user interface, often via a registered handler or call-

back.

3. The controller accesses the model, possibly updating it in a way appropriate to the user's action (e.g.,

controller updates user's shopping cart).

4. A view uses the model to generate an appropriate user interface (e.g., view produces a screen listing

the shopping cart contents). The view gets its own data from the model. The model has no direct

knowledge of the view. (However, the observer pattern can be used to allow the model to indirectly

notify interested parties – potentially including views – of a change.)

5. The user interface waits for further user interactions, which begins the cycle anew.

33..22..55.. PPrroodduucceerr--CCoonnssuummeerr PPrroobblleemm

The producer-consumer problem is a classic example of a multi-process synchronization problem. The

problem describes two processes, the producer and the consumer, who share a common queue. The

producer's job is to generate a piece of data, put it into the buffer and start again. At the same time, the

consumer is consuming the data (i.e., removing it from the buffer) one piece at a time.

The solution for the producer is to either go to sleep or discard data if the buffer is full. The next time

the consumer removes an item from the buffer, it notifies the producer, who starts to fill the buffer

again. In the same way, the consumer can go to sleep if it finds the buffer to be empty. The next time the

producer puts data into the buffer, it wakes up the sleeping consumer. The solution can be reached by

means of inter-process communication, typically using semaphores. An inadequate solution could result

in a deadlock where both processes are waiting to be awakened.

33..22..55..11.. SScchheedduulleerr ddeessiiggnn ppaatttteerrnn

The Scheduler pattern controls the order in which threads are scheduled to execute single threaded code

using an object that explicitly sequences waiting threads. The Scheduler pattern provides a mechanism

for implementing a scheduling policy. It is independent of any specific scheduling policy.

33..22..55..22.. PPrroodduucceerr--ccoonnssuummeerr ddeessiiggnn ppaatttteerrnn

The Producer-Consumer pattern can be viewed as a special form of the Scheduler pattern that has

scheduling policy with two notable features:

 The scheduling policy is based on the availability of a resource.

 The scheduler assigns the resource to a thread but does not need to regain control of the resource

when the thread is done so it can reassign the resource to another thread.

33..22..55..33.. TThhrreeaadd PPooooll ddeessiiggnn ppaatttteerrnn

The general idea for the Thread Pool pattern is to use an object pool whenever there are several clients

who need the same stateless resource which is expensive to create.

Figure 3-6 shows a diagram illustrating a simple example that makes use of this design pattern.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 29 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 3-6 Thread Pool pattern example

The design pattern is composed of the following components:

 Reusable - Instances of classes in this role collaborate with other objects for a limited amount of

time then they are no longer needed for that collaboration;

 Client - Instances of classes in this role use Reusable objects;

 ReusablePool - Instances of classes in this role manage Reusable objects for use by Client objects.

Usually, it is desirable to keep all Reusable objects that are not currently in use in the same object pool

so that they can be managed by one coherent policy. To achieve this, the ReusablePool class is designed

to be a singleton class. Its constructor(s) are private, which forces other classes to call its

getInstance method to get the one instance of the ReusablePool class.

A Client object calls a ReusablePool object’s acquireReusable method when it needs a Reusable

object. A ReusablePool object maintains a collection of Reusable objects. It uses the collection of

Reusable objects to contain a pool of Reusable objects that are not currently in use.

If there are any Reusable objects in the pool when the acquireReusable method is called, it

removes a Reusable object from the pool and returns it. If the pool is empty, then the

acquireReusable method creates a Reusable object if it can. If the acquireReusable method

cannot create a new Reusable object, then it waits until a Reusable object is returned to the collection.

Client objects pass a Reusable object to a ReusablePool object’s releaseReusable method when

they are finished with the object. The releaseReusable method returns a Reusable object to the

pool of Reusable objects that are not in use.

In many applications of the Thread Pool pattern, there are reasons for limiting the total number of

Reusable objects that may exist. In such cases, the ReusablePool object that creates Reusable objects is

responsible for not creating more than a specified maximum number of Reusable objects. If

ReusablePool objects are responsible for limiting the number of objects they will create, then the

ReusablePool class will have a method for specifying the maximum number of objects to be created.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 30 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

33..33.. XXMMLL GGrraammmmaarr

For the implementation of the openSF parameter management system a simple XML grammar is used to

define the rules used as base for the consistency checking.

The definition of a rules grammar in XML language is a standard used in other software fields such as

voice recognition software, translation software, syntax converters, etc. See [RD XML-Grammar] for a

detailed description of these items.

The XML grammar used in the rules definition for consistency checking is depicted in section 6.2.1.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 31 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

44.. DDEESSIIGGNN OOVVEERRVVIIEEWW

This section gives a description of the design solution for this project. It starts with a brief definition of

the openSF system plus some different views of it:

 OpenSF architecture evolution.

 Functional requirements view – emphasizing the functional requirements of the system from the

user's point of view, including some use cases diagrams.

 Process view – highlighting data flow and data processing in the different execution scenarios.

 Deployment view – defining the physical decomposition of the system on the target platform.

The system is decomposed in a hierarchical structure, abstracting different components in levels. This

section continues giving a description of those components, browsing them by levels.

Definition

In the frame of concept and feasibility studies for the Earth Observation (EO) activities, mission

performance in terms of final data products needs to be predicted by means of so-called end-to-end

(E2E) simulators.

A specific mission E2E simulator is able to reproduce all significant processes and steps that impact the

mission performance and gets simulated final data products.

OpenSF is a generic simulation framework product aimed to cope with these major goals. It provides

end-to-end simulation capabilities that allow assessment of the science and engineering goals with

respect to the mission requirements.

Scientific models and product exploitation tools can be plugged in the system platform with ease using a

well-defined integration process.

OpenSF provides a user-friendly framework that allows scientific users to integrate mathematical

algorithms and satellite products within a complete simulation chain.

Figure 4-1 shows a high level diagram of the openSF system and the applications associated to it,

openSF integration libraries and openSF Parameter Editor.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 32 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 4-1: openSF High Level Architecture

44..11.. TTrraannssiittiioonn ffrroomm tthhee ffoorrmmeerr ttoo tthhee ooppeennSSFF aarrcchhiitteeccttuurree

The openSF project is “descendent” of a previous ESA-funded project, called ECSIM, intended to

provide an End-to-end simulator for the EarthCARE mission. OpenSF project must be fully compatible

with the previous ECSIM project, so openSF interfaces are compatible with the ones defined in the

ECSIM project ([RD ECSIM ICD]).

The main issue in openSF was to extract the abstract and re-usable simulation functionalities that

ECSIM simulator had in common with other E2E simulator projects. Beyond this point and after months

of requirements study and functionalities testing, the first operational version of OpenSF was released.

Since the original OpenSF development, it has been (and continue to be) used by other ESA projects

(for example GERSI, AIPC, SEPSO, S3-OGPP/OSPS). For each of those projects OpenSF is adapted in

order to fulfil the project requirements and some of those adaptations and ideas are now part of the

OpenSF “core”. New features are included in OpenSF after a deep examination (consequences,

drawbacks, backward compatibility etc…) performed by the management and development team.

Regarding to the system architecture basically is similar to the approach in the former ECSIM

framework but as mentioned before some aspects have been refined and re-designed in order to make

the framework as much generic as possible. An example of this is the stage concept re-definition, third

party tools manager etc…

44..11..11.. AArrcchhiitteeccttuurree EEvvoolluuttiioonn

This section contains the evolution and changes of openSF from an architectural point of view,

redefinition of concepts, new capabilities, constraints removal, etc...

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 33 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

The [RD ECSIM ICD] describes the initial architecture used as baseline for the first openSF version,

from that point the following sections contain the different changes introduced by each new framework

version.openSF 1.0 evolutions

 Introduction of Stage concept: in ECSIM simulation steps were fixed to Scene, Platform,

Forward, Instrument and Retrieval.

 Introduction of a global configuration file: ECSIM only allowed to specify one single

configuration file per Model. Thanks to AIPC project contribution, a global configuration file

was added, containing the common parameters applicable and available to all models within a

session.

 Removal of ECSIM specific items: Data viewers and post-processing tools.

 OSFI libraries: in the frame of CASPER project a set of libraries were developed for easing

the integration of Models within openSF framework.

44..11..11..11.. ooppeennSSFF 22..00 eevvoolluuttiioonnss

 Multiple databases: in this version the possibility of handling multiple openSF databases,

coping with the possibility of managing different simulators with the same openSF instance.

 ParameterEditor: coming from S3-OSPS project, a new GUI for editing XML configuration

files was introduced.

 Support to new programming languages: initially only Fortran 90, C++ and C were supported.

In version 2.0 the openSF Integration Libraries (OSFI) were migrated also to Fortran77, IDL

and MATLAB programming languages, allowing models developed in those languages to be

easily integrated within openSF.

44..11..11..22.. ooppeennSSFF 22..22 eevvoolluuttiioonnss

 Parameter Perturbation: in openSF v2.2 the main evolution was the addition to the openSF

sensitivity analysis capabilities a set of statistical functions from SEPSO project.

 Related to ParameterPerturbation a new execution mode was introduced, allowing the

execution of one single model a configurable number of times.

44..11..11..33.. ooppeennSSFF 33..00 eevvoolluuttiioonnss

 Parallel Processing: using the Java tools for thread scheduling and synchronization a new

capability was added for executing models in parallel (in different CPU cores).

 Enhanced framework flexibility: coming from the feedback of openSF users a need for

enhancing the flexibility was detected. In previous version there were strong constraints in the

Stage, Simulation and Session definition. A simulation should be a concatenation of models

strictly following the stage order and a session should be formed by one or more simulations. In

openSF v3.0 these restrictions were removed and a session can be formed by simulations

following the stage order (as in previous versions) but also can be an arbitrary concatenation of

of models.

 Removal of Logs from the database: in order to improve the framework performance, log

messages were removed from the openSF database and now are stored in a plain-text file

within the session folder.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 34 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

44..22.. FFuunnccttiioonnaall RReeqquuiirreemmeennttss

This view emphasizes the functional requirements of the system from the user's point of view.

Figure 4-2: Use cases diagram.

Figure 4-2 illustrates the use case diagram for openSF, which presents the context the whole system, and

the actor that interacts with it. In this figure only the most relevant use cases have been depicted and

those are:

 Define a simulation chain: case that is referred to the whole simulation creation process

including input/output, model and simulation chain definition.

 Execute a session: this case covers the session definition and its execution.

 Visualize results: represents the user capabilities for product visualization and result

exploitation.

 Switch simulation scenario: this case represents the user capability to switch between

repositories retrieving different simulation scenarios.

Please notice the “include” dependencies (denoted by a dashed line) between two use-cases means that

the former contains some steps defined in the latter one. For example, in case of the “Execute a session”

and “Schedule Breakpoints” cases, a session can be defined scheduling breakpoints before it is

executed.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 35 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

44..33.. PPrroocceessss VViieeww

Process view highlights the data processing approach used in openSF.

44..33..11.. MMooddeellss aanndd ssiimmuullaattiioonnss

As described in the [AD-ICD] openSF work with models and simulations as its main significant concepts.

 Models

 Simulations

A model is an independent program that performs a scientific function that is appropriate within openSF

accepting input files and configurations and generating output files.

OpenSF models are integrated into processing chains or simulations, which means that several models

are linked in a logical sequence of stages (or model types) following a defined order.

Simulation Chain

Model A Model B Model C

Stage 1 Stage 2 Stage 3

Data Input Data Output

Figure 4-3: Sequence of simulation stages

Note that a user can choose the starting and ending stages as demands. The case above shows a three

stages simulation, but it can happen that a user would like to try models of only a part of this string even

a single model simulation. With this solution a user has only to choose the start and end stages

conveniently as long as fulfils the dependencies between them.

During the current design phase the design team found useful to introduce two new concepts: sessions

and products tools. These concepts cover in simpler way requirements as sequence of simulations,

simulations in batch and iterative simulations and plotting, comparing or viewing products. They are

further described in the next sections.

44..33..22.. SSeessssiioonn

As defined earlier, a simulation is an ordered sequence of models. Similarly to this concept, a session is

an execution of an ordered set of simulations, with certain parameters, inputs, outputs, log messages and

results. There are no restrictions on how to concatenate these simulations, they do not have to be

compatible between them but, if necessary, the final output files of an execution of a simulation can be

used by the following simulation as inputs since they are executed sequentially.

This concept will define precisely these situations:

 A simulation is a sequence of models grouped for families (stages) and connected with a network of

dependencies. See Figure 4-3.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 36 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

 A sequence of simulations is just that, a session including some simulations being executed one after

another. There are no restrictions on how to combine them, so it is the responsibility of the user on

providing them with correct inputs and configurations.

Simulation Chain 1

Model A Model B Model C

Stage 1 Stage 2 Stage 3

Data Input Data Output

Simulation Chain 2

Model A Model B Model C

Stage 1 Stage 2 Stage 3

Data Input Data Output

Figure 4-4: Session describing a sequence of simulations

 A simulation in batch mode is a session execution with a sequence of simulations iterated with

different configurations (parameter values) for their models.

44..33..33.. PPrroodduucctt ttooooll

Due to the necessity to cover the requirements related to plotting, viewing and editing product files, the

concept product tool has been introduced.

A product tool is an external program, an executable that can be called by the openSF system to perform

some operations upon product files. A good example of this is an XML editor tool. Users can associate

the action “edit” for XML configuration files to a program like GEdit or such, and then enjoy the

capabilities of a well-known and powerful third-party solution to common operations outside the scope

of the openSF system.

Another plausible application is the plotting and post-processing functionalities.

44..33..44.. MMuullttiippllee SSiimmuullaattiioonn RReeppoossiittoorryy

A processing or simulation chain is a set of processing steps where each step represents a decisive

processing stage in the chain. An example of a processing chain with 4 stages is depicted hereafter.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 37 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Processing/Simulation Chain

Stage 1

Atmosphere

Stage 3

Instrument

Stage 2

Forward processing

Stage 4

Retrieval processing

Figure 4-5: Definition of a processing chain

A simulation is a subset of stages from the simulation chain, composed by one or more of the processing

stages from the simulation chain.

Upon building a simulation, models are associated to all stages defined for that simulation. Thus, the

simulation shown in the example below is constituted by three processing stages. In this case, each one

is covered by one model.

Simulation

Stage 1
Atmosphere

Stage 2
Instrument

Stage 2
Forward processing

Model A Model B Model C

Figure 4-6: Definition of a simulation

For openSF version 2.0 the capability to define more than one processing chain within the same openSF

instance has been added. Thus it would be possible to hold simulations for more than one mission, or to

define variations of the processing chain for one mission.

This change implies the development of a simple database manager that handles the different simulation

scenarios for every mission. This database manager will create different tables for every mission

allowing users to switch between missions at the openSF startup or when it is demanded.

44..44.. DDeeppllooyymmeenntt VViieeww

This view emphasizes the physical decomposition of the system on the target platform using nodes,

artefacts, components, and relationships.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 38 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 4-7 OpenSF deployment diagram

This is a diagram showing the different alternatives for deploying openSF. A deployment diagram

serves to model the hardware used in system implementations, the components deployed on the

hardware, and the associations between those components.

The default deployment configuration, used for acceptation tests, is based on Linux machines. It will

consist of a binary installer that will guide the user in the framework deployment. As result a folder with

all necessary sources, executable and library binaries will be created in the target machine. In openSF

there are third party applications (pre-requisites) that are not included in the distribution and it remains

the user’s responsibility to download them in purpose (following the instructions of the Software

Manual).

Documentation is also distributed.

Composition

 MySQL - MySQL is a relational database management system. The program runs as a server

providing multi-user access to a number of databases.

 Java 1.6 JRE – Java 1.6 runtime environment implementing the virtual machine used by the openSF

application.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 39 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55.. SSYYSSTTEEMM DDEESSIIGGNN

This section gives a brief description of the method used for the architectural design, the Unified

Modeling Language used for formal diagrams and the system background and context.

55..11.. DDeessiiggnn MMeetthhoodd

The application is distributed in packages used to organize the namespace for packages, classes and

interfaces.

In the design process of the system the following conventional guideline to name Java components has

been used throughout the whole document:

 Classes: class names should be nouns, with the first letter of each class capitalized, such as

Command and TreeTable classes.

 Packages: package names should be also nouns, with the first letter in lowercase, and the first letter

of each internal word in capitalized, such as application or treeTable packages.

 Interfaces: interfaces names should be capitalized like class names and must end with the suffix

“IF”, such as PresentationIF and DatabaseIF.

55..22.. SSyysstteemm DDeeccoommppoossiittiioonn

OpenSF is decomposed in four high level packages called mmi, domain, database and application. The

first three are a direct consequence of the 3-tier architecture approach mentioned earlier and the last one

is created for initialization purposes and to give some useful services to every package in the system. In

the following diagram the high-level hierarchical structure of these packages is shown:

DomainIF

PresentationIF

DatabaseIF

mmi

domain

database

application

Figure 5-1: High-level package diagram

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 40 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

 mmi: Contains packages and classes related to the appearance and behaviour of all visible

components of the graphic user interface (windows, frames, visual components and other widgets).

This package shares and implements a public interface that could be accessed by the application and

controller layers. It has a strong binding with the controller package.

 domain: This is the core of the system. It is responsible for all activities related with the specific

domain purpose of openSF. This involves the capabilities to carry out the definition and

management of the necessary elements identified in the domain: models, simulations, sessions, logs,

etc, as well as the execution of the sessions and the visualisation of the results produced.

 database: Contains classes designated to control the connection to an external MySQL database

server and to perform queries and updates against it. This package is being used by the domain

package and is initialized by the application package. This package represents the lower tier in the

three-tier paradigm and does not use any other package throughout the system.

 application: Contains all classes related to the system initialization and execution, accessing to

external resources and some utilities to be used under the whole system scope. The application

package shall be accessible to the remaining of classes and packages. It makes use of every other

package as long as it creates the principal components of the system.

The mmi package conforms to the presentation layer described in section 3.2.4. Inside this package

there is an adaptation of the Model-View-Controller paradigm that implements the JAVA SWING

package.

The domain and the database packages correspond to the domain and database layers respectively, and

are coloured in blue and orange.

The base namespace of the system and of these packages is openSF.

55..22..11.. aapppplliiccaattiioonn

Classes related to the system initialization and common functionalities are grouped in this package.

This package contains the main class of the system, openSF, in charge of creating the database, domain,

presentation and controller modules consecutively in order to begin the interaction with the user. This

interaction can be seen in Figure 5-2 below.

Note an important aspect of this class. Since openSF is the main class of the system, the final executable

shall be also named openSF. This executable is designed in such a way that it can admit a number of

parameters that allow users to configure the particular execution of the application. One of the input

parameters foreseen regards the batch execution, which shall be explained further ahead. Other input

parameters are relevant for the interaction with openSF database (user, password, database name and

network address).

The Resources class implements access to external resources need by different modules throughout the

system, such as images, icons, field titles, tooltip texts, etc. This functionality is related with the system

configuration (see section 4.9.1.2 [AD-ICD]).

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 41 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 5-2: openSF.application class diagram

55..22..22.. mmmmii

The mmi package is just a global package that is further decomposed in two packages: presentation and

controller to adjust in a clearer way to the three-tier paradigm.

Classes inside the scope of this package use others from the domain package and some utility classes

from the application package. In turn, the application package depends on this one because it initializes

the principal classes of it.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 42 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 5-3: openSF.mmi package diagram

55..22..22..11.. pprreesseennttaattiioonn

This package groups the classes related to the appearance of the user machine interaction.

This presentation package is, in turn, composed of four packages:

 scrollableDesktop: This package contains classes needed to implement a scrollable desktop, a visual

container for internal frames. This package does not use any package of the openSF system. This

package is used by classes in the presentation and views packages.

The complete namespace for this package is: openSF.mmi.presentation.scrollabledesktop.

 treeTable: This package contains all classes used to describe an ad-hoc visual component, the

TreeTable and its model and listeners. This package does not make use of any package of the

system. This package is intensively used by classes inside the views package.

The complete namespace for this package is: openSF.mmi.presentation.treetable.

 views: This package contains all classes required to show internal frames (or views) inside the

working area of the GUI, a view factory and other view classes representing the appearance of the

openSF modules. This package uses the treeTable and the scrollableDesktop packages. This class

implements the prototype design pattern as it shows a view of a cloned domain object.

The complete namespace for this package is: openSF.mmi.presentation.views.

 images: It contains all image files needed for the graphical user interface. This does not include any

executable component. This package is only accessed by the Resources class from the application

package.

The complete namespace for this package is: openSF.mmi.presentation.images.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 43 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 5-4: openSF.mmi.presentation package diagram

Every package and classes inside the presentation package uses intensively the java.awt and

javax.swing packages, whose descriptions are outside the scope of this document but can be found in

[RD SWING].

This presentation package is accessed by the application package and the controller package.

This package depends on the functionality inside the application package and does not make use of any

other part of the openSF system.

Figure 5-5 shows the class diagram of the presentation package, a static view of the package where

almost the major classes and their relationships can be seen.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 44 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

-mainFrame : InternalFrame

-vFactory : ViewFactory

Presentation

«interfaz»

PresentationIF

InternalFrame

views::ViewFactory

views::StageView

views::DCView

views::SessionView

views::SimView

views::RepositoryView

views::DescriptorView

views::ModelView

scrollableDesktop::ScrollableDesktopPane

MainFrame

views::ConfigView

treeTable::TreeTable

openSF.mmi.presentation

Views::HelpView

Views::ConnView

Figure 5-5: openSF.mmi.presentation package class diagram

Inside the presentation package lie the following classes:

 Presentation: this class implements the PresentationIF interface and creates an instance of

MainFrame and ViewFactory classes.

 MainFrame: this MainFrame class contains all the visual components of the main window, that is,

the menu bar, the working area, the views and such. It acts as final parent of all the visual

components of the GUI. Closing this frame will exit the application.

 InternalFrame: this class implements a wrapper frame to contain all the views produced by the

ViewFactory class. These frames are shown internally (with an instance of the ScrollableDesktop

Pane class as parent) in the working area of the MainFrame

 ModalFrame: this class represents a dialog frame that locks the user interaction with other parts of

the GUI until obtaining its feedback.

 Table,LogTable,IOTreeTable and ParamTreeTable: those classes implements the different special

views for some of the domain elements (parameters, files and log messages)

55..22..22..11..11.. iimmaaggeess

This images package contains all image files needed for the graphical user interface. This does not

include any executable or source component.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 45 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..22..22..22.. ccoonnttrroolllleerr

The controller package contains classes and interfaces dedicated to describe the behaviour of the

graphical user interface, to provide an access from the presentation layer to the domain layer and

therefore, to present the data that must be displayed.

This controller package is composed by another three packages:

 commands: contains the visual representation of the way to access to different functionalities or

actions of the system and all its modules. These representations, or commands, can be contained in

menus, pop-up menus, buttons and other visual components.

The complete namespace for this package is: openSF.mmi.controller.commands

 swingModels: This package contains a swingModelFactory class that creates different models

needed by components of the presentation package to present and interact with data. These models

describe which kind of data components are going to use. This package is accessed by the controller

and the domainConnector packages. This package makes use of the domain package but is not

shown in the diagram for the sake of clarity.

 domainConnector: This package contains classes implementing the presentation of each module of

the system. They call presentation interfaces to create and show the proper appearance for each

action they can make, access the commands package and assign a certain Command to every action,

create a menu with some Commands to ease the access, access the domain package to get data

needed and access the swingModels package to create the models to produce the interaction between

data and presentation. This package is accessed only by the controller package.

Figure 5-6: openSF.mmi.controller package diagram

This controller package makes use of the PresentationIF interface from the presentation package and

the DatabaseIF interface from the domain package.

This package is initialised and, therefore, accessed by the application package. This package is also

accessed by the presentation package.

The complete namespace for this package is: openSF.controller.

55..22..22..22..11.. ddoommaaiinnCCoonnnneeccttoorrss

This package contains classes implementing the presentation of each module of the system.

DomainConnectors intended:

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 46 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

 To prepare the appearance of every action performed by users, as presenting forms, tables, trees, etc

and also menus and buttons to let the user triggers the operations.

 To access the domain package to get data needed. This represents the connection to the domain

layer presenting or providing the information managed by this part of the application.

The complete namespace for this package is: openSF.controller.centers.

SessionDCModelDC

RepositoryDC

StageDC SimDC LogDC

domainConnectors::DomainConnector

ConfigDC

openSF.mmi.controller.domainConnectors

DescriptorDC ToolDC ConnDC

Figure 5-7: openSF.controller.domainConnectors package class diagram

This package contains the following list of classes:

 DomainConnector: base class of all the others classes in this package. It provides basic

functionality available to all classes derived from it.

 ConfigDC: This class contains the presentation controller for the configuration of openSF. This

configuration view can be accessed from the application main menu. From this view users are able

to edit some relevant system variables such as environment variables, system folders etc…

 DescriptorDC: This class contains the presentation aspects for the input output descriptors within

openSF system.

 RepositoryDC: This class contains the presentation issues regarding the complete data repository. It

presents a view in the MainFrame with two tabs: a system objects view and a file system view. The

system objects view contains a TreeTable with a hierarchical structure of the data know by the

system: models, simulations and executions (as seen in Figure 5-7). The file system view is shown

in a tree structure representing files and directories within the application’s path. This repository

provides quick access to functionalities from the model, simulation and execution modules like

showing list of models or creating, editing and deleting simulations or others.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 47 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

 ModelDC: This class contains the presentation aspects in what refers to models. Similarly to the

DescriptorDC, ModelDC presents views for the functionality for listing, creating/editing, deleting

models.

 ResultDC: This class contains the presentation aspects related to the session results. It presents a

unique view of a executed session showing input, configuration and output files, execution time and

whether it failed or not.

 SimDC: This class contains the presentation aspects regarding the simulations available in openSF.

It therefore presents views for listing, creating/editing, and deleting simulations.

 SessionDC: This class contains the presentation aspects related to the session in openSF. It presents

views for listing, creating/editing, and deleting sessions.

 StageDC: This class contains the presentation aspects related to a stage within openSF system.

Users are able to access to a list of the previously defined stages, create a new one or delete other

one.

 LogDC: This class contains the presentation aspects relative to the log sessions available in the

system. Users can access to the list of log sessions from previously executed sessions, and through

the main window to the whole set of previously executed session logs.

 ToolDC: This class contains the presentation aspects relative to the product tools. Users are able to

access to a list of the previously defined tools, create a new one or delete other one.

 ConnDC: This class contains the presentation aspects regarding the different simulation repositories

that can be plugged in the system.

The DescriptorDC, ModelDC, SimDC, SessionDC, StageDC, LogDC and ToolDC components shall

create menus and pop-up menus, and define the SWING models (visual components like tables or trees)

that will be employed to present to the user the information from their corresponding elements from the

domain layer.

55..22..33.. ddoommaaiinn

This package corresponds with the domain layer of the three-tier paradigm.

This package represents the core of the system. All packages and classes related to the simulation

process are grouped here. There are two packages inside it as shown in Figure 5-8.

 managers: this package contains the manager classes, which are meant to manage and control the

sets of domain objects (elements). Thus, managers shall be composed of classes in charge of

managing every module in the system: model, simulations, sessions, etc. The difference with the

“domainConnectors” classes in the controller package is that those give a graphical interface for the

user to access these actual operations.

This package will depend on elements and database packages. Some classes inside the “managers”

package will be instantiated by the domain package.

 elements: this package contains classes for the representation of the single elements and objects,

that is, temporary data within the scope domain of the system. Classes for describing models,

simulations, sessions, tools, descriptors, stages, logs and other auxiliary elements can be found in

this package.

This package is needed by the “managers” package.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 48 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 5-8: openSF.domain package diagram

This class declares the DomainIF interface which permits the external packages to access the domain

data and its operations.

This domain package implements the domain class, responsible to implement the DomainIF interface. It

initializes all the “managers” classes to interact with actual data.

This package is accessed by the controller and application packages and accesses the “managers”

package.

The complete namespace for this package is: openSF.domain.

In the following figure it is detailed more precisely the dependencies between classes in the domain and

included packages.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 49 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

openSF.domain.managers

openSF.domain

Domain

«interfaz»

DomainIF

elements::Session

elements::LogMessage

elements::Model

elements::Descriptor

elements::Sim

<<interfaz>>

manager::XMLFile

elements::IO

elements::Element

elements::Node

managers::SessionMgr

managers::Manager

managers::ModelMgr

managers::DescriptorMgr

managers::SimMgr

openSF.domain.elements

managers::ToolMgr

elements::Tool

elements::Stage

Figure 5-9: openSF.domain class diagram

55..22..33..11.. mmaannaaggeerrss

This package contains the manager classes. These classes are meant to manage, and control the sets of

domain objects (elements). Thus, they shall be in charge of managing the different kinds of elements in

the system: model, simulations, sessions, tools etc.

It may seem that classes of the managers package have the same purpose with the domainConnectors

classes described earlier. The difference lies on the fact that the domainConnectors classes provide the

graphical interface elements to users for the access of the operations contained managers.

The class diagram of this package is shown below and the classes it contains a described in the next

paragraphs.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 50 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

+create()

IOMgrLogger

Manager

ModelMgrDescriptorMgr

SessionExecutor

SessionMgr

ModelChainExecutor

SimMgr

openSF.domain.managers

Figure 5-10: openSF.domain.managers class diagram

 Manager: Base class for all other classes. It provides a set of properties and operations common to

all classes derived from it, such as the database access, temporary data storing within a tree structure

and so on.

 ModelMgr: class responsible to implement the operations related to model definitions:

Table 4: List of operations of the ModelMgr class

Operation name Input Output Description

addModel model void This method creates a model in the database

with the information contained in the Model

instance passed as parameter.

modifyModel model void This method modifies an existing model from

the information contained in the Model instance

passed as parameter. The only fields subject to

be modified are description and the author

fields.

deleteModel modelId void This method deletes the model identified by

modelId from the openSF database.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 51 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Operation name Input Output Description

getModelList void node The method returns the list of models currently

available from the openSF database.

getDescriptor oldModels,

model

boolean This method returns the descriptor compatibility

between the output generated by the previously

executed nodes with the current model.

getStageModel model stage This method gets the stage of the current model.

 SimMgr: class in charge of implementing the operations related to the simulations management, as

described below:

Table 5: List of operations of the SimMgr class

Operation name Input Output Description

addSimulation sim void This method creates a simulation in the

database with the information contained in the

Simulation instance passed as parameter.

modifySimulation sim void This method modifies an existing model from

the information contained in the Simulation

instance passed as parameter. In the simulation

modification, openSF shall accept to change

the following fields:

 Description

 Author

 List of models.

deleteSimulation simId void This method deletes the simulation identified

by simlId from the openSF database.

getSimList void node The method returns the list of simulations

currently available from the openSF database.

 SessionMgr: This class is responsible for the operations regarding the session management and

execution. The operations it implements are listed hereafter.

Table 6: List of operations of the SessionMgr class

Operation name Input Output Description

addSession session void This method creates a session in the

database with the information contained in

the Session instance passed as parameter.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 52 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Operation name Input Output Description

modifySession session void This method modifies an existing session

model from the information contained in

the Session instance passed as parameter.

In the session modification, openSF shall

accept to change the following fields:

 Description

 Author

 List of sessions.

getSession sessionId Session This method returns a Session instance

containing the information of the session

identified by sessionId.

deleteSession sessionId void This method deletes the session identified

by simlId from the openSF database.

getSessionList void node The method returns the list of sessions

currently available from the openSF

database.

runSession sessionId void This method initiates the execution of the

session identified by simId.

generateBatchScript sessionId void This method generates the batch script

corresponding to the session identified by

sessionId. The execution of this script

causes the same effect as using the

runSession method from the MMI.

getLogSession logId node This method returns the list of log

messages pertaining to a previously run

session identified by logId.

downSimSession simId status This method updates the list of

simulations getting backward the input

simulation in the execution list. Returns

the status of the performed operation.

upSimSession simId status This method updates the list of

simulations getting forward the input

simulation in the execution list. Returns

the status of the performed operation.

addBreakpoints sessionId,

breakList

void This method adds to the input session the

list of breakpoints. The list of breakpoints

consists on an integer list specifying the

step where the execution shall be stopped.

getBreakpoints sessionId ArrayList

<Integer>

This method returns the steps where

execution shall stop.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 53 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

One of the major operations from this class is the one in charge of the execution of the session (this is,

the implementation of the runSession method), which may contain one or more simulations. Section

5.3 contains a description of how the system is organised to successfully execute sessions.

55..22..33..22.. eelleemmeennttss

This package contains classes for the representation of the single elements and objects, that is,

temporary data within the scope domain of the system. Classes for describing models, simulations,

sessions, products, logs and other auxiliary elements can be found in this package, as shown in Figure

5-11.

 Stage: this class is the representation of a single stage, including its general properties and the

position within simulation chain.

 Stages: this class is the representation of a stages set. This set shall match with the stages covered by

a particular simulation.

 Model: represents a single model or algorithm definition with its general properties and input,

configuration and output files.

 Simulation: implementation of a single simulation definition, that is, an ordered sequence of models

with its given input, configuration and output files.

 Session: description of a session definition that is constructed as an ordered sequence of simulation

definitions. Therefore, this session will also contains necessary input and configuration files, will

extract the parameters susceptible of being used in batch mode, will store a log session with

information about incidents and other events happened during the execution of the session and will

store the location of generated output files.

 LogMessage: this package is meant to contain a representation of each message generated by the

execution of simulations and those generated by the process of a model.

 IO: this class is implemented for the representation of all the file products: input, outputs, and

auxiliary and configuration files. Each subtype of file product will have an editor associated, a

program that can performs operations to it (as plotting, editing of extract quantities). This package is

needed by the model, simulation and execution packages. It does not need any other package of the

system.

 Element: This class provides a base class to all classes that represent a domain item. Basically is a

list of Attributes that describes a single instance of an item.

 Node: Internally, elements are stored following a hierarchical structure, a tree in which each node

stores a list of other Node instances to increase the level of abstraction in the structure. Each Node

wraps an element instance to store its data.

This package is needed by the “managers” package and does not use another package of the openSF

system.

The namespace for this package is: openSF.domain.elements.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 54 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

openSF.domain.elements

Element

Descriptor Model

Node

Sim1* Session1*

Stage

IO

1

*

LogMessage

1

*

Parameter

1

*

Figure 5-11: openSF.domain.elements Class Diagram

55..22..44.. ddaattaabbaassee

This package contains classes designated to control the connection to an external database server and to

perform queries and updates against it. It implements the database layer in the three-tier paradigm.

The database package contains some classes and interfaces represented in the figure below:

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 55 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

openSF.database

«interfaz»

DatabaseIF

Database

DBServerConnectionControl

Figure 5-12: openSF.database class diagram

The DatabaseIF interface declares methods to share with the domain layer of the system and which

calls for the persistence of domain data in a database. This DatabaseIF interface is implemented by the

Database class through a MySQLServer instance. This class has the actual implementation of all the

SQL statements required to perform the management of all openSF elements (models, simulations, etc)

that ensure the correct behaviour of the system.

This DBServer class is the responsible to create a connection with the MySQL database server and

perform operations of retrieving (queries) and updating (insert, update and delete) through the

connection and against the server. This connection is made by the MySQL Connector J 5.0.4, which is a

OBDC implementation for Java.

The ConnectionControl class is the responsible of managing the multi-repository capability. It stores the

connection information for each repository and is in charge of handle the on-the-fly switching between

the different mission repositories.

The ConnectionControl object has also an interface for openSF.manager and openSF.view packages in

order to be controlled by a view element.

The complete namespace for this package is: openSF.database.

Table 7: List of operations of the Database class

Operation name Input Output Description

addLogMessage logMessage void This method assembles the SQL

sentence needed to add a log

message to the database from a

LogMessage object instance

passed as parameter. DBServer

class instance will execute the

sentence and performs the adding

operation.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 56 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Operation name Input Output Description

createModel model void This method formats the SQL

sentence to create a new model in

the database from memory data

given as parameter. Then the

sentence is passed to the DBServer

that shall execute it.

createSession session void This method formats the SQL

sentence to create a new session in

the database from memory data

given as parameter. Then the

sentence is passed to the DBServer

that shall execute it.

createSim sim void This method formats the SQL

sentence to create a new

simulation in the database from

memory data given as parameter.

Then the sentence is passed to the

DBServer that shall execute it.

createTool tool void This method formats the SQL

sentence to create a new tool in the

database from memory data given

as parameter. Then the sentence is

passed to the DBServer that shall

execute it.

deleteModel modelId void This method makes the SQL

sentence to delete a certain model

specified by the input parameter.

The DBServer instance is called

later to execute the sentence and

actually delete the model.

deleteSim simId void This method makes the SQL

sentence to delete a certain

simulation specified by the input

parameter. The DBServer instance

is called later to execute the

sentence and actually delete the

simulation.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 57 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Operation name Input Output Description

getLogMessageList void ArrayList

<LogMessage>

This method describes the SQL

sentence needed to recover the

complete list of log messages

stored in the database. The

DBServer instance is then called to

execute the query and retrieve

data. The method returns a

structure with the data set.

getModelList void ArrayList <Model> This method contains the SQL

sentence needed to recover the

complete list of models stored in

the database. The DBServer

instance is then called to execute

the query and retrieve data. The

method returns a structure with the

data set.

getModelsofSim ArrayList<Models> This method builds the SQL

statement needed to get the Model

stored in the database whose

simulation is the one passed as

input.

getParamsOfSession session ArrayList

<Parameter>

This method describes the SQL

sentence needed to recover the

complete list of parameters stored

in the database whose session

identifier matches with the one

passed as input. The DBServer

instance is then called to execute

the query and retrieve data. The

method returns a structure with the

data set.

getSessionList void ArrayList

<Session>

This method contains the SQL

sentence needed to recover the

complete list of sessions stored in

the database. The DBServer

instance is then called to execute

the query and retrieve data. The

method returns a structure with the

data set.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 58 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Operation name Input Output Description

getSimList void ArrayList <Sim> This method contains the SQL

sentence needed to recover the

complete list of simulations stored

in the database. The DBServer

instance is then called to execute

the query and retrieve data. The

method returns a structure with the

data set.

getSimofSession session ArrayList<Sim> This method builds the SQL

statement needed to get the

Simulations stored in the database

whose session is the one passed as

input.

getStagesList void ArrayList <Stage> This method builds the SQL

statement needed to recover the

complete list of stages stored in the

database.

getToolsOfSession session ArrayList <Tool> This method builds the SQL

statement needed to get the tools

stored in the database whose

session is the one passed as input.

modifyModel model void This method formats the SQL

sentence to alter some model

attributes in the database. The

model is specified by the id string

in the model input parameter. Then

the sentence is passed to the

DBServer that shall execute it.

modifySim sim void This method formats the SQL

sentence to alter some simulation

attributes in the database. The

simulation is specified by the id

string in the simulation input

parameter. Then the sentence is

passed to the DBServer that shall

execute it.

removeTool tool void This method makes the SQL

sentence to delete a certain tool

specified by the input parameter.

The DBServer instance is called

later to execute the sentence and

actually delete the simulation.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 59 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Table 8: List of operations of the ConnectionControl class

Operation name Input Output Description

createNewRep Repository void This method creates a new

Repository. The Repository

object stores the connection

information for the

correspondent database.

deleteRep Repository void This method deletes a

Repository from the system.

switchConnection Repository void This method switches the

current loaded Repository to the

one passed as argument. This

method is in charge of cleaning

the current loaded Database

and create a new one.

setDefaultRep Repository void This method set the selected

Repository as the default one.

This will be the one loaded

when openSF starts.

dumpRepository Repository String/File This method performs a dump

of the correspondent SQL

database into a text file. It is

usually used for database

maintenance activities.

getSystemReps void ArrayList<Repository> This method retrieves the whole

list of simulation repositories

within the system.

Figure 5-13 shows the memory representation of the elements package, which can be the initial step to

the Entity-Relationship diagram, which shall indicate the physical representation of its storage in a

MySQL server database.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 60 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 5-13: Database diagram1

55..33.. SSeessssiioonn EExxeeccuuttiioonn CCoommppoonneennttss DDeessccrriippttiioonn

As mentioned earlier, this section gives more details of the SessionMgr class in order to clarify how the

execution of sessions is handled by the system.

For this a further decomposition of this class is needed and is provided in Figure 5-14. SessionMgr and

the classes it is composed of are described in depth in the following sub-sections.

1
 Note: The “log” table shall be dropped from the database schema as a consequence of CCN1 REQ-2 (refer to section

5.6.2 on the Removal of logs from database). Simofsession table will be changed by a modelofsession one, relating

directly sessions and models.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 61 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

openSF.domain.elementsopenSF.domain.managers.SessionMgr

The SessionExecutor could be started

externally by calling a dedicated shell

script.

1 *

1 *

managers::SessionMgr

openSF

System::database

+create()

managers::IOMgr

managers::Logger

managers::ModelChainExecutor

managers::SessionExecutor elements::Session

elements::Sim elements::Model

elements::LogMessage

<<interface>>managers::XMLFile

«signal»

Start

1

1

«uses»

1

1

1

*

The initiation of the SessionExecutor

through the SessionMgr class represents

the interactive invocation from the MMI.

Figure 5-14: SessionMgr class diagram

55..33..11.. SSeessssiioonnMMggrr

55..33..11..11.. TTyyppee

This component is a class.

55..33..11..22.. PPuurrppoossee

This class is responsible for the operations regarding the management of sessions (addition,

modification and deletion) as well as the provision of an execution environment that enables users to

launch, monitor and maintain a log of simulation sessions.

55..33..11..33.. FFuunnccttiioonn

For the session execution capability, as soon as a session has been invoked to run, either manually or in

batch mode, the SessionMgr shall create an instance of the SessionExecutor class that shall be in charge

of launching the execution of the simulations contained in the session. This instance shall be active

during the life of the session and therefore shall be responsible to properly finalise the execution in a

consistent and correct manner.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 62 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..33..11..44.. SSuuppeerr--ccllaassss

This class inherits from the Manager class so it has access to the temporal data structure held in memory

and the persistence database over a database server.

55..33..11..55.. DDeeppeennddeenncciieess

This class depends on the definition of classes like Managers, Database, SessionExecutor, and Session.

55..33..11..66.. IInntteerrffaacceess

The public interface of this class is constituted by the operations listed in Table 6.

55..33..22.. SSeessssiioonnEExxeeccuuttoorr

55..33..22..11.. TTyyppee

This component is a class.

55..33..22..22.. PPuurrppoossee

This class is responsible for the initiating and monitoring the execution of a session, which is composed

by one or more models. This capability represents the major challenge of openSF as it must ensure the

correct and consistent execution of the different models/algorithms belonging to each specific part of the

session.

55..33..22..33.. FFuunnccttiioonn

An instance of the SessionExecutor class is invoked whenever a session is to be executed. For that the

instance shall read from the database all the information relative to the session, whose identifier is

passed as an input parameter. This is done via the Database instance, which is the connection to

openSF’s database.

In addition, the SessionExecutor instance shall also initiate the corresponding log session (by invoking

the appropriate methods of the Logger instance) so that all log messages that are generated during the

set of simulations are attached to the same session.

Only one session can be run at a single time. This is achieved by using an internal dedicated file that,

when exists, shall indicate that there is a session currently being executed avoiding therefore the

execution of any other session.

When all conditions to launch the execution are met, the SessionExecutor shall create an instance of the

ModelChainExecutor for each simulation belonging to the session. Apart from providing the set of

configuration and the input data files for each simulation, the SessionExecutor must provide the

logSessionId for the log message storage purposes.

55..33..22..44.. SSuuppeerr--ccllaassss

This class does not inherit from another class.

55..33..22..55.. DDeeppeennddeenncciieess

The SessionExecutor instance depends on the definitions of these classes: Database,

ModelChainExecutor, and Logger.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 63 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..33..22..66.. IInntteerrffaacceess

This class provides this list of operations:

Table 9: List of SessionExecutor class operations

Operation name Input Output Description

start sessionId void Initiates the execution of the session. For this a

new ModelChainExecutor instance is created

per each simulation belonging to the session,

which is responsible for the execution of the

particular simulation.

abort void void This method will abort the execution of a

running session, deleting every output file that

could have been generated. This operation is

meant to cancel all the operations that the

execution has made until the moment.

executeTools void void Executes the scheduled product tools into a

proper execution environment.

55..33..33.. MMooddeellCChhaaiinnEExxeeccuuttoorr

55..33..33..11.. TTyyppee

This component is a class.

55..33..33..22.. PPuurrppoossee

The purpose of the ModelChainExecutor class is to start and control the execution of a set of models,

taking care to feed each participating model with the required input data and configuration files and to

collect all log messages generated as part of the simulation (produced by the models or the

ModelChainExecutor itself) into the database for future queries.

55..33..33..33.. FFuunnccttiioonn

This class represents the execution of a model chain by running each of the models it is composed of,

providing them with inputs and configuration files and storing and managing the output file products

they produce. It also monitors the progress of the execution.

The ModelChainExecutor shall be created providing as input parameter the following data:

 The identifier of the simulation to be run

 List of configuration files for the models belonging to the simulation

 List of input data required to start the execution

 The identifier of the log session

The instance is therefore responsible for retrieving all the information of the simulation from the

database that needs to be known in order to proceed with its execution. This shall be done through the

use of the Database instance. This information includes the list of models, and the expected format of

their configuration and input files that are passed as input.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 64 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

The consistency of all input data is checked and if everything is fine, the ModelChainExecutor instance

shall launch the execution of the first model of the simulation. For this, both the configuration file and

the input data files should be available at a specific location. Upon its termination the

ModelChainExecutor must verify that the input data that must be provided to the next model is

available. This is possible if:

 The data files were provided as input by the user, i.e. existed prior to the simulation execution, or

 They were generated by a previous model.

In any case, the models should verify the correctness of the input data file and report an error through

the Logger class in case of problems.

Once every pre-condition of correctness is checked the actual execution of the model/algorithm is

called. This execution is done in a way that allows establishing values for environmental variables and,

most importantly, permits the interception of the standard output messages produced by the

models to record them in the log session. Algorithm developers just need to continue printing their

event messages in the standard output file but, if they want them to be logged by the openSF, they need

to be written according to the following format described in [AD-ICD]. Then, well-formatted messages

will be sent to the Logger instance to be stored later in the database.

Note that other events generated by the ModelChainExecutor component (this is, not from the

algorithms) shall also use the Logger instance to store whatever messages in the log session and

consequently in the openSF database.

An important advantage provided by the ModelChainExecutor is that it overrides the execution of a

certain model if it was already executed with the same configuration parameters and inputs in the

current session. This is meant to realize an optimization process to avoid unnecessary executions of

time-costly algorithms.

55..33..33..44.. SSuuppeerr--ccllaassss

This class does not have a parent super-class.

55..33..33..55.. DDeeppeennddeenncciieess

This class depends on some classes from the elements package (such as Sim and Model), Logger and

IOMgr classes from the “managers” package, and the physical existence of the executables and

associated files needed for their proper execution (configuration and input data files).

55..33..33..66.. IInntteerrffaacceess

There is only one operation that can be performed with a ModelChainExecutor class instance: run.

Other operations to control the overall session executions are provided by the SessionExecutor instance.

Table 10: List of operations in ModelChainExecutor class interface

Operation name Input Output Description

stop void void Stops the current executed simulation.

start void void Starts the simulation execution.

pause void void Pauses the current simulation

modelExecution model status

(boolean)

Executes a certain model via command

line.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 65 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..33..44.. LLooggggeerr

55..33..44..11.. TTyyppee

This component is a class following the singleton pattern described in section 3.2.1.

55..33..44..22.. PPuurrppoossee

This class aims at recording all events or incidents happening during the execution of a certain session

in order to provide the user with some feedback information about the process.

55..33..44..33.. FFuunnccttiioonn

This class is responsible for creating a log session and storing all messages produced during the

execution of the session. Log session messages must be produced by the SessionExecutor when

initiating and ending the session, the ModelChainExecutor when each model of the simulation is

invoked and by the models themselves in order to inform about the actions performed by the specific

algorithm.

In [AD-ICD] document, there exists a section describing the formatting style that every message should

follow to match with this Logger class requirements.

55..33..44..44.. SSuuppeerr--ccllaassss

This class does not inherit from another class.

55..33..44..55.. DDeeppeennddeenncciieess

This class has a direct dependency on the LogMessage class and also uses information written in the

standard output.

55..33..44..66.. IInntteerrffaacceess

This class implements the visible interface comprised of the operations in Table 11.

Table 11: List of operations of the Logger class

Operation name Input Output Description

getInstance void Logger Accessor method from the singleton

design pattern. It returns an instance of

the Logger class not allowing more

than one copy to be accessed.

addLogMessage logMessage

type (Error,

Warning, Info)

void This method will store the incoming

message into the database and shall be

associated to the log session created

through the first invocation of the

getInstance method.

55..33..55.. IIOOMMggrr

55..33..55..11.. TTyyppee

This component is a class.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 66 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..33..55..22.. PPuurrppoossee

This class provides a bridge between the openSF system and the different external file formats used in

its context.

55..33..55..33.. FFuunnccttiioonn

This class is in charge of translating any specific internal format stored in the openSF system into the

files that are needed by the models to run properly and vice versa.

Another important use of this class is to provide a correspondence between file formats and their editors,

external programs or product tools. Users can assign to any product file in the system a list of actions,

each of them associated with an external tool and its command line parameters that is able to read and

manage the referred product file. For example, an XML file shall have an action to edit the file. The

Gedit tool (with the appropriate parameters) can be associated to this action meaning that each time the

option to edit the XML file is called, the GEdit tool shall be automatically be invoked.

55..33..55..44.. SSuuppeerr--ccllaassss

This class is a descendent of the Manager super-class, so inherits its capability to access both temporary

and persistent data structures.

55..33..55..55.. DDeeppeennddeenncciieess

This class depends on the Database as every descendent of the Manager class and also has a relation

with the operating system over the openSF is running.

55..33..55..66.. IInntteerrffaacceess

The public interface declared by this class is as follows:

Table 12: list of IOMgr class public operations

Operation name Input Output Description

read fileName ArrayList

<Element>

Reads a certain file specified by the

input parameter and returns a data

structure with elements of the

system. It makes use of one of the

XMLFile or NonXMLFile

interfaces that implements.

write filename,

ArrayList

<Element>

void Take a list of internal elements and

writes in the desired location and

the specified format (XML or non

XML).

55..33..66.. TToooollMMggrr

55..33..66..11.. TTyyppee

This component is a class.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 67 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..33..66..22.. PPuurrppoossee

This class provides a bridge between the openSF system and the different external used to visualize and

post-process the files involved in a simulation chain.

55..33..66..33.. FFuunnccttiioonn

The use of this class is to provide a correspondence between file formats and their editors, external

programs or product tools. Users can assign to any product file in the system a list of actions, each of

them associated with an external tool and its command line parameters that is able to read and manage

the referred product file. For example, an XML file shall have an action to edit the file. The Gedit tool

(with the appropriate parameters) can be associated to this action meaning that each time the option to

edit the XML file is called, the GEdit tool shall be automatically be invoked.

55..33..66..44.. SSuuppeerr--ccllaassss

This class is a descendent of the Manager super-class, so inherits its capability to access both temporary

and persistent data structures.

55..33..66..55.. DDeeppeennddeenncciieess

This class depends on the Database as every descendent of the Manager class and also has a relation

with the operating system over the openSF is running.

55..33..66..66.. IInntteerrffaacceess

The public interface declared by this class is as follows:

Table 13: list of ToolMgr class public operations

Operation name Input Output Description

addTool fileExtension,

externalProgram,

action

void Associates an external program with

some parameters to a given action

name applied to every file with the

given extension.

removeTool toolID void Deletes the association marked as

input parameter.

executeTool fileName, toolID void Calls for the external execution of a

product tool over a certain file.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 68 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..44.. PPaarraalllleell PPrroocceessssiinngg

There are several parallel execution technologies within the software community. Among them, and

considering the man cost and implementation complexity, multicore programming was selected for the

parallel computing in openSF.

A multi-core processor is a single computing component with two or more independent actual

processors (called "cores"), which are the units that read and execute program instructions. The

improvement in performance gained by the use of a multi-core processor depends very much on the

software algorithms used and their implementation. In particular, possible gains are limited by the

fraction of the software that can be parallelized to run on multiple cores simultaneously (Amdahl's law).

55..44..11.. OOppeennSSFF MMuullttiiccoorree AAddaappttaattiioonn

OpenSF target system is typically a computer or server. The popularization (cost reduction) of multicore

processors makes it common that almost every target computer nowadays has two or more cores.

Furthermore Java provides a set of tools for thread scheduling and synchronization allowing openSF to

launch different simulation models in different cores.

The openSF multicore plug-in will consist in the following added entities, carrying out the desired

parallelization tasks:

1. ParallelScheduler: this will be the core component of the parallel plug-in, orchestrating the

execution of the simulation models.

2. ThreadPool: managing the available threads

3. ParallelEventManager: entity responsible of reporting the scheduler about the model execution

status (paused, failed, finished, waiting etc…)

A detailed design description of these entities can be found in the subsequent sub-sections. Other

existing openSF components will be affected by this change, leading to appropriate software update.

This is the case of the ModelChainExecutor, SessionExecutor, Logger components, to name a few.

Regarding the parallel execution the following approaches were analysed:

1. Parallelization at model chain level: each session would acquire a core resource thread and use it to

execute all models of the model chain;

2. Parallelization at model level: each model would acquire a core resource thread and use it, then

release it when finished.

The selected approach is approach 2. It is foreseen that approach 2 is generic enough to cover

parallelization at model chain level as well. This approach also ensures that parallelization is always

transparent to the user (i.e. the parallelization is performed without requiring feedback from the user)

both at model chain level and model level.

DISCLAIMER: The evolution of openSF to allow parallel execution brings also added

responsibility to model developers. It should be clarified that model developers must ensure that

the models/algorithms developed are in fact parallelizable, e.g., that the implementation has the

proper precautions regarding access to common resources. OpenSF can only go so far in assuring

synchronization of model execution and must rely on models being “well behaved” with respect to

parallel execution.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 69 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..44..11..11.. PPrreeccaauuttiioonnss ttoo eennssuurree ssaaffee mmooddeell ppaarraalllleelliizzaattiioonn

In order to ensure safe model parallelization model developers should ensure that models are either:

- Thread safe: implementation is guaranteed to be free of race conditions when accessed by

multiple threads simultaneously, or;

- Conditionally safe: different threads can access different objects simultaneously, and access to

shared data is protected from race conditions.

The use of software libraries can provide certain thread-safety guarantees. For example, concurrent

reads are typically guaranteed to be thread-safe, but concurrent writes might not be. Whether or not a

program using such a library is thread-safe depends on whether it uses the library in a manner consistent

with those guarantees. Thread safety guarantees imply some design steps to prevent or limit the risk of

different forms of deadlocks, as well as optimizations to maximize concurrent performance.

There are several approaches for avoiding race conditions to achieve thread safety. The first class of

approaches focuses on avoiding shared state, and includes:

- Re-entrancy: writing code in such a way that it can be partially executed by a thread, re-executed

by the same thread or simultaneously executed by another thread and still correctly complete the

original execution. This requires the saving of state information in variables local to each

execution, usually on a stack, instead of in static or global variables or other non-local state. All

non-local state must be accessed through atomic operations and the data-structures must also be

re-entrant;

- Thread-local storage: variables are localized so that each thread has its own private copy. These

variables retain their values across subroutine and other code boundaries, and are thread-safe

since they are local to each thread, even though the code which accesses them might be executed

simultaneously by another thread.

The second class of approaches are synchronization-related, and are used in situations where shared

state cannot be avoided:

- Mutual exclusion: access to shared data is serialized using mechanisms (e.g. semaphores) that

ensure only one thread reads or writes to the shared data at any time. Incorporation of mutual

exclusion needs to be well thought out, since improper usage can lead to side-effects like

deadlocks and resource starvation;

- Atomic operations: shared data are accessed by using atomic operations which cannot be

interrupted by other threads. This usually requires using special machine language instructions,

which might be available in a runtime library. Since the operations are atomic, the shared data

are always kept in a valid state, no matter how other threads access it. Atomic operations form

the basis of many thread locking mechanisms, and are used to implement mutual exclusion

primitives;

- Immutable objects: the state of an object cannot be changed after construction. This implies that

only read-only data is shared and inherent thread safety. Mutable (non-const) operations can

then be implemented in such a way that they create new objects instead of modifying existing

ones (e.g. this approach is used by the string implementations in Java, C# and python).

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 70 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Thread safety

Thread safety is a simple concept: is it "safe" to perform operation A on one thread whilst another

thread is performing operation B, which may or may not be the same as operation A. This can be

extended to cover many threads. In this context, "safe" means:

- No undefined behaviour;

- All invariants of the data structures are guaranteed to be observed by the threads.

The actual operations A and B are important. If two threads both read a plain int variable, then this is

fine. However, if any thread may write to that variable, and there is no synchronization to ensure that the

read and write cannot happen together, then you have a data race, which is undefined behaviour, and

this is not thread safe.

Unless special precautions are taken, then it is not safe to have one thread read from a structure at the

same time as another thread writes to it. If you can guarantee that the threads cannot access the data

structure at the same time (through some form of synchronization such as a mutex, critical section,

semaphore or event) then there should be no problem.

You can use things like mutexes and critical sections to prevent concurrent access to some data, so that

the writing thread is the only thread accessing the data when it is writing, and the reading thread is the

only thread accessing the data when it is reading, thus providing the thread safety guarantee. This

therefore avoids the undefined behaviour mentioned above.

However, you still need to ensure that your code is safe in the wider context: if you need to modify more

than one variable then you need to hold the lock on the mutex across the whole operation rather than for

each individual access, otherwise you may find that the invariants of your data structure may not be

observed by other threads.

It is also possible that a data structure may be thread safe for some operations but not others. For

example, a single-producer single-consumer queue will be fine if one thread is pushing items on the

queue and another is popping items off the queue, but will break if two threads are pushing items, or two

threads are popping items.

Global variables are implicitly shared between all threads, and therefore all accesses must be protected

by some form of synchronization (such as a mutex) if any thread can modify them. On the other hand, if

you have a separate copy of the data for each thread, then that thread can modify its copy without

worrying about concurrent access from any other thread, and no synchronization is required. Of course,

you always need synchronization if two or more threads are going to operate on the same data.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 71 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..44..22.. PPaarraalllleell MMooddeell EExxeeccuuttiioonn CCoommppoonneennttss DDeessccrriippttiioonn

This section gives more details on the design of the execution of models in parallel. This functionality

shall be achieved as an extension of the ModelChainExecutor class. To better understand the

functionality a further decomposition of this class is needed and is provided in Figure 5-15. The classes

used by ModelChainExecutor for parallel model execution model are described in depth in the

following sub-sections.

class managers

SwingWorker

ModelExecutionThread

+ construct() : Object

+ finished() : void

+ finishedSucessfully() : boolean

+ getModelIndex() : int

+ isFinished() : boolean

+ ModelExecutionThread(ModelChainExecutor, Model, int, ThreadResult)

+ ModelExecutionThread()

+ setCallback(ThreadResult) : void

+ setModel(Model) : void

+ setModelIndex(int) : void

+ setSimulationExecutor(ModelChainExecutor) : void

+ waitForFinished() : boolean

ModelExecutionThread::

ThreadResult

+ finished(int, boolean) : void

Manager

ModelExecutionThreadMgr

+ getThread(ModelExecutionThreadSet, Model, int, boolean) : ModelExecutionThread

+ ModelExecutionThreadMgr(DomainIF, ModelChainExecutor)

+ setupThreadPool(int) : ModelExecutionThreadSet

ModelExecutionThreadMgr::ModelExecutionThreadSet

+ getNrThreads() : int

+ getThread(int) : ModelExecutionThread

+ ModelExecutionThreadSet()

+ ModelExecutionThreadSet(int)

+ setThread(ModelExecutionThread, int) : void

ParallelEv entManager

- sessionExecutor: SessionExecutor

+ allThreadsFinished(ModelExecutionThreadSet) : boolean

+ isSessionAborted() : boolean

+ isSessionFailed() : boolean

+ isSessionPaused() : boolean

+ ParallelEventManager(SessionExecutor)

+ sessionCanProceed() : boolean

+ setSessionFailed() : void

+ someSuccessfullThread(ModelExecutionThreadSet) : boolean

+ someUnsuccessfullThread(ModelExecutionThreadSet) : boolean

+ waitForDependentModels(ExecutionModelSet, Model, ModelExecutionThreadSet) : boolean

+ waitForFinishedModels(ExecutionModelSet, ModelExecutionThreadSet) : boolean

ParallelScheduler

- domain: DomainIF = null

- logger: Logger = null

- models: ExecutionModelSet

- sessionExecutor: SessionExecutor

- simExecutor: ModelChainExecutor = null

+ execute() : void

+ ParallelScheduler(DomainIF, ModelChainExecutor, Logger)

ParallelScheduler::ExecutionModelSet

+ currentModelAlreadyExecuted() : boolean

+ ExecutionModelSet()

+ getCurrentModelIndex() : int

+ getExecutedModelIndexList() : ArrayList<Integer>

+ getExecutedModelList() : List<Model>

+ getFirstModelIndex() : int

+ getLastModelIndex() : int

+ getModelList() : ArrayList<Model>

+ getNextModelToExecute() : Model

+ getNumberOfModelsToExecute() : int

+ hasNextModeltoExecute() : boolean

+ nextModel() : int

setModelsToExecute(ArrayList<Model>, SessionExecutor) : void

ModelChainExecutor

ThreadPool

- availableThreads: Semaphore = null

- instance: ThreadPool = null

- maxThreads: Integer = null

+ getAvailableThread() : ModelExecutionThread

+ getAvailableThreads() : Integer

+ getMaximumThreads(DomainIF) : int

+ getThreadPool(DomainIF) : ThreadPool

+ getThreadPool() : ThreadPool

releaseThread() : void

«instantiate»

«instantiate»

«instantiate»

«instantiate»

«instantiate»

-instance

-simExecutor

-models

-modelThreads

-simExecutor-exec

-callback

Figure 5-15: ModelChainExecutor class hierarchy for parallel model execution

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 72 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..44..33.. PPaarraalllleellSScchheedduulleerr

55..44..33..11.. TTyyppee

This component is a class.

55..44..33..22.. PPuurrppoossee

This class is responsible for orchestrating the parallel model execution.

55..44..33..33.. FFuunnccttiioonn

For the session execution capability, as soon as a simulation has been invoked to run (thru the start

method) the ModelChainExecutor shall create an instance of the ParalellScheduler class. This instance

shall be active during the life of the session and shall be in charge of the execution of the models

contained in the session coordinating the parallelization of models whenever applicable. The following

activities are delegated in this class by the ModelChainExecutor:

 Analyse dependency graph between the models of a session: this analysis shall be performed at

execution time and therefore no dependencies from the database are expected. Any pre-conditions

for the correct execution of the simulation models are expected to have been established by the

ModelChainExecutor class (e.g. availability of input files);

 Management of core resources: each model shall be put waiting for a core thread to be available.

Delegates in class ModelExecutionThreadMgr the task of managing the access to the several

processor core;

 Parallel execution approach.

In the case of parameter perturbation the session shots shall also be parallelized. In this case a dialog

should be displayed to the user asking if shots are to be parallelized. It should be noted that the parallel

approach 2 mentioned above is also expected to be consistent with the parallelization of parameter

perturbation shots.

55..44..33..33..11.. RReellaatteedd ffuunnccttiioonnaall iissssuueess

Regarding the production of the log under the scenario of parallel model execution the proposed

approach is to (a) produce a single global log containing all the messages for sessions of a simulation

and written in the simulation folder, and (b) to produce one separate log per session, stored in the

session folder. Note: it is already assumed that the log is being written to file and no longer to the

database (refer to section 5.6.2 on the Removal of logs from database).

Regarding the displaying of the log messages with the existing implementation the log messages would

be shown all mixed (coming from more than one model being executed simultaneously). The proposed

approach shall be to present the logs separately on a per-model basis: each model execution shall be

displayed in a separate tab of the execution window. Moreover whenever there is an ERROR log

message in a given model the visual focus should be moved to the tab presenting the corresponding log

and the tab should be highlighted as well.

55..44..33..44.. SSuuppeerr--ccllaassss

This class does not inherit from another class.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 73 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..44..33..55.. DDeeppeennddeenncciieess

This class depends on the definition of classes like DomainIF, ModelChainExecutor, SessionExecutor

and Logger. Additionally to support its functionalities it instantiates objects of classes

ParallelEventManager and ModelExecutionThreadMng

55..44..33..66.. IInntteerrffaacceess

This class provides the following list of public operations:

Table 14: List of ParallelScheduler class public operations

Operation name Input Output Description

execute void void Initiates and manages the parallel scheduling execution of the

simulation.

55..44..44.. PPaarraalllleellEEvveennttMMaannaaggeerr

55..44..44..11.. TTyyppee

This component is a class.

55..44..44..22.. PPuurrppoossee

This class handles the current status of the parallel model execution.

55..44..44..33.. FFuunnccttiioonn

An instance of the ParallelEventManager class is created for each parallel execution. This instance

provides the methods to evaluate the progress of the parallel execution. The class gives feedback to the

ParallelScheduler on whether the execution is progressing correctly or if some issue as arisen in a given

execution thread deeming the simulation execution to halt.

This class also contains the logic to determine dependencies between models. In case of model

dependency the execution of a given model must wait for its predecessors to conclude, while in case of

model independency the models can be put to execution (possibly in parallel with others).

55..44..44..44.. SSuuppeerr--ccllaassss

This class does not inherit from another class.

55..44..44..55.. DDeeppeennddeenncciieess

The ParallelEventManager instance depends on the definition of the SessionExecutor class.

55..44..44..66.. IInntteerrffaacceess

This class provides the following list of public operations:

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 74 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Table 15: List of ParallelEventManager class public operations

Operation name Input Output Description

isSessionFailed void Boolean Determines if the current

session execution has failed.

isSessionAborted void boolean Determines if the current

session execution has been

aborted

isSessionPaused void boolean Determines if the current

session execution has been

paused.

sessionCanProceed void boolean Determines if the current

session can proceed execution.

setSessionFailed void void Sets the session execution as

failed.

waitForDependentModels ExecutionModelSet (the

set of models to execute),

Model (the model to check

for dependencies),

ModelExecutionThreadSet

(the set of threads of an

execution)

boolean Waits for execution of

dependent models.

waitForFinishedModels ExecutionModelSet (the

set of models to execute),

ModelExecutionThreadSet

(the set of threads of an

execution)

boolean Awaits the conclusion of the

threads corresponding to the

models already put in execution.

someUnsuccessfullThread ModelExecutionThreadSet

(the set of threads of an

execution)

boolean Determines if there is at least

one unsuccessfully executed

thread in a given thread set.

someSuccessfullThread ModelExecutionThreadSet

(the set of threads of an

execution)

boolean Determines if there is at least

one successfully executed

thread in a given thread set.

allThreadsFinished ModelExecutionThreadSet

(the set of threads of an

execution)

boolean Determines if all threads of an

execution have finished

successfully.

55..44..55.. EExxeeccuuttiioonnMMooddeellSSeett

55..44..55..11.. TTyyppee

This component is a class (internal to ParallelScheduler).

55..44..55..22.. PPuurrppoossee

Class ExecutionModelSet is a data type representing a set of models to be executed.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 75 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..44..55..33.. FFuunnccttiioonn

This class is an abstraction representing a set of models to execute regardless of the internal data

structures that support the representation of the list of models.

55..44..55..44.. SSuuppeerr--ccllaassss

This class does not have a parent super-class.

55..44..55..55.. DDeeppeennddeenncciieess

Instances of this class depend on the definition of the SessionExecutor class.

55..44..55..66.. IInntteerrffaacceess

This class provides the following list of public operations:

Table 16: List of operations in ExecutionModelSet class public interface

Operation name Input Output Description

setModelsToExecute ArrayList<Model>,

SessionExecutor

void Initializes the internal data

structures according to a

given set of models to

execute.

hasNextModeltoExecute void Boolean Determines if there is still

a model to be executed.

getNextModelToExecute void Model Returns the next model to

execute.

getNumberOfModelsToExecute void int Determines the total

number of models to

execute.

getFirstModelIndex void int Returns the index of the

first model to execute.

getLastModelIndex void int Returns the index of the

last model to execute

getCurrentModelIndex void int Returns the index of the

current model being

executed.

getModelList void ArrayList<Model> Returns the list of models

to execute.

getExecutedModelList void List<Model> Returns the list of models

already in execution

getExecutedModelIndexList void List<Integer> Returns the list of model

index already executed

currentModelAlreadyExecuted void boolean Determines if the current

model in execution has

already concluded.

nextModel void int Iterates to the next model

to be executed.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 76 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..44..66.. MMooddeellEExxeeccuuttiioonnTThhrreeaaddMMggrr

55..44..66..11.. TTyyppee

This component is a class.

55..44..66..22.. PPuurrppoossee

Class ModelExecutionThreadMgr manages the definition and access to a new ModelExecutionThread

object.

55..44..66..33.. FFuunnccttiioonn

This class implements a producer-consumer design pattern to manage the use of several processor core

threads. Refer to section 3.2.5 for details on the Producer-consumer design pattern used to support the

design of this class.

55..44..66..44.. SSuuppeerr--ccllaassss

This class inherits from the Manager class so it has access to the domain layer data structure held in

memory (note: the access to persistence database over a database server thru the database layer is not

applicable, even though it accessible thru the Manager public interface).

55..44..66..55.. DDeeppeennddeenncciieess

This class instance depends on the definition of the ModelChainExecutor class. Additionally to support

the functionality the class instance makes use of classes ModelExecutionThreadSet and ThreadPool.

55..44..66..66.. IInntteerrffaacceess

This class provides the following list of public operations:

Table 17: List of operations in ModelExecutionThreadMgr class public interface

Operation name Input Output Description

setupThreadPool int ModelExecutionThreadSet Initializes the Thread Set for a

given number of models to be

executed.

getThread ModelExecutionThreadSet,

Model, int, boolean

ModelExecutionThread Setup and return a model execution

thread. Blocks until a thread is

available.

55..44..77.. MMooddeellEExxeeccuuttiioonnTThhrreeaadd

55..44..77..11.. TTyyppee

This component is a class.

55..44..77..22.. PPuurrppoossee

Objects of class ModelExecutionThread execute a single simulation model in a dedicated thread.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 77 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..44..77..33.. FFuunnccttiioonn

Objects of this class embody the execution environment of a model. This class is responsible for setting

up the thread to execute the model. This instance shall be active during the life of the model and

therefore shall be responsible to properly finalise the model execution in a consistent and correct

manner.

55..44..77..44.. SSuuppeerr--ccllaassss

This class inherits from the SwingWorker class (abstract class already used for sub-classing to perform

GUI-related work in a dedicated thread) so it inherits the thread related design pattern already put in

place by that abstract class.

55..44..77..55.. DDeeppeennddeenncciieess

This class instance depends on the definition available in the ModelChainExecutor class. Additionally to

support the functionality the class instance makes use of interface class ThreadResult.

The ThreadResult interface is implemented by a class whose instances are intended to be executed by a

thread. The class must define a method called finished. This interface is designed to provide a

common protocol for objects that wish to execute code when the thread is finished.

55..44..77..66.. IInntteerrffaacceess

This class provides the following list of public operations:

Table 18: List of operations in ModelExecutionThread class public interface

Operation name Input Output Description

construct void Object Execute the model and compute the value to be returned by the

thread execution. Returns null if either the constructing thread or the

current thread was interrupted before a value was produced.

finished void void Called on the dispatching thread (not on the worker thread) after the

construct method has returned.

isFinished void boolean Determines if the thread execution has finished

finishedSucessfully void boolean Determines if the model execution has finished successfully.

waitForFinished void boolean Waits for the model to finish. Performs a join with the model

executing thread thus blocking until it that thread is finished.

55..44..88.. MMooddeellEExxeeccuuttiioonnTThhrreeaaddSSeett

55..44..88..11.. TTyyppee

This component is a class (internal to ModelExecutionThreadMgr).

55..44..88..22.. PPuurrppoossee

Class ModelExecutionThreadSet manages a set of threads for module execution.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 78 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..44..88..33.. FFuunnccttiioonn

This class is an abstraction representing a set of ModelExecutionThread objects regardless of the

internal data structures that support the representation of the list of threads.

55..44..88..44.. SSuuppeerr--ccllaassss

This class does not have a parent super-class.

55..44..88..55.. DDeeppeennddeenncciieess

This class instance has no dependencies to other classes. Nevertheless to support the functionality the

class instance makes use of objects of class ModelExecutionThread.

55..44..88..66.. IInntteerrffaacceess

This class provides the following list of public operations:

Table 19: List of operations in ModelExecutionThreadSet class public interface

Operation name Input Output Description

setThread ModelExecutionThread,

int

Void Sets the thread of a given model.

getThread int ModelExecutionThread Returns the thread for a given model index.

getNrThreads void int Returns the number of threads of the object

thread Set.

55..44..99.. TThhrreeaaddPPooooll

55..44..99..11.. TTyyppee

This component is a class.

55..44..99..22.. PPuurrppoossee

Class ThreadPool manages the concurrent access to the operating system threads.

55..44..99..33.. FFuunnccttiioonn

This class implements a singleton design pattern to manage the low level access to operating system

object threads.

A limit to the number of cores to be used is set thru a global configuration parameter. The parameter

value has the following semantics: 0 – no limit to the number of threads accessible; 1 – no

parallelization (single thread architecture); N - maximum number of core threads to be used.

To synchronize the available resources a semaphore is used in controlling the access to the low level

thread objects.

Refer to section 3.2.5.3 for details on the Thread Pool design pattern used to support the design of this

class.

55..44..99..44.. SSuuppeerr--ccllaassss

This class does not have a parent super-class.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 79 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..44..99..55.. DDeeppeennddeenncciieess

This class instance has no dependencies to other classes. Nevertheless to support the functionality the

class instance makes use of objects of class ModelExecutionThread as well as accessing the domain

layer data structure held in a DomainIF instance.

55..44..99..66.. IInntteerrffaacceess

This class provides the following list of public operations:

Table 20: List of operations in ThreadPool class public interface

Operation name Input Output Description

getThreadPool DomainIF ThreadPool Accesses the singleton ThreadPool

instance.

getMaximumThreads DomainIF int Gets the maximum allowed execution

threads.

getAvailableThreads void int Gets the number of available threads.

getThread void ModelExecutionThread Returns a thread. Blocks until a thread

is available.

55..55.. GGrraapphhiiccaall UUsseerr IInntteerrffaaccee DDeessiiggnn

This section provides a description of the design features common to the openSF GUI (in advance, the

MMI, Man Machine Interaction).

The MMI presented accepts input via devices such as computer keyboard and mouse and provide

articulated graphical output on the computer monitor. This certain MMI implements also the OOUI

(Object Oriented Interface) paradigm because it is constructed from different pieces, or objects with

several properties and operations.

The openSF MMI also follows the Multiple Document Interface (MDI) pattern. This approach has been

chosen because of its flexibility, as it let users to organize the layout of the information as desired,

showing only relevant windows and in the way users want.

The MDI pattern consists of a “parent” container that can host inside several “internal frames”. These

internal frames are intended to present independent modules of the simulator. For example, each time

the user wishes to perform operations with the list of models of the system, a “model manager” frame

will pop-up inside the bounds of the main window listing the list of models currently available within

openSF. This is applicable to other system elements such as simulations, sessions, stages etc…

The design of the openSF MMI has been based in the use of Java SWING and AWT technologies.

These Java graphic libraries are widely used to make applications because of its ease of use and the

portability advantages they bring to developers.

Figure 5-16 shows a screenshot of the openSF main window. This is the first window users will see

anytime they launch the application.

http://en.wikipedia.org/wiki/Graphical
http://en.wikipedia.org/wiki/Computer_monitor

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 80 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 5-16: Main window appearance

All the windows have commons operations to help their usability: main window, internal frames or

dialogs can be closed, resized, maximized or minimized to fit the user’s needs.

This main window (Figure 5-16) includes a menu bar to provide keyboard and mouse access to the

simulator main functions as well as functions regarding frames management and application basis.

55..55..11.. WWiinnddooww DDeessiiggnn

This section describes the windows main classes and modes.

The MDI pattern provides some useful capabilities to arrange internal frames (e.g. Figure 5-17)

appropriately like cascading or tiling them. Also internal frames can be “iconized” to give more

available space. When a user iconizes a frame it can be restored by clicking the button with its name in

the “available frames” toolbar or the corresponding menu item at the “windows” menu.

Occupying the central and main region exist a working area. This area is where all internal frames are

going to be created and main interaction is hold. Besides that, this working area implements a

“scrollable” panel in order to easily navigate through frames surpassing its bounds.

At the left side of the working area there is a system objects navigator, a “repository view” which

function is to provide a quick access method to every item known by the system (models, simulations,

Menu bar

Working area

Auxiliary panel

Repository view

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 81 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

sessions, etc). There is also a file system browser to navigate through the contents of the application’s

directory.

The main window’s footer area shows some corporate logos and is meant to provide information to

assist the user.

 Figure 5-17: Main window appearance showing internal frames and scroll panel

The MMI provides a menu bar (Figure 5-18) at the upper side of the main frame to show some

capabilities of the system.

Figure 5-18: Detail of main menu bar

Figure 5-19: Detail of a menu, showing menu items

Internal frame

Available frames

toolbar

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 82 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

It is shown in Figure 5-19 that a menu item is an icon with graphically describes the function, the name

of the function and a “quick access” key combination. Users can quickly access this functionality

pressing this key combination or the letter underscored in the function name while the menu is rolled

down.

There are also some contextual or “pop-up” menus that users can access by clicking the right button of

the mouse while over certain controls. These “pop-up” menus have the same appearance as menus

rolling down the menu bar, but coming from some other component.

Figure 5-20: Detail of a contextual menu

It can be seen in Figure 5-20 that a pop-up menu acts exactly like a menu at the main frame. They also

provide mouse and keyboard access to certain capabilities.

55..55..22.. GGUUII SSttaannddaarrddss

There is no applicable standard to this GUI. However we have followed some guidelines described in

[RD GAL MMI] to approximate this GUI solution to other well-known and common solution in the

aerospace sector.

55..55..33.. CCoommppoonneennttss,, LLiibbrraarriieess aanndd TToooollss

This section describes the libraries and, standard widgets used for the GUI.

This MMI is being totally developed in JAVA code with runtime environment version #1.5.0_09.

SWING and AWT libraries are being intensively used throughout the MMI modules. A description of

the SWING widgets that comprises the MMI can be found at [RD SWING] and the API documentation at

[RD SWING API].

Every single components of the MMI set will be shown in the Java look-and-feel (cross-platform), i.e.

visual aspect will be the same independently on which operating system this interface is running on.

Some images have been extracted from the Java look-and-feel repository and some others (mainly

corporate logos) are taken from its public web sites.

55..55..44.. GGeenneerriicc FFuunnccttiioonnss,, DDiiaalloogguueess aanndd DDiissppllaayyss

This section is meant to describe the design of generic functions, dialogues and displays used at the

GUI.

There are some functionalities of the MMI that show a “file chooser” dialogue as shown in Figure 5-21.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 83 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 5-21: File chooser dialogue

This dialogue helps the user to browse the system directory to select a certain file or list of files. It

provides some sorting, filtering and file operations very common and already known for the majority of

the users.

Throughout the openSF MMI some functionality could show information to the user and could ask for

some input in response to an answer. The MMI will present some “modal” dialogues that will get the

system focus until the user provides an answer. These modal dialogues will block the input to other

areas of the application until a response is given.

Figure 5-22: Dialogue example

These dialogues will typically provide a warning message with an “OK” button or give a yes-or-no

question or another question with different options. The dialogues will provide information with a clear

description of the event.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 84 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..66.. DDeessiiggnn aapppprrooaacchh ffoorr ooppeennSSFF VV33 aaddddiittiioonnaall ffuunnccttiioonnaalliittiieess

This section presents the design approach for the additional functionalities requested by [AD-CCN1].

55..66..11.. FFrraammeewwoorrkk rreevviissiioonn ffoorr fflleexxiibbllee sseessssiioonn mmaannaaggeemmeenntt

The feature requests underlying REQ-3, REQ-4, REQ-7 and REQ-9 of [AD-CCN1] are considered to be

interrelated functionality to be tackled in a common approach targeting openSF flexibility. The

proposed approach implies reformulation of the openSF framework to allow more flexibility on session

management. This shall imply revisiting the openSF architecture with impact on both application and

database organization as it shall imply the reformulation of the simulation concept.

55..66..11..11.. SSiimmpplliiffiiccaattiioonn ooff tthhee mmaannaaggeemmeenntt ooff tthhee mmooddeell cchhaaiinnss

The purpose of simplifying the management of simulations is to provide flexibility in the execution of a
given chain.

Model CModel A Model B Model CModel A Model B

Figure 5-23 Simple model chain

Taking as example the model chain in Figure 5-23 consider that the first executable (Model A) is a very

time-consuming model that can be executed once to feed subsequent models. The idea is therefore to

permit users to create a sub-chain with models B and C using the same simulation definition. The

execution will take as input (for Model B) the outputs of model A, previously stored from another
execution.

55..66..11..22.. SSeelleecctt mmooddeell vveerrssiioonnss ffoorr aa ssiimmuullaattiioonn eexxeeccuuttiioonn

Similarly to the above capability, and in order to make more flexible the definition of a given

simulation, this functionality shall allow selecting a specific version of a model for a simulation

execution (as depicted in Figure 5-24 below).

Model C
version 1

Model A
version 2

Model B

Model A
version 3

Model A
version 2

Model A
version 1 Model C

version 2

Model C
version 1

Figure 5-24 Model chain with different model versions

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 85 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..66..11..33.. BByyppaassss//sswwiittcchh--ooffff mmooddeellss

This functionality enables users to switch off certain models when running simulations. As a result,

openSF will inform the user of the data files needed to be provided due to the omission of models and

their corresponding outputs.

55..66..11..44.. RReerruunn aa sseessssiioonn ffrroomm aa pprreevviioouuss ppooiinntt

The idea is to allow users to skip models at the beginning of the simulations, and therefore start sessions

from a certain point. However, the data from non-executed models is needed for the re-run. Before

executing the simulations the user needs to define the data files needed for the run.

The figure below shows a simple example. Models A, B and C constitute the simulation. If we want to

rerun it but starting from B, we need to provide the output of Model A, from a previous run.

Model A Model BInput A

Input B

Model C Output C

Output A Output B

Figure 5-25 Run simulation from Model B

55..66..11..55.. FFlleexxiibbllee sseessssiioonn mmaannaaggeemmeenntt ddeessiiggnn aapppprrooaacchh

Currently the capabilities mentioned in the above sub-sections are not available due to architectural

constraints implemented both in the openSF controller layer (designed in section 5.2.2.2 controller) as

well as in the database layer - data storage (designed in section 5.2.4 database). Therefore it is necessary

to remove these data storage constraints and adapt openSF controller layer to support these new

functionalities.

In order to cover all the requirements regarding framework flexibility the following design decisions

have been taken:

- Remove the strict dependency between Session and Simulation entities.

- Session will be a chain of models instead of a set of simulations, this will allow to easily switch

off/bypass models or execute different model versions. Note that Simulation entity will not be

removed and users will have the capability of adding a Simulation (pre-defined chain of models)

to a session.

- This change makes the new framework not compatible with previous versions, change in the

database structure, but impact has been minimized from simulation to a set of models during

session creation/edition. For more details about database compatibility see section 5.7.

The design components affected by these new features are:

- Database: the table relating sessions and simulations will be changed by a table relating sessions

and models to be executed.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 86 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

- ModelChainExecutor will be updated with a model chain executor, not related with Simulation

entity.

- Session folder structure will be grouped by simulation if possible.

- The user interface for Session creation and edition will be updated providing the user mechanisms

for performing the new capabilities. A contextual menu for switching between model versions .

Addition/deletion of a simulation will be updated, allowing also the addition of a single model.

55..66..22.. RReemmoovvaall ooff llooggss ffrroomm ddaattaabbaassee

It is requested in [AD-CCN1] to remove the storage of logs from the database aiming to prevent the

database from being overloaded due to the big size of log messages that a session/simulation execution

may involve. Log messages shall be kept as files that are stored as part of the session execution data.

They can therefore be consulted at any time by users either from the openSF HMI or directly from the

file system.

When displaying logs thru the HMI the system shall limit the size of the parsed data to a maximum

number of log entries (typically the most recent ones). Only when the operation for searching messages

is triggered shall the parsing carry on the loading of all the log messages. In either case after closing the

log view the parsed data should be released from memory.

The proposed implementation approach includes performing a drop of the log table from the openSF

database. It should be noted that this implies that openSF V3 cannot be used directly over an existing

instance of openSF. Refer to section 5.7 for details on the Migration to openSF V3 procedure.

Log messages shall be dumped to file in a textual format, i.e. containing exactly the messages sent by

the models (via OSFI) and intercepted by openSF.

Regarding the production of the log under the scenario of parallel model execution (as discussed in

section 5.4.3.3.1) the proposed approach is to (a) produce a single global log file containing all the

messages for sessions of a simulation and written in the simulation folder, and (b) to produce one

separate log file per session, stored in the session folder.

55..66..33.. RReemmoovviinngg iinntteerrmmeeddiiaattee ddaattaa dduurriinngg ssiimmuullaattiioonn eexxeeccuuttiioonn

OpenSF stores all data produced as output of the running models of simulations. The purpose of this

capability is to allow the possibility for the user to decide whether they want to remove all the

intermediate data generated as part of a simulation execution.

Thus, in the example provided in the figure below, if the user selects the removal of intermediate data,

the files coloured in red would be removed once the simulation has been completed.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 87 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Model A Model BInput A

Output A Output B

Input B

Model C Output C

Figure 5-26: Removing intermediate data of a simulation

To implement this functionality the following approaches were analyzed:

Approach 1 - Add a global configuration parameter, activating the functionality with a warning message

to the user that intermediate data shall be removed;

Approach 2 - Add a per session configuration parameter set thru a check box at session edition level

(located to the left of the “author” field, making this one shorter). Is should be noted that this approach

implies changing the database structure to include the additional session setting.

Approach 2 is the proposed implementation. Furthermore intermediate data is to be removed at the end

of the session and only upon the successful execution of the session.

55..66..44.. CCaappaabbiilliittyy ttoo ccooppyy eelleemmeennttss

Functions to copy elements shall be made available in openSF. This operation shall be made available

for each openSF main concept: Descriptor, Model, Simulation, Session and Tool (it shall not be

applicable to the Stage concept).

Implementation shall be based on the “clone” method already implemented for every concept.

Implementation note: it is important to always ensure that every new attribute added to a given concept

class is included in the “clone” method.

Regarding the graphical interface this operation shall be deployed in the contextual menu (right-click) of

the given concept instances, presenting a new option. Thus users shall only need to define a new name

for the copied element.

55..66..55.. EExxppoorrtt ccaappaabbiilliittyy

This capability deals with the possibility of exporting the data associated to a model that has already

taken place in a simulation. Thus, the data exported is comprised by the model configuration and input

files. The inverse operation shall also be implemented, meaning that a model can be imported into an

openSF instance from the data obtained from the export operation. As the contents of the export relate to

data files, it is required that the model exists in the target openSF instance.

During the analysis phase there were some doubts raised regarding this functionality since the

export/import capability is already developed in openSF V2.2.1. The existing functionality exports an

entire session, including: (a) an SQL script that allows rebuilding the simulation structure in the

database, and (b) a tarball with all input and configuration files for the several session models.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 88 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

For now it shall be assumed that the intended export functionality is to export the data related to only

one model of a given session. The following functionality shall be implemented:

- open a dialog with the list of models of the session to be selected;

- export a tarball with input and configuration files for only the selected model.

55..66..66.. DDeeffiinniinngg ooppeennSSFF eelleemmeennttss eexxtteerrnnaallllyy

This capability is related to defining openSF elements externally, not using the HMI. Thus, elements

such as IO descriptors, models, simulations and session can be managed via XML files. Afterwards

these definitions can be imported to openSF. In the following sub-sections we discuss the technique for

importing data from XML into an openSF instance database.

55..66..66..11.. IImmppoorrttiinngg eexxtteerrnnaall ddeeffiinniittiioonnss

The proposed implementation approach is through the use of the “LOAD XML” MySQL statement. An

implementation of this new SQL statement has been accepted for MySQL 6.0. LOAD XML greatly

simplifies the task of importing data from an XML file into a MySQL table, without having to use

stored procedures. The (partial) syntax for this SQL statement is as shown here:

LOAD XML [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'filename'

[REPLACE | IGNORE]

INTO TABLE [db_name.]tbl_name

[ROWS IDENTIFIED BY '<tagname>']

It should be noted that in order to support this approach the MySQL database software must be migrated

from the current openSF supported version (mysql v5.1) to the most recent version available for the

Linux target platform (mysql v5.6 – refer to http://dev.mysql.com/downloads/mysql for version details).

55..66..66..22.. DDeeffiinniinngg eelleemmeennttss –– XXMMLL ffiillee ffoorrmmaatt

The LOAD XML statement reads data from an XML file into a table. LOAD XML supports three different

XML formats:

 Attributes are interpreted as column names, and attribute values as interpreted as column values:

<row column1="value1" column2="value2" .../>

 Tag names are interpreted as column names, and the content of these tags are interpreted as

column values:

<row>

 <column1>value1</column1>

 <column2>value2</column2>

</row>

 Table column names are derived from the name attributes of <field> tags, and column values are

taken from the contents of these tags:

 <row>

http://dev.mysql.com/downloads/mysql/

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 89 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

 <field name='column1'>value1</field>

 <field name='column2'>value2</field>

 </row>

The selected format to be used for the openSF XML import file corresponds to the third format listed

above. This is also the format used by MySQL tools such as mysqldump in XML output mode (that is,

using the --xml option). This implies that it is possible to easily extract the information from currently

existing openSF instances database in a format that later on can be imported using the new import

functionality.

By ensuring the compatibility between the new import file format and the mysql export capabilities

minimizes the risks of having to upgrade the MySQL version required for the use of the LOAD XML

statement. Refer to section 5.7 for details on the Migration to openSF V3 procedure.

Further details regarding the XML file format for defining openSF elements externally can be found in

the [AD-ICD].

55..66..77.. SSiimmpplliiffyy sseessssiioonn ffiillee aanndd ddiirreeccttoorryy nnaammeess

openSF approach for naming session execution directories as well as session execution supporting files

involves the use of names with a timestamp. The use of a timestamp is meant to ensure a unique

identification of the session folder and files. Nevertheless, upon openSF user’s request, it was identified

that handling such names with timestamp is not “user-friendly”. In order to overcome this

inconvenience openSF shall support a more user-friendly naming.

In order to simplify session directory names as well as other session execution supporting files symbolic

links shall be used. Each time a session is executed a Linux symbolic link shall be generated in the file

system with the name of the session being executed and pointing to the corresponding session execution

directory. This means the current organization based on having timestamps in session folders is kept but

a simpler way to access such folders is provided. Each time a session is re-run the symbolic link is re-

generated pointing to the latest session execution (the one with the latest timestamp).

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 90 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

55..77.. MMiiggrraattiioonn ttoo ooppeennSSFF VV33

Some of the above design approaches for new capabilities of openSF V3 prevent this new software

version to be used directly over an existing database instance. The following restrictions were identified:

- Hard restrictions:

o Migration of MySQL version from v5.1 to v5.6 (the most recent version available for the

Linux target platform);

o Drop of the log table from the database;

- Soft restrictions:

o Change the database structure to include an additional session configuration parameter to

support the removal of intermediate data capability.

To support the migration procedure to openSF V3 a script shall be developed reflecting the following

actions:

- Export the full contents of an existing openSF instance database. The database shall be exported

in the same format as specified for the new import capability (refer to section 5.6.6 for details);

- export the contents of the log table of an existing openSF instance database to the corresponding

log files;

- Initialize the additional session configuration parameter that supports the removal of intermediate

data to a default value (deactivated).

- Remove the database table that link Simulation with Session and add a new one relating Model

with Session.

A detailed set of instructions to support the porting from previous versions to openSF V3 shall be

presented in [AD-SUM].

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 91 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

66.. OOPPEENNSSFF PPAARRAAMMEETTEERR MMAANNAAGGEEMMEENNTT SSYYSSTTEEMM

This section gives a description of the design solution for the openSF Parameter Editor. It starts with a

brief definition of the openSF parameter management system and followed with:

 The description of the Parameter Editor purpose and functionality.

 A brief design overview and the analysis of the application use cases.

 Detailed system design with the most relevant package and class diagrams

66..11.. PPaarraammeetteerr EEddiittoorr OOvveerrvviieeww

DEIMOS is currently developing, in the frame of the Sentinel-3 Optical System Performance Simulator

(O-SPS), a parameter management tool used for creating and editing parameters as well as setting

relationships between them with the objective to ensure the consistency of the models’ configuration.

This tool is born from the necessity of performing a simulation consistency checking before running the

simulation chain. Analysing the parameter consistency before executing the models minimizes the

potential problems that could arise during the run. This aspect is really relevant when the simulator is

related to on-board and operational software where resources and time consumption are huge.

The Sentinel-3 Optical System Performance Simulator is an ESA activity led by Thales Alenia Space

France, and DEIMOS is the prime contractor for the activity.

In the frame of openSF project this application has been considered generic enough to be applicable for

all simulation projects that use openSF as framework.

The next section presents an overview of the parameter editor functionality and purpose.

66..22.. PPaarraammeetteerr mmaannaaggeemmeenntt ssyysstteemm

OpenSF parameter management system is composed of two software modules, a parameter rule editor

and a parameter editor. The first is used offline, before the simulation definition etc, and consists in a

simple grammar and a graphical editor allowing the user to define a set of rules. These rules will be used

to validate the parameters entered by the user in the session definition stage.

66..22..11.. PPaarraammeetteerr RRuulleess -- GGrraammmmaarr DDeeffiinniittiioonn

A simple grammar has been designed for defining the rules that govern the parameter editor. This

grammar is based in a XML syntax detailed below.

A single rule is composed of:

 A unique rule identifier

<rule id=”ID”>

 An operation tag, nested to the identifier. There are 3 operation types:

 Condition: <condition type=”ConditionType”>. Condition type is a list of the most used

logical operators (equals, exists, greater than, etc…)

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 92 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

 Action: <action type=”ActionType”>

 IF statement: nested to an “if” tag, a condition and an action.

This grammar allows the user to define rules (conditions, constraints etc…) when setting models

parameters during the session definition or edition. The use of XML language for grammar definition is

common in the software application world as it is flexible and provides a way to validate the syntax

(XSD schemas).

The openSF Parameter Editor also provides a graphical front-end for the creation and edition of this

grammar, from this point called openSF Rules Editor.

66..22..22.. PPaarraammeetteerr EEddiittoorr

The Parameter Editor is a graphical interface to visualize and edit the configuration files involved in a

simulation.

Within the openSF Parameter Editor users are able to:

 Open a rules file in order to validate a set of parameters with it.

 Edit the parameter rules file.

 Check the errors through an information log panel.

 Visualize all the parameters of a configuration file with an intuitive tree view.

 Create and delete parameters.

 Edit the values of a parameter.

 Save the configuration file.

66..22..33.. RRooaadd ffrroomm SS33--OOSSPPSS ttoo ooppeennSSFF

In order to adapt the Sentinel 3 O-SPS Parameter Editor to openSF, the development team has

performed the following tasks:

 Re-vamping of the rules: Currently the set of rules used in the S3 Parameter Editor is customized for

fulfilling the Sentinel 3 project requirements. The set of rules has been studied and, making an

abstraction, generalize them to be useful for all projects based on openSF.

 Seamless integration: the parameter editor currently manages the configuration files related to

models within Sentinel 3 simulation chain. This mechanism has been adapted in order to handle an

arbitrary number of configuration files suitable for any kind of simulation chains.

66..33.. PPaarraammeetteerr EEddiittoorr –– DDeessiiggnn OOvveerrvviieeww

The design of the openSF Parameter Editor is intended to meet the following goals:

 having a simple data model for rules definition

 seamless integration with current and older openSF versions

 using an XML-based syntax

 supporting use of XML schema for validating the syntax

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 93 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

 providing a friendly graphical user interface

 ease the simulation definition stage providing a tool for consistency checking

The design standards that drive the Parameter Editor development are the same as the ones used for

openSF application, such as:

 Model View Controller paradigm

 Singleton Pattern for rules message terminal

 Prototype Pattern for the objects visualization

 Factory Pattern for the dynamic rules interpreter

66..33..11.. PPaarraammeetteerr EEddiittoorr -- FFuunnccttiioonnaall RReeqquuiirreemmeennttss

In this section a diagram is presented showing the use cases for the openSF parameter editor. These

have been extracted from the Sentinel 3 OSPS requirements document.

Figure 6-1: Parameter Editor high level use cases

The diagram presented in illustrates the use case diagram for openSF parameter management system,

which depicts the context of the whole application, and the actor that interacts with it. In this figure only

the most relevant use cases have been depicted and those are:

 Create/Edit/Remove Rule: this case covers the definition, edition and deletion of a rule within

the system.

 Create/Edit/Remove Parameter: this case covers the definition, edition and deletion of a

parameter within the system.

 Validate configuration files: this action represents the validation of the configuration

parameters with the rules defined within the system.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 94 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Please notice that there are two different execution modes for the Parameter Editor, one when it is

launched from openSF and consequently related with the session definition and the other when it is

executed as a standalone application allowing editing a set of configuration files.

66..44.. PPaarraammeetteerr EEddiittoorr –– SSyysstteemm DDeessiiggnn

This section gives a brief description of the method used for the architectural design, the Unified

Modeling Language used for formal diagrams and the system background and context.

66..44..11.. DDeessiiggnn MMeetthhoodd

The application is distributed in packages used to organize the namespace for packages, classes and

interfaces.

In the design process of the system the following conventional guideline to name Java components has

been used throughout the whole document:

 Classes: class names should be nouns, with the first letter of each class capitalized, such as Rule and

Parameter classes.

 Packages: package names should be also nouns, with the first letter in lowercase, and the first letter

of each internal word in capitalized, such as manager or rulesEditor packages.

 Interfaces: interfaces names should be capitalized like class names and must end with the suffix

“IF” or “Interface”, such as RulesInterface.

66..44..22.. SSyysstteemm DDeeccoommppoossiittiioonn

The openSF parameter management system is decomposed in four high level packages called view,

domain, manager and support. The first three are a direct consequence of the 3-tier architecture

approach from the model-view-controller paradigm and the last one is created for support purposes and

to give some useful services to every package in the system such as, system constraints, frequent-used

functionalities etc.... In the following diagram the high-level hierarchical structure of these packages is

shown:

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 95 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 6-2: Parameter Editor High Level Architecture diagram

 view: Contains packages and classes related to the appearance and behaviour of all visible

components of the graphic user interface (windows, frames, visual components and other widgets).

This package shares and implements a public interface that could be accessed by the support and

manager layers. It has a strong binding with the manager package playing the controller role in the

MVC design approach.

 domain: This is the core of the parameter management system. It is responsible for all activities

related with the specific domain purpose such us storage and entity object representation. This

involves the capabilities to carry out the definition and management of the necessary elements

identified in the domain: parameters, rules, configuration files, etc… This package is also in charge

of storage user sessions in a persistent layer (file/database)

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 96 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

 manager: These classes are meant to manage, and control the sets of domain objects (elements).

Thus, they shall be in charge of managing the different kinds of elements in the system: rules,

parameters, namespaces etc…

 support: Contains all classes related to the whole system initialization accessing to external

resources and some utilities to be used under the whole system scope. The support package shall be

accessible from all packages within the application as it provides auxiliary functionalities that all

layers have in common (OS specifics, filesystem interaction etc…).

The domain and the manager packages correspond to the model and controller layers respectively, from

the MVC design paradigm. The view package as it names points, corresponds to the view layer from the

MVC.

The base namespace of the system and of these packages is openSFpms.

66..44..22..11.. ddoommaaiinn

This package corresponds with the domain layer of the three-tier paradigm.

This package represents the core of the system. All packages and classes related to the parameter

consistency checking are grouped here. From this package it is controlled also the persistent layer of the

parameter editor. There are four packages inside it as shown in Figure 6-3.

 parameters: this package contains the classes that represent the different kind of simulation

parameters involved in openSF.

 sessionPMS: this package is in charge of the persistent layer management. It is foreseen two

different mechanisms, one using the openSF database and the other storing the session info into a

file. This second mechanism is available when the Parameter Editor is in standalone mode.

 rules: Contains all the classes representing the constraints and relationships between simulation

parameters.

 database: This package contains classes designated to control the connection to an external database

server and to perform queries and updates against it.

Figure 6-4 and Figure 6-5 show the class diagrams for parameter and rules packages respectively.

Figure 6-3: openSFpms.domain packages diagram

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 97 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

66..44..22..11..11.. PPaarraammeetteerr

66..44..22..11..11..11.. TTyyppee

This component is a class.

66..44..22..11..11..22.. PPuurrppoossee

This class provides a representation of the common attributes for a simulation parameter.

66..44..22..11..11..33.. FFuunnccttiioonn

This class gives an interface to retrieve some parameter attributes without taking into account the

parameter type (Integer, Double, String, File or Boolean).

The attributes that all parameters have in common are:

 value: parameter value in string format

 description: string with a brief description

 name: string with the unique parameter name

 dimensions: an array of integers representing the value dimensions (rows x columns)

 visibility: integer whose purpose is to provide a mechanism to hide some parameters to

users depending on the user-role (admin, operator, etc…).

66..44..22..11..11..44.. DDeeppeennddeenncciieess

This class is related with the XML parsing as it represents an entity extracted from a XML configuration

file.

66..44..22..11..11..55.. IInntteerrffaacceess

The public interface declared by this class is as follows:

Table 21: list of Parameter class public operations

Operation name Input Output Description

getParamValue paramName Array of

values

This method retrieves the list of

parameter values.

getDefaultValue paramName Array of

values

This method retrieves the list of

parameter default values. If not

default value set returns a void set

of Objects.

checkValidity paramName Boolean This method checks the validity of a

parameter in terms of value

consistency (min, max, type)

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 98 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 6-4: openSFpms.parameter class diagram

66..44..22..11..22.. RRuulleessIInntteerrffaaccee

66..44..22..11..22..11.. TTyyppee

This component is an interface.

66..44..22..11..22..22.. PPuurrppoossee

This interface provides an abstract bridge for the controller package in order to access Rules methods.

66..44..22..11..22..33.. FFuunnccttiioonn

The functionality of this interface is give a common API for accessing to the different rules present on

the system.

66..44..22..11..22..44.. DDeeppeennddeenncciieess

This interface depends on rules and parameters packages as it relates both of them.

66..44..22..11..22..55.. IInntteerrffaacceess

The public methods of this interface are the followings:

Table 22: list of RulesInterface public operations

Operation name Input Output Description

getNamespace ruleID Namespace Returns the namespace where this

rule can be applied.

checkIntegrity ruleID Boolean This method checks if the Rule

syntax is correct.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 99 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Operation name Input Output Description

getErrorMessage ruleID String Gets a string with a message in

order to be shown in the error

terminal.

applyRule ruleID Boolean Applies a rule/constraint to a set of

parameter values. In case the values

are compliant returns true, false

otherwise.

Figure 6-5: openSFpms.domain.rules class diagram

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 100 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

66..44..22..22.. mmaannaaggeerr

This package contains the manager classes. These classes are meant to manage, and control the sets of

domain objects (elements). Thus, they shall be in charge of managing the different kinds of elements in

the system: namespaces, parameters, rules etc…

This package also contains the classes used for connecting the view and domain packages:

 To prepare the appearance of every action performed by users, as presenting forms, tables, trees, etc

and also menus and buttons to let the user triggers the operations.

 To access the domain package to get data needed. This represents the connection to the domain

layer presenting or providing the information managed by this part of the application.

The manager package is composed of five sub-packages:

 sessionMgr: this package contains the classes corresponding to the Parameter Editor graphical

interface.

 rulesManager: this package contains the classes corresponding to the Rules Editor graphical

interface.

 paramManager: contains the classes corresponding to views used by the previously mentioned

before (file selection, specific renderers etc…)

 fileHandling: contains the classes corresponding to views used by the previously mentioned before

(file selection, specific renderers etc…)

 XMLparser: contains the classes corresponding to views used by the previously mentioned before

(file selection, specific renderers etc…)

Figure 6-6: openSFpms.manager packages diagram

66..44..22..33.. vviieeww

This package groups the classes related to the appearance of the user machine interaction.

This view package is, in turn, composed of three packages:

 parameterEditor: this package contains the classes corresponding to the Parameter Editor graphical

interface.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 101 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

 rulesEditor: this package contains the classes corresponding to the Rules Editor graphical interface.

 auxiliaryViews: contains the classes corresponding to views used by the previously mentioned

before (file selection, specific renderers etc…)

Figure 6-7: openSFpms.view packages diagram

Every package and classes inside the view package uses intensively the java.awt and javax.swing

packages, whose descriptions are outside the scope of this document but can be found in [RD SWING].

This view package is accessed by the manager package in order to access domain elements attributes

and interact with them.

66..44..33.. GGUUII ddeessiiggnn

In this section will be shown some draft interfaces for the openSF parameter management system that as

mentioned before is composed of a Rule Editor and a Parameter Editor interface.

The standards used for this application GUI design are the same ones used for the openSF system.

Figure 6-8 and Figure 6-9 show a draft of the graphical interfaces for Parameter and Rule editor

respectively.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 102 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 6-8: Parameter Editor draft interface

Figure 6-9: Rule Editor draft interface

Validate the
configuration file Open the parameter

rules editor

Parameter tree view

Delete a parameter

Create a new
parameter

Edit value. Users can
specify

multidimensional
structures.

Information log
terminal.

Save the
configuration file

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 103 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

77.. OOSSFFII –– OOPPEENNSSFF IINNTTEEGGRRAATTIIOONN LLIIBBRRAARRIIEESS

This section presents the architecture of the openSF integration libraries.

 Overview of the integration libraries

 Integration libraries design

 Architecture of the OSFI adaptation for other programming languages. This section will also show

what is the interaction mechanism between OSFI, openSF, Matlab and IDL.

77..11.. IInnttrroodduuccttiioonn

The Open Simulation Framework Integration Libraries (OSFI from now on) will be used to ease the

integration of models into the open Simulation Framework.

The main goals of the integration libraries:

 Solve the interfacing issues between models and openSF

 Minimize the model code intrusion, providing native libraries for each of the supported

programming languages

The Integration Libraries activity provides model developer with a set of routines with a well-defined

public interface hiding the implementation details.

Figure 7-1: OSFI Integration with openSF

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 104 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

77..22.. IInntteeggrraattiioonn LLiibbrraarriieess DDeessiiggnn

This section gives a brief description of the method used for the architectural design, the Unified

Modeling Language used for formal diagrams and the system background and context.

OSFI libraries are decomposed in the following packages also shown in Figure 7-2:

 CLP: containing all classes correspondent to models command line interface

 EHLog: logging and openSF communication module

 ConFM: responsible of configuration files parsing and simulation parameters retrieval.

Figure 7-2: OSFI common packages

OSFI design details described below these lines correspond to the C++ implementation; other

programming language issues are listed in section 7.3.

77..22..11.. CCLLPP

CLP stands for Command Line Parsing and is the software module in charge of taking model command

line arguments and parse them providing a set of routines to easily access them. This module also

checks that the command line used to invoke the model is compliant with [AD-ICD].

Figure 7-3 shows the CLP class diagram, listing interface methods.

Figure 7-3: CLP class diagram

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 105 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

77..22..22.. EEHHLLoogg

EHLog stands for error handler and logging module, and is the package responsible of formatting log

and error messages following the convention specified in [AD-ICD].

This module core class is Logger whose diagram is shown in Figure 7-4.

Figure 7-4: Logger class diagram

77..22..33.. CCoonnFFMM

This package is the responsible of parsing/reading the XML configuration files, store parameters and

present them to the model.

ConFM module makes use of the Apache XercesC++ that is a validating XML parser for generating,

manipulating, and validating XML documents using the DOM, SAX, and SAX2 APIs.

Classes contained in this package are:

 XMLparser: XercesC adaptation class that provides the foundations to read and parse an XML file.

 ParamReader: class that inherits from XMLparser providing functions to read XML files and

retrieve configuration

 Parameter: object representation of a simulation parameter, encapsulating all parameter attributes

such as, name, value, type, dimensions etc…

Additionally this module keeps track of model configuration parameters in a map like container that

identifies a parameter name with the correspondent object.

This package contains also extra classes that support some ConFM functionalities:

 TreeErrorReporter: for raising errors coming from the XML DOM parsing.

 DynamicArray: implementation of a generic and dynamic bi-dimensional matrix.

Figure 7-5 shows class diagram of the ConFM package.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 106 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 7-5: ConFM class diagram

77..33.. OOSSFFII OOtthheerr pprrooggrraammmmiinngg llaanngguuaaggeess

This section shows the design of OSFI specific components aimed to support models written in other

programming languages.

77..33..11.. OOSSFFII wwrraappppeerrss –– CC,, FFoorrttrraann 9900 aanndd FFoorrttrraann 7777

OSFI support for other programming languages is based in the implementation of a wrapper over OSFI

C++ core libraries. This design implies the implementation of an adaptation layer that faces the interface

issues between C++ and the other programming languages.

Currently the languages supported by OSFI are C, F90 and F77, listed below some of the interface

problems found for each programming languages.

 C: C++ string vs. char* C arrays, no native boolean type in C

 Fortran 90 and Fortran 77: array rows and columns, string handling

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 107 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 7-6: OSFI wrapper, implementation diagram

77..33..22.. OOSSFFII MMaattllaabb

The OSFI Matlab component is composed by a group of Matlab code files (.m) following the same

philosophy as the one used for core C++ libraries.

It has been decided to implement Matlab code files instead of a wrapper due to the following reasons:

 Matlab programming requires less coding effort than any other mechanism (mex functions etc…).

 Ease the use of the libraries in the model developer side. See [RD-OSFI-DM]

 Allow model developers to test the code from Matlab Workbench.

 OS architecture independency.

The main drawback of this implementation decision is that the maintenance is tougher as a change in

OSFI core libraries implies also a change in OSFI Matlab libraries.

OSFI Matlab uses the object oriented programming approach introduced in Matlab since version

R2008a. This fact implies that OSFI libraries do not support previous Matlab versions. Large

documentation support about OOP in Matlab can be found in the web.

Classes within OSFI Matlab libraries are:

 Logger.m: in charge of openSF log message and communication interface

 ConFM.m: XML parsing and parameter retrieval

 Parameter.m: encapsulates parameter attributes and functionalities

 CLP.m: command line arguments, configuration, input and output files

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 108 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Figure 7-7: OSFI Matlab Implementation diagram

77..33..22..11.. OOppeennSSFF IInntteeggrraattiioonn:: EExxeeccuuttiinngg MMaattllaabb mmooddeellss

The mechanism used to call Matlab models from the openSF HMI (SessionMgr) is the one provided by

Mathworks to execute scripts in batch mode from the command line.

The openSF and Matlab interaction method is as follows:

1. A Matlab script file is provided as model binary.

2. openSF gets OS runtime.

3. openSF calls Matlab in batch mode through the OS runtime passing as argument the model binary

and the required configuration, input and output files

Figure 7-8: Matlab Model Execution

77..33..33.. OOSSFFII IIDDLL

The architecture of the OSFI IDL libraries is conceptually the same as the one used for OSFI C++ and

Matlab libraries.

The following IDL source code files (.pro) compose OSFI IDL libraries:

 Logger.pro: in charge of openSF log message and communication interface

 ConFM.pro: XML parsing and parameter retrieval

 Parameter.pro: encapsulates parameter attributes and functionalities

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 109 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

 CLP.pro: command line arguments, configuration, input and output files

In the IDL case a new component is introduced in order to allow openSF users to directly execute IDL

source code files from the framework. This component is the idl-model coded in C++ and that makes

use of the Callable IDL mechanism that basically is an interface to execute IDL commands from a code

written in Java, C or C++.

77..33..33..11.. iiddll--mmooddeell

This software component is a C++ executable that is in charge of compiling IDL source code passed as

argument (model) and the OSFI IDL libraries.

As result this executable is a layer that makes transparent to the user the process of compiling IDL code.

A major disadvantage of this mechanism is that it is not OS architecture independent and needs to be re-

compiled for each IDL version and target computer platform.

Idl-Model component is not necessary when the IDL source code (OSFI components + model) has been

previously compiled and saved in .SAV format.

For more information about Callable IDL please visit the ITT IDL homepage and read the IDL External

Development Guide.

Figure 7-9: OSFI IDL implementation diagram

77..33..33..22.. OOppeennSSFF IInntteeggrraattiioonn:: EExxeeccuuttiinngg IIDDLL mmooddeellss

 IDL saved file execution (.SAV)

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 110 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

1. IDL saved file is specified as model binary

2. openSF executes IDL runtime through OS runtime

3. IDL saved file is passed as argument to the IDL runtime

4. Configuration, input and output files shall be specified through environment variables as IDL

runtime does not allow command line arguments.

 IDL source file execution (.PRO)

1. IDL source file is specified as model binary

2. openSF executes idl-model.bin passing as argument the IDL .pro file and configuration, input and

output files.

3. idl-model compiles model source file and OSFI libraries and execute as it would be done through

IDL Workbench.

Figure 7-10: IDL model execution modes.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 111 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

88.. OOSSFFEEGG –– OOPPEENNSSFF EERRRROORR GGEENNEERRAATTIIOONN LLIIBBRRAARRIIEESS

This section presents the architecture of the openSF error generation libraries.

 Overview of the error generation libraries;

 Description of the libraries architecture;

 Specification of the libraries error functions;

 Error generation libraries design.

88..11.. EErrrroorr ggeenneerraattiioonn lliibbrraarriieess oovveerrvviieeww

The openSF tool allows users to integrate and execute pieces of code, «models» that form the building

blocks of a simulation process. Typically those pieces of code, «models» are handled by openSF as

simple executable programs with three interfaces, input, output and configuration.

Under this scenario appears the goal of performing a statistical analysis of the E2E simulator driven by

the errors and perturbations present in the parameters involved in a simulation chain.

The Open Simulation Framework Error Generation Libraries (OSFEG from now on) will be used as a

tool to ease the mathematical modeling of a perturbation within statistical analysis scenarios. OSFEG

offers to developers a well-documented interface to ease the modeling and generation of a perturbation

over desired parameters. The libraries provide an error-modeling interface based on a XML file

definition and its correspondent implementation in C++.

88..22.. EErrrroorr ggeenneerraattiioonn lliibbrraarriieess aarrcchhiitteeccttuurree

OSFEG comes in different distributions depending on the needs of the user:

 Source package, including necessary sources in the supported language, for including and compiling

with other sources;

 Binary package, including headers and static/dynamic libraries for linking with other sources. There

is a version of this package for the supported target machine and Linux Operating System.

Figure 8-1 shows a high-level view of the contents of OSFEG distributions.

Figure 8-1: OSFEG deployment

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 112 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

88..33.. OOppeennSSFF eerrrroorr ggeenneerraattiioonn lliibbrraarriieess ssppeecciiffiiccaattiioonn

This section describes the mathematical functions implemented within the error generation libraries. The

libraries include the most used analytical and random functions for parameter perturbation in E2E

simulation modeling scenarios.

88..33..11.. EErrrroorr ddeeffiinniittiioonn ffiilleess

The parameter perturbation functions are defined through an XML file. Details regarding the format of

the XML file can be found in [AD-ICD].

88..33..22.. EErrrroorr FFuunnccttiioonnss

For a detailed description of the error functions and the variables involved in the function definitions

please refer to the [AD-SRD].

An example of an error definition file implementing all the binary and some composite operations can

be found in the [AD-ICD].

88..44.. EErrrroorr GGeenneerraattiioonn LLiibbrraarriieess DDeessiiggnn

This section gives a brief description of the method used for the architectural design and the Unified

Modeling Language used for formal diagrams.

OSFEG libraries are decomposed in a set of classes shown in Figure 8-2:

Figure 8-2: OSFEG main packages

OSFEG design details described below corresponds to the C++ implementation of the libraries.

88..44..11.. EErrrroorrSSoouurrcceess

ErrorSources class is the main entry point for error generation. This class is the responsible of

parsing/reading the XML error definition files and present them to the error generation functions.

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 113 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

This module makes use of the Apache XercesC++ that is a validating XML parser for generating,

manipulating, and validating XML documents using the DOM, SAX, and SAX2 APIs (refer to [AD-ICD]

for details on the XML file format).

Figure 8-3 shows the Error Sources class diagram, listing interface methods.

class Frameworks

map<string, Composite *>

«typedef»

errorsMap

OSFEG_XMLparser

ErrorSources

- errors: errorsMap

- simTime: double

+ ErrorSources(string)

+ ~ErrorSources()

+ getError(string, double) : double

+ getSimTime() : double

- parse(DOMNode*, Composite*) : void

- parseAttributes(DOMElement*, string, vector<string>*) : int

- readAddition(DOMNode*) : Composite *

- readAffine(DOMNode*) : Composite *

- readBeta(DOMNode*) : Composite *

- readBias(DOMNode*) : Composite *

- readCustomPDF(DOMNode*) : Composite *

- readDivision(DOMNode*) : Composite *

- readExponential(DOMNode*) : Composite *

- readExponentiation(DOMNode*) : Composite *

- readFloat(DOMNode*) : Composite *

- readGamma(DOMNode*) : Composite *

- readLinear(DOMNode*) : Composite *

- readLinearSampling(DOMNode*) : Composite *

- readMultiplication(DOMNode*) : Composite *

- readNormal(DOMNode*) : Composite *

- readParabolic(DOMNode*) : Composite *

- readPoisson(DOMNode*) : Composite *

- readPolynomial(DOMNode*) : Composite *

- readPolynomialSampling(DOMNode*) : Composite *

- readRoot(DOMNode*) : Composite *

- readSinusoidal(DOMNode*) : Composite *

- readSplineSampling(DOMNode*) : Composite *

- readStep(DOMNode*) : Composite *

- readSubtraction(DOMNode*) : Composite *

- readTangent(DOMNode*) : Composite *

- readTruncatedGaussian(DOMNode*) : Composite *

- readUniform(DOMNode*) : Composite *

- readUniformDiscrete(DOMNode*) : Composite *

- traverse(DOMNode*) : Composite *

IErrorSources

+ getError(std::string, double) : double

Utilities

+ pi: double {readOnly}

+ twoPi: double {readOnly}

+ ArcSecToDeg(double) : double

+ DegToArcSec(double) : double

+ DegToRad(double) : double

+ NormaliseTo180(double) : double

+ NormaliseTo2PI(double) : double

+ NormaliseTo360(double) : double

+ NormaliseToPI(double) : double

+ RadToDeg(double) : double

-errors

Figure 8-3: ErrorSources class diagram

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 114 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

88..44..22.. EErrrroorr FFuunnccttiioonnss

The several available error functions correspond to a given class which can be used to generate the

intended values. There are two types of functions corresponding to two class hierarchies:

 Analytical: hierarchy representing functions with a given mathematical formula (see Figure 8-4);

 Random: hierarchy representing functions with an associated random factor (see Figure 8-5).

class Frameworks

Composite

Analytical

type: string

value: double

+ Analytical(string)

+ Analytical(double)

+ ~Analytical()

+ getValue(double) : double

BinaryOperations

+ BinaryOperations(string)

- getAddition(double) : double

- getDivision(double) : double

- getExponentiation(double) : double

- getMultiplication(double) : double

- getRoot(double) : double

- getSubtraction(double) : double

+ getValue(double) : double

Harmonic

- getSinusoidal(double) : double

- getTangent(double) : double

+ getValue(double) : double

+ Harmonic(string)

Polynomial

- getAffine(double) : double

- getBias(double) : double

- getLinear(double) : double

- getParabolic(double) : double

- getPolynomial(double) : double

+ getValue(double) : double

+ Polynomial(string)

Sampled

A: vector<double>

B: vector<double>

C: vector<double>

z: vector<double>

- getLinear(double) : double

- getPolynomial(double) : double

- getSpline(double) : double

+ getValue(double) : double

+ ~Sampled()

+ Sampled(string)

- setSpline(double) : void

Step

- getStep(double) : double

+ getValue(double) : double

+ Step()

Figure 8-4: Analytical hierarchy class diagram

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 115 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

class Frameworks

Random

- _DIV: int32_t = 1+(_M-1)/_NTAB {readOnly}

- _F: double = 1. / _M {readOnly}

- _M: int32_t = 0x7fffffff {readOnly}

- _next: int32_t

- _NTAB: short = 32 {readOnly}

- _seed: int32_t

- _seed2: unsigned

- _table: int32_t ([_NTAB])

- A_: int32_t = 0x10ff5 {readOnly}

- fModified: bool

- p1Modified: double

- p2Modified: double

- pModified: double

- Q_: int32_t = 0x787d {readOnly}

- R_: int32_t = 0x5d5e {readOnly}

- _seedTable(void) : void

- _u(void) : double

+ beta(double, double, double, double) : double

+ exponential(double, double) : double

+ gamma(double, double, double) : double

+ getSeed() : int32_t

+ normal(double, double) : double

- normalModified(double, double) : double

+ operator!=(Random&) : bool

+ operator=(Random&) : Random&

+ operator==(Random&) : bool

+ poisson(double) : int

+ Random(int32_t)

+ Random(void)

+ Random(int32_t, bool)

+ ~Random(void)

+ Random(Random&)

+ reset(int32_t) : void

+ reset(void) : void

+ uniform(double, double) : double

+ uniformDiscrete(int, int) : int

RandomFunctions

- fModified: bool

- p1Modified: double

- p2Modified: double

- pModified: double

- random: Random*

- cdfNormal(double, double, double) : double

+ customPDF(double, double, double, vector<double>) : double

+ RandomFunctions(Random*)

+ ~RandomFunctions()

+ truncatedNormal(double, double, double, double) : double

Composite

Stochastic

- random: Random*

- randomFunctions: RandomFunctions*

- type: string

- getBeta() : double

- getCustomPDF() : double

- getExponential() : double

- getGamma() : double

- getNextValue() : double

- getNormal() : double

- getPoisson() : int

- getTruncatedGaussian() : double

- getUniform() : double

- getUniformDiscrete() : int

+ getValue(double) : double

+ reset() : void

+ setSeed(int32_t) : void

+ Stochastic(string, int32_t)

+ ~Stochastic()

-randomFunctions

-random

-random

Figure 8-5: RandomFunctions hierarchy class diagram

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 116 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

99.. TTRRAACCEEAABBIILLIITTYY MMAATTRRIIXXEESS

In this section we include traceability matrixes relating System Requirements to System Components.

99..11.. DDiirreecctt TTrraacceeaabbiilliittyy

In this section we include a traceability matrix from System Requirements to System Components.

Comments are added to further clarify the reasons for the assignments, as well as to explain any

limitation or constraint.

Those requirements marked with an “R” at the “Design component” column are validated by review and

therefore, do not have to be traced.

Table 23: Direct Traceability Table

System Req. Design component Comments

SR-FUN-0010 Model,Session,Simulation,SessionExecutor,
ModelChainExecutor

SR-FUN-0020 Session,SessionMgr, SessionView, SessionDC

SR-FUN-0030 Session,ToolMgr,ToolDC

SR-FUN-0040 HelpView

SR-FUN-0050 R

SR-FUN-0060 Model,ModelView,ModelDC,ModelMgr

SR-FUN-0070 Model,ModelView,ModelDC,ModelMgr

SR-FUN-0080 Model,ModelView,ModelDC,ModelMgr

SR-FUN-0090 Model,ModelView,ModelDC,ModelMgr

SR-FUN-0100 DELETED

SR-FUN-0110 DELETED

SR-FUN-0120 DELETED

SR-FUN-0130 Descriptor,DescriptorMgr,DescriptorView,DescriptorDC

SR-FUN-0140 Descriptor,DescriptorMgr,DescriptorView,DescriptorDC

SR-FUN-0150 Descriptor,DescriptorMgr,DescriptorView,DescriptorDC,

SR-FUN-0160 Descriptor,DescriptorMgr,DescriptorView DescriptorDC,

SR-FUN-0170 Descriptor,DescriptorMgr,DescriptorDC
DescriptorDC,Database,

SR-FUN-0180 Descriptor,DescriptorMgr,DescriptorDC, DescriptorView

SR-FUN-0190 Descriptor,DescriptorMgr,DescriptorDC,Database

SR-FUN-0200 Model,ModelMgr

SR-FUN-0210 Model,ModelMgr,Database

SR-FUN-0220 ModelMgr,ModelDC,ModelView

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 117 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

System Req. Design component Comments

SR-FUN-0230 ModelMgr,ModelDC,ModelView

SR-FUN-0240 ModelMgr,ModelDC,ModelView

SR-FUN-0250 ModelMgr,Database

SR-FUN-0260 Model,ModelMgr

SR-FUN-0270 Model,ModelMgr

SR-FUN-0280 Model,ModelMgr,ModelDC,ModelView

SR-FUN-0290 Model,ModelMgr,ModelDC,ModelView, Database

SR-FUN-0300 Model,ModelMgr,Database

SR-FUN-0310 Model,ModelMgr,ModelDC,ModelView

SR-FUN-0320 Model,ModelMgr,ModelDC,ModelView

SR-FUN-0330 Model,ModelMgr,Database

SR-FUN-0340 Stage,StageMgr,StageDC,StageView

SR-FUN-0350 Stage,StageMgr,StageDC,StageView

SR-FUN-0360 Stage,StageMgr,StageDC,StageView

SR-FUN-0370 Stage,StageMgr,StageDC,StageView

SR-FUN-0380 Stage,StageMgr,Database

SR-FUN-0390 Stage,StageMgr,StageDC,StageView

SR-FUN-0400 Stage,StageMgr,Database

SR-FUN-0410 Stage,StageMgr,StageDC,StageView

SR-FUN-0420 Stage,StageMgr,Database

SR-FUN-0430 Sim,SimMgr,SimDC,SimView

SR-FUN-0440 Sim,SimMgr,SimDC,SimView

SR-FUN-0450 Sim,SimMgr,SimDC,SimView

SR-FUN-0460 Sim,SimMgr,SimDC,SimView,DescriptorMgr,ModelMgr

SR-FUN-0470 Sim,SimMgr,SimDC,SimView,StageMgr

SR-FUN-0480 Sim,SimMgr,SimDC,SimView,ModelMgr

SR-FUN-0490 Sim,SimMgr,Database

SR-FUN-0500 Sim,SimMgr,Database

SR-FUN-0510 Sim,SimMgr,DescriptorMgr,ModelMgr,Database

SR-FUN-0520 Sim,SimMgr,SimDC,SimView

SR-FUN-0530 Sim,SimMgr,SimDC,SimView

SR-FUN-0540 Sim,SimMgr,SimDC,SimView

SR-FUN-0550 Sim,SimMgr,Database

SR-FUN-0560 Sim,SimMgr,SimDC,SimView

SR-FUN-0570 Sim,SimMgr,SimDC,SimView

SR-FUN-0580 Sim,SimMgr,Managers,Database

SR-FUN-0590 Session,SessionMgr,SessionDC,SessionView

SR-FUN-0600 Session,SessionMgr,SessionDC,SessionView

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 118 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

System Req. Design component Comments

SR-FUN-0610 Session,SessionMgr,SessionDC,SessionView

SR-FUN-0620 Session,SessionMgr,SessionDC,SessionView

SR-FUN-0630 Session,SessionMgr,Database

SR-FUN-0640 Session,SessionMgr

SR-FUN-0650 Session,SessionMgr,Database

SR-FUN-0660 Session,SessionMgr

SR-FUN-0670 Session,SessionMgr,SessionDC,SessionView

SR-FUN-0680 Session,SessionMgr,SessionDC,SessionView

SR-FUN-0690 Session,SessionMgr,SessionDC,SessionView

SR-FUN-0700 Session,SessionMgr,SessionDC,SessionView

SR-FUN-0710 SessionView,Parameter

SR-FUN-0720 Session,SessionMgr,Database

SR-FUN-0730 Session,SessionMgr,SessionDC,SessionView

SR-FUN-0740 Session,SessionMgr,SessionDC,SessionView

SR-FUN-0750 Session,SessionMgr,Managers,Database

SR-FUN-0760 Session,SessionMgr,SessionDC,SessionView,ToolMgr

SR-FUN-0770 Session,SessionMgr,SessionDC,SessionView

SR-FUN-0780 SessionDC,SessionView,ModelMgr,Parameter,
pms.Parameter,pms.Rule

SR-FUN-0790

SessionDC,SessionView,ModelMgr,Parameter,

pms.Parameter,pms.Rule

SR-FUN-0800 SessionView, pms.ParameterEditor

SR-FUN-0810 SessionView, pms.ParameterEditor

SR-FUN-0820 Session,SessionMgr,SessionDC,SessionView

SR-FUN-0830 SessionMgr,SessionExecutor

SR-FUN-0840 SessionMgr,SessionExecutor,ModelChainExecutor,
SessionView

SR-FUN-0850 RepositoryView,RepositoryDC,SessionExecutor

SR-FUN-0860 SessionMgr,SessionExecutor,ModelChainExecutor

SR-FUN-0870 SessionMgr

SR-FUN-0880 Logger,SessionView

SR-FUN-0890 SessionMgr,SessionView,ModelChainExecutor,
SessionExecutor

SR-FUN-0900 SessionView,DescriptorMgr,IO

SR-FUN-0910 SessionView

SR-FUN-0920 SessionMgr,ModelChainExecutor,SessionExecutor

SR-FUN-0930 SessionMgr,ModelChainExecutor,SessionExecutor,
SessionView

SR-FUN-0940 Tool,ToolMgr,SessionMgr,SessionDC

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 119 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

System Req. Design component Comments

SR-FUN-0950 RepositoryDC,SessionMgr,SessionDC, SessionView

SR-FUN-0960 SessionView,SessionDC

SR-FUN-0970 SessionView,Logger,SessionDC

SR-FUN-0980 SessionView

SR-FUN-0990 Tool,ToolMgr,ToolDC,SessionMgr

SR-FUN-1000 Tool,ToolMgr,ToolDC,SessionMgr

SR-FUN-1010 SessionView,Logger

SR-FUN-1020 Logger

SR-FUN-1100 ConnectionControl,Database,DatabaseIF DBServer

SR-FUN-1110 ConnectionControl,Database,DatabaseIF DBServer

SR-FUN-1120 pms.Parameter,pms.Rule

SR-FUN-1130 pms.Parameter, pms.Rule, pms.ParameterEditor
pms.RulesEditor

SR-FUN-1140 pms.ParameterEditor

SR-FUN-1150 pms.ParameterEditor

SR-FUN-1160 pms.Parameter, pms.Rule, pms.ParameterEditor,
pms.RulesEditor

SR-FUN-1170 pms.ParameterEditor

SR-FUN-1345/3.0 Logger

SR-FUN-1450/3.0 ParallelScheduler {ParallelEventManager,
ExecutionModelSet, ModelExecutionThreadMgr,
ModelExecutionThread, ModelExecutionThreadSet,
ThreadPool}

SR-FUN-1460/3.0 ParallelScheduler {ParallelEventManager,
ExecutionModelSet, ModelExecutionThreadMgr,
ModelExecutionThread, ModelExecutionThreadSet,
ThreadPool}

SR-FUN-1470/3.0 ParallelScheduler, SessionExecutor

SR-FUN-1480/3.0 Controller, ModelChainExecutor

SR-FUN-1490/3.0 Controller, ModelChainExecutor

SR-FUN-1500/3.0 Controller, ModelChainExecutor

SR-FUN-1510/3.0 Controller, ModelChainExecutor

SR-FUN-1520/3.0 Controller, ModelChainExecutor

SR-FUN-1530/3.0 Controller, ModelChainExecutor

SR-FUN-1540/3.0 ModelMgr, ModelDC, ModelView, ConnectionControl,
Database, DatabaseIF

SR-FUN-1550/3.0 ModelMgr, ModelDC, ModelView

SR-FUN-1560/3.0 ModelMgr, ModelDC, ModelView

SR-FUN-1570/3.0 ModelMgr, ModelDC

SR-FUN-1580/3.0 ModelMgr, ModelDC, ModelView

SR-FUN-1590/3.0 ModelMgr, ModelDC

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 120 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

System Req. Design component Comments

SR-FUN-1600/3.0 ModelMgr

SR-FUN-1610/3.0 ModelMgr, ModelDC

SR-FUN-1620/3.0 Controller, DescriptorDC, ModelDC, SessionDC,
SimDC, ToolDC

SR-FUN-1630/3.0 Controller, DescriptorDC, ModelDC, SessionDC,
SimDC, ToolDC

SR-FUN-1640/3.0 ConnectionControl, Database, DatabaseIF, DBServer,
Controller

SR-FUN-1650/3.0 Managers

SR-FUN-1660/3.0 Controller, Managers

SR-FUN-1670/3.0 ConnectionControl, Database, DatabaseIF, DBServer,
DescriptorDC, ModelDC, SessionDC, SimDC, ToolDC,
StageDC

SR-FUN-1680/3.0 OSFEG library

SR-FUN-1690/3.0 OSFEG library

SR-FUN-1700/3.0 OSFEG library

SR-FUN-1710/3.0 OSFEG library

SR-FUN-1720/3.0 OSFEG library

SR-FUN-1730/3.0 OSFEG library

SR-IMP-0010 R

SR-IMP-0020 R

SR-IMP-0030 R

SR-IMP-0040 R

SR-IMP-0050 R

SR-IMP-0060 R

SR-IMP-0070 R

SR-IMP-0080 R

SR-IMP-0090 R

SR-IMP-0100 R

SR-IMP-0110 R

SR-IMP-0120 R

SR-INS-0010 R

SR-INT-0010 Model

SR-INT-0020 Model

SR-INT-0030 Logger,SessionExecutor,ModelChainExecutor

SR-OPE-0010 Mmi

SR-OPE-0020 SessionMgr,SessionExecutor,ModelChainExecutor

SR-OPE-0030 R

SR-OPE-0040 R

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 121 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

System Req. Design component Comments

SR-OPE-0050 R

SR-RES-0010 Mmi

SR-RES-0020 Database

SR-RES-0030 Model

SR-SAF-0080 R

99..22.. IInnvveerrssee TTrraacceeaabbiilliittyy

In this section we include a traceability matrix from system design components to system requirements.

Table 24: Inverse Traceability Table

Design component System Req.

Database SR-FUN-0100 - DELETED

SR-FUN-0120 - DELETED

SR-FUN-0170

SR-FUN-0190

SR-FUN-0210

SR-FUN-0250

SR-FUN-0290

SR-FUN-0300

SR-FUN-0330

SR-FUN-0380

SR-FUN-0400

SR-FUN-0420

SR-FUN-0490

SR-FUN-0500

SR-FUN-0510

SR-FUN-0550

SR-FUN-0580

SR-FUN-0630

SR-FUN-0650

SR-FUN-0720

SR-FUN-0750

SR-RES-0020

SR-FUN-1100

SR-FUN-1110

SR-FUN-1540/3.0

SR-FUN-1640/3.0

SR-FUN-1670/3.0

DatabaseIF SR-FUN-0100 - DELETED

SR-FUN-0120 - DELETED

SR-FUN-0170

SR-FUN-0190

SR-FUN-0210

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 122 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Design component System Req.

SR-FUN-0250

SR-FUN-0290

SR-FUN-0300

SR-FUN-0330

SR-FUN-0380

SR-FUN-0400

SR-FUN-0420

SR-FUN-0490

SR-FUN-0500

SR-FUN-0510

SR-FUN-0550

SR-FUN-0580

SR-FUN-0630

SR-FUN-0650

SR-FUN-0720

SR-FUN-0750

SR-RES-0020

SR-FUN-1100

SR-FUN-1110

SR-FUN-1540/3.0

SR-FUN-1640/3.0

SR-FUN-1670/3.0

DBServer SR-FUN-0100 - DELETED

SR-FUN-0120 - DELETED

SR-FUN-0170

SR-FUN-0190

SR-FUN-0210

SR-FUN-0250

SR-FUN-0290

SR-FUN-0300

SR-FUN-0330

SR-FUN-0380

SR-FUN-0400

SR-FUN-0420

SR-FUN-0490

SR-FUN-0500

SR-FUN-0510

SR-FUN-0550

SR-FUN-0580

SR-FUN-0630

SR-FUN-0650

SR-FUN-0720

SR-FUN-0750

SR-RES-0020

SR-FUN-1100

SR-FUN-1110

SR-FUN-1640/3.0

SR-FUN-1670/3.0

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 123 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Design component System Req.

Managers SR-FUN-0120 - DELETED

SR-FUN-0580

SR-FUN-0750

SR-FUN-1650/3.0

SR-FUN-1660/3.0

Model SR-FUN-0010

SR-FUN-0060

SR-FUN-0070

SR-FUN-0080

SR-FUN-0090

SR-FUN-0200

SR-FUN-0210

SR-FUN-0260

SR-FUN-0270

SR-FUN-0280

SR-FUN-0290

SR-FUN-0300

SR-FUN-0310

SR-FUN-0320

SR-FUN-0330

SR-INT-0010

SR-INT-0020

SR-RES-0030

ModelMgr SR-FUN-0060

SR-FUN-0070

SR-FUN-0080

SR-FUN-0090

SR-FUN-0200

SR-FUN-0210

SR-FUN-0220

SR-FUN-0230

SR-FUN-0240

SR-FUN-0250

SR-FUN-0260

SR-FUN-0270

SR-FUN-0280

SR-FUN-0290

SR-FUN-0300

SR-FUN-0310

SR-FUN-0320

SR-FUN-0330

SR-FUN-0460

SR-FUN-0780

SR-FUN-0790

SR-FUN-1540/3.0

SR-FUN-1550/3.0

SR-FUN-1560/3.0

SR-FUN-1570/3.0

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 124 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Design component System Req.

SR-FUN-1580/3.0

SR-FUN-1590/3.0

SR-FUN-1600/3.0

SR-FUN-1610/3.0

ModelDC SR-FUN-0060

SR-FUN-0070

SR-FUN-0080

SR-FUN-0090

SR-FUN-0220

SR-FUN-0230

SR-FUN-0240

SR-FUN-0280

SR-FUN-0290

SR-FUN-0310

SR-FUN-0320

SR-FUN-1540/3.0

SR-FUN-1550/3.0

SR-FUN-1560/3.0

SR-FUN-1570/3.0

SR-FUN-1580/3.0

SR-FUN-1590/3.0

SR-FUN-1610/3.0

SR-FUN-1620/3.0

SR-FUN-1630/3.0

SR-FUN-1670/3.0

ModelView SR-FUN-0060

SR-FUN-0070

SR-FUN-0080

SR-FUN-0090

SR-FUN-0220

SR-FUN-0230

SR-FUN-0240

SR-FUN-0280

SR-FUN-0290

SR-FUN-0310

SR-FUN-0320

SR-FUN-1540/3.0

SR-FUN-1550/3.0

SR-FUN-1560/3.0

SR-FUN-1580/3.0

Instrument SR-FUN-0100 - DELETED

SR-FUN-0110 - DELETED

SR-FUN-0120 - DELETED

Descriptor SR-FUN-0130

SR-FUN-0140

SR-FUN-0150

SR-FUN-0160

SR-FUN-0170

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 125 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Design component System Req.

SR-FUN-0180

SR-FUN-0190

DescriptorMgr SR-FUN-0130

SR-FUN-0140

SR-FUN-0150

SR-FUN-0160

SR-FUN-0170

SR-FUN-0180

SR-FUN-0190

SR-FUN-0460

SR-FUN-0510

SR-FUN-0900

DescriptorDC SR-FUN-0130

SR-FUN-0140

SR-FUN-0150

SR-FUN-0160

SR-FUN-0170

SR-FUN-0180

SR-FUN-0190

SR-FUN-1620/3.0

SR-FUN-1630/3.0

SR-FUN-1670/3.0

DescriptorView SR-FUN-0130

SR-FUN-0140

SR-FUN-0150

SR-FUN-0160

SR-FUN-0180

Stage SR-FUN-0340

SR-FUN-0350

SR-FUN-0360

SR-FUN-0370

SR-FUN-0380

SR-FUN-0390

SR-FUN-0400

SR-FUN-0410

SR-FUN-0420

StageMgr SR-FUN-0340

SR-FUN-0350

SR-FUN-0360

SR-FUN-0370

SR-FUN-0380

SR-FUN-0390

SR-FUN-0400

SR-FUN-0410

SR-FUN-0420

SR-FUN-0470

StageDC SR-FUN-0340

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 126 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Design component System Req.

SR-FUN-0350

SR-FUN-0360

SR-FUN-0370

SR-FUN-0390

SR-FUN-0410

SR-FUN-1670/3.0

StageView SR-FUN-0340

SR-FUN-0350

SR-FUN-0360

SR-FUN-0370

SR-FUN-0390

SR-FUN-0410

Sim SR-FUN-0010

SR-FUN-0430

SR-FUN-0440

SR-FUN-0450

SR-FUN-0460

SR-FUN-0470

SR-FUN-0480

SR-FUN-0490

SR-FUN-0500

SR-FUN-0510

SR-FUN-0520

SR-FUN-0530

SR-FUN-0540

SR-FUN-0550

SR-FUN-0560

SR-FUN-0570

SR-FUN-0580

SimMgr SR-FUN-0010

SR-FUN-0430

SR-FUN-0440

SR-FUN-0450

SR-FUN-0460

SR-FUN-0470

SR-FUN-0480

SR-FUN-0490

SR-FUN-0500

SR-FUN-0510

SR-FUN-0520

SR-FUN-0530

SR-FUN-0540

SR-FUN-0550

SR-FUN-0560

SR-FUN-0570

SR-FUN-0580

SimDC SR-FUN-0430

SR-FUN-0440

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 127 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Design component System Req.

SR-FUN-0450

SR-FUN-0460

SR-FUN-0470

SR-FUN-0480

SR-FUN-0520

SR-FUN-0530

SR-FUN-0540

SR-FUN-0560

SR-FUN-0570

SR-FUN-1620/3.0

SR-FUN-1630/3.0

SR-FUN-1670/3.0

SimView SR-FUN-0430

SR-FUN-0440

SR-FUN-0450

SR-FUN-0460

SR-FUN-0470

SR-FUN-0480

SR-FUN-0510

SR-FUN-0520

SR-FUN-0530

SR-FUN-0540

SR-FUN-0560

SR-FUN-0570

Session SR-FUN-0010

SR-FUN-0020

SR-FUN-0030

SR-FUN-0590

SR-FUN-0600

SR-FUN-0610

SR-FUN-0620

SR-FUN-0630

SR-FUN-0640

SR-FUN-0650

SR-FUN-0660

SR-FUN-0670

SR-FUN-0680

SR-FUN-0690

SR-FUN-0700

SR-FUN-0720

SR-FUN-0730

SR-FUN-0740

SR-FUN-0750

SR-FUN-0760

SR-FUN-0770

SR-FUN-0820

SessionMgr SR-FUN-0020

SR-FUN-0590

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 128 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Design component System Req.

SR-FUN-0600

SR-FUN-0610

SR-FUN-0620

SR-FUN-0630

SR-FUN-0640

SR-FUN-0650

SR-FUN-0660

SR-FUN-0670

SR-FUN-0680

SR-FUN-0690

SR-FUN-0700

SR-FUN-0720

SR-FUN-0730

SR-FUN-0740

SR-FUN-0750

SR-FUN-0760

SR-FUN-0770

SR-FUN-0820

SR-FUN-0830

SR-FUN-0840

SR-FUN-0860

SR-FUN-0870

SR-FUN-0890

SR-FUN-0920

SR-FUN-0930

SR-FUN-0940

SR-FUN-0990

SR-FUN-1000

SR-OPE-0020

SessionDC SR-FUN-0590

SR-FUN-0600

SR-FUN-0610

SR-FUN-0620

SR-FUN-0670

SR-FUN-0680

SR-FUN-0690

SR-FUN-0700

SR-FUN-0730

SR-FUN-0740

SR-FUN-0760

SR-FUN-0770

SR-FUN-0780

SR-FUN-0790

SR-FUN-0820

SR-FUN-0940

SR-FUN-0950

SR-FUN-0960

SR-FUN-0970

SR-FUN-1620/3.0

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 129 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Design component System Req.

SR-FUN-1630/3.0

SR-FUN-1670/3.0

SessionView SR-FUN-0020

SR-FUN-0590

SR-FUN-0600

SR-FUN-0610

SR-FUN-0620

SR-FUN-0630

SR-FUN-0640

SR-FUN-0670

SR-FUN-0680

SR-FUN-0690

SR-FUN-0700

SR-FUN-0710

SR-FUN-0730

SR-FUN-0740

SR-FUN-0760

SR-FUN-0770

SR-FUN-0780

SR-FUN-0790

SR-FUN-0800

SR-FUN-0810

SR-FUN-0820

SR-FUN-0900

SR-FUN-0910

SR-FUN-0930

SR-FUN-0950

SR-FUN-0960

SR-FUN-0970

SR-FUN-0980

SR-FUN-1010

Parameter

SR-FUN-0710

SR-FUN-0780

SR-FUN-0790

Tool SR-FUN-0940

SR-FUN-0990

SR-FUN-1000

ToolMgr SR-FUN-0030

SR-FUN-0760

SR-FUN-0940

SR-FUN-0990

SR-FUN-1000

ToolDC SR-FUN-1620/3.0

SR-FUN-1630/3.0

SR-FUN-1670/3.0

Logger SR-FUN-0880

SR-FUN-0970

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 130 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Design component System Req.

SR-FUN-1010

SR-FUN-1020

SR-FUN-1345/3.0

SR-INT-0030

SessionExecutor SR-FUN-0010

SR-FUN-0830

SR-FUN-0840

SR-FUN-0850

SR-FUN-0860

SR-FUN-0890

SR-FUN-0920

SR-FUN-0930

SR-FUN-1470/3.0

SR-INT-0030

SR-OPE-0020

ModelChainExecutor SR-FUN-0010

SR-FUN-0840

SR-FUN-0860

SR-FUN-0890

SR-FUN-0920

SR-FUN-0930

SR-FUN-1480/3.0

SR-FUN-1490/3.0

SR-FUN-1500/3.0

SR-FUN-1510/3.0

SR-FUN-1520/3.0

SR-FUN-1530/3.0

SR-INT-0030

SR-OPE-0020

ParallelScheduler SR-FUN-1450/3.0

SR-FUN-1460/3.0

SR-FUN-1470/3.0

Controller SR-FUN-1480/3.0

SR-FUN-1490/3.0

SR-FUN-1500/3.0

SR-FUN-1510/3.0

SR-FUN-1520/3.0

SR-FUN-1530/3.0

SR-FUN-1620/3.0

SR-FUN-1630/3.0

SR-FUN-1640/3.0

SR-FUN-1660/3.0

Mmi SR-RES-0010

ConnectionControl SR-FUN-1100

SR-FUN-1110

SR-FUN-1540/3.0

SR-FUN-1640/3.0

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 131 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

Design component System Req.

SR-FUN-1670/3.0

pms.Parameter SR-FUN-0780

SR-FUN-0790

SR-FUN-1120

SR-FUN-1130

SR-FUN-1160

pms.Rule SR-FUN-0780

SR-FUN-0790

SR-FUN-1120

SR-FUN-1130

SR-FUN-1160

pms.ParameterEditor SR-FUN-0800

SR-FUN-0810

SR-FUN-1130

SR-FUN-1140

SR-FUN-1150

SR-FUN-1160

SR-FUN-1170

pms.RulesEditor SR-FUN-1130

SR-FUN-1160

OSFEG library SR-FUN-1680/3.0

SR-FUN-1690/3.0

SR-FUN-1700/3.0

SR-FUN-1710/3.0

SR-FUN-1720/3.0

SR-FUN-1730/3.0

ooppeennSSFF

AArrcchhiitteeccttuurraall DDeessiiggnn DDooccuummeenntt

Code : openSF-DMS-ADD-001

Issue : 2.2

Date : 15/01/2014

Page : 132 of 132

© DEIMOS Space S.L.U.

RESTRICTED

DMS-DQS-QRETR03-ADD-20-E

End of document

	This page intentionally left blank
	Document Information
	Document Status Log
	Table of Contents
	List of Tables
	List of Figures
	1. Introduction
	1.1. Purpose
	1.2. Scope
	1.3. Document Structure
	1.4. Acronyms and Abbreviations
	1.5. Definitions

	2. Related Documents
	2.1. Applicable Documents

	Table 1: Applicable documents
	2.2. Reference Documents

	Table 2: Reference documents
	2.3. Standards

	Table 3: Standards
	3. Design Standards
	3.1. UML
	3.1.1. Types of diagrams
	3.1.1.1. Class diagrams

	Figure 3-1: Class diagram
	3.1.1.2. Sequence diagrams
	3.2. Design Patterns
	3.2.1. Singleton Pattern

	Figure 3-2: Singleton pattern example
	3.2.2. Factory Pattern

	Figure 3-3: Factory Pattern example
	3.2.3. Prototype Pattern

	Figure 3-4 Prototype pattern example
	3.2.4. Model-View-Controller Pattern
	3.2.5. Producer-Consumer Problem
	3.2.5.1. Scheduler design pattern
	3.2.5.2. Producer-consumer design pattern
	3.2.5.3. Thread Pool design pattern

	Figure 3-6 Thread Pool pattern example
	3.3. XML Grammar

	4. Design Overview
	Definition
	Figure 4-1: openSF High Level Architecture
	4.1. Transition from the former to the openSF architecture
	4.1.1. Architecture Evolution
	4.1.1.1. openSF 2.0 evolutions
	4.1.1.2. openSF 2.2 evolutions
	4.1.1.3. openSF 3.0 evolutions

	4.2. Functional Requirements

	Figure 4-2: Use cases diagram.
	4.3. Process View
	4.3.1. Models and simulations

	Figure 4-3: Sequence of simulation stages
	4.3.2. Session

	Figure 4-4: Session describing a sequence of simulations
	4.3.3. Product tool
	4.3.4. Multiple Simulation Repository

	Figure 4-5: Definition of a processing chain
	Figure 4-6: Definition of a simulation
	4.4. Deployment View

	Figure 4-7 OpenSF deployment diagram
	Composition
	5. System Design
	5.1. Design Method
	5.2. System Decomposition

	Figure 5-1: High-level package diagram
	5.2.1. application

	Figure 5-2: openSF.application class diagram
	5.2.2. mmi

	Figure 5-3: openSF.mmi package diagram
	5.2.2.1. presentation

	Figure 5-4: openSF.mmi.presentation package diagram
	Figure 5-5: openSF.mmi.presentation package class diagram
	5.2.2.1.1. images
	5.2.2.2. controller

	Figure 5-6: openSF.mmi.controller package diagram
	5.2.2.2.1. domainConnectors

	Figure 5-7: openSF.controller.domainConnectors package class diagram
	5.2.3. domain

	Figure 5-8: openSF.domain package diagram
	Figure 5-9: openSF.domain class diagram
	5.2.3.1. managers

	Figure 5-10: openSF.domain.managers class diagram
	Table 4: List of operations of the ModelMgr class
	Table 5: List of operations of the SimMgr class
	Table 6: List of operations of the SessionMgr class
	5.2.3.2. elements

	Figure 5-11: openSF.domain.elements Class Diagram
	5.2.4. database

	Figure 5-12: openSF.database class diagram
	Table 7: List of operations of the Database class
	Table 8: List of operations of the ConnectionControl class
	Figure 5-13: Database diagram
	5.3. Session Execution Components Description

	Figure 5-14: SessionMgr class diagram
	5.3.1. SessionMgr
	5.3.1.1. Type
	5.3.1.2. Purpose
	5.3.1.3. Function
	5.3.1.4. Super-class
	5.3.1.5. Dependencies
	5.3.1.6. Interfaces

	5.3.2. SessionExecutor
	5.3.2.1. Type
	5.3.2.2. Purpose
	5.3.2.3. Function
	5.3.2.4. Super-class
	5.3.2.5. Dependencies
	5.3.2.6. Interfaces

	Table 9: List of SessionExecutor class operations
	5.3.3. ModelChainExecutor
	5.3.3.1. Type
	5.3.3.2. Purpose
	5.3.3.3. Function
	5.3.3.4. Super-class
	5.3.3.5. Dependencies
	5.3.3.6. Interfaces

	Table 10: List of operations in ModelChainExecutor class interface
	5.3.4. Logger
	5.3.4.1. Type
	5.3.4.2. Purpose
	5.3.4.3. Function
	5.3.4.4. Super-class
	5.3.4.5. Dependencies
	5.3.4.6. Interfaces

	Table 11: List of operations of the Logger class
	5.3.5. IOMgr
	5.3.5.1. Type
	5.3.5.2. Purpose
	5.3.5.3. Function
	5.3.5.4. Super-class
	5.3.5.5. Dependencies
	5.3.5.6. Interfaces

	Table 12: list of IOMgr class public operations
	5.3.6. ToolMgr
	5.3.6.1. Type
	5.3.6.2. Purpose
	5.3.6.3. Function
	5.3.6.4. Super-class
	5.3.6.5. Dependencies
	5.3.6.6. Interfaces

	Table 13: list of ToolMgr class public operations
	5.4. Parallel Processing
	5.4.1. OpenSF Multicore Adaptation
	5.4.1.1. Precautions to ensure safe model parallelization

	Thread safety
	5.4.2. Parallel Model Execution Components Description

	Figure 5-15: ModelChainExecutor class hierarchy for parallel model execution
	5.4.3. ParallelScheduler
	5.4.3.1. Type
	5.4.3.2. Purpose
	5.4.3.3. Function
	5.4.3.3.1. Related functional issues

	5.4.3.4. Super-class
	5.4.3.5. Dependencies
	5.4.3.6. Interfaces

	Table 14: List of ParallelScheduler class public operations
	5.4.4. ParallelEventManager
	5.4.4.1. Type
	5.4.4.2. Purpose
	5.4.4.3. Function
	5.4.4.4. Super-class
	5.4.4.5. Dependencies
	5.4.4.6. Interfaces

	Table 15: List of ParallelEventManager class public operations
	5.4.5. ExecutionModelSet
	5.4.5.1. Type
	5.4.5.2. Purpose
	5.4.5.3. Function
	5.4.5.4. Super-class
	5.4.5.5. Dependencies
	5.4.5.6. Interfaces

	Table 16: List of operations in ExecutionModelSet class public interface
	5.4.6. ModelExecutionThreadMgr
	5.4.6.1. Type
	5.4.6.2. Purpose
	5.4.6.3. Function
	5.4.6.4. Super-class
	5.4.6.5. Dependencies
	5.4.6.6. Interfaces

	Table 17: List of operations in ModelExecutionThreadMgr class public interface
	5.4.7. ModelExecutionThread
	5.4.7.1. Type
	5.4.7.2. Purpose
	5.4.7.3. Function
	5.4.7.4. Super-class
	5.4.7.5. Dependencies
	5.4.7.6. Interfaces

	Table 18: List of operations in ModelExecutionThread class public interface
	5.4.8. ModelExecutionThreadSet
	5.4.8.1. Type
	5.4.8.2. Purpose
	5.4.8.3. Function
	5.4.8.4. Super-class
	5.4.8.5. Dependencies
	5.4.8.6. Interfaces

	Table 19: List of operations in ModelExecutionThreadSet class public interface
	5.4.9. ThreadPool
	5.4.9.1. Type
	5.4.9.2. Purpose
	5.4.9.3. Function
	5.4.9.4. Super-class
	5.4.9.5. Dependencies
	5.4.9.6. Interfaces

	Table 20: List of operations in ThreadPool class public interface
	5.5. Graphical User Interface Design

	Figure 5-16: Main window appearance
	5.5.1. Window Design

	Figure 5-17: Main window appearance showing internal frames and scroll panel
	Figure 5-18: Detail of main menu bar
	Figure 5-19: Detail of a menu, showing menu items
	Figure 5-20: Detail of a contextual menu
	5.5.2. GUI Standards
	5.5.3. Components, Libraries and Tools
	5.5.4. Generic Functions, Dialogues and Displays

	Figure 5-21: File chooser dialogue
	Figure 5-22: Dialogue example
	5.6. Design approach for openSF V3 additional functionalities
	5.6.1. Framework revision for flexible session management
	5.6.1.1. Simplification of the management of the model chains

	Figure 5-23 Simple model chain
	5.6.1.2. Select model versions for a simulation execution

	Figure 5-24 Model chain with different model versions
	5.6.1.3. Bypass/switch-off models
	5.6.1.4. Rerun a session from a previous point

	Figure 5-25 Run simulation from Model B
	5.6.1.5. Flexible session management design approach
	5.6.2. Removal of logs from database
	5.6.3. Removing intermediate data during simulation execution

	Figure 5-26: Removing intermediate data of a simulation
	5.6.4. Capability to copy elements
	5.6.5. Export capability
	5.6.6. Defining openSF elements externally
	5.6.6.1. Importing external definitions

	LOAD XML [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'filename'
	5.6.6.2. Defining elements – XML file format
	5.6.7. Simplify session file and directory names
	5.7. Migration to openSF V3

	6. OpenSF Parameter Management System
	6.1. Parameter Editor Overview
	6.2. Parameter management system
	6.2.1. Parameter Rules - Grammar Definition
	6.2.2. Parameter Editor
	6.2.3. Road from S3-OSPS to openSF

	6.3. Parameter Editor – Design Overview
	6.3.1. Parameter Editor - Functional Requirements

	Figure 6-1: Parameter Editor high level use cases
	6.4. Parameter Editor – System Design
	6.4.1. Design Method
	6.4.2. System Decomposition

	Figure 6-2: Parameter Editor High Level Architecture diagram
	6.4.2.1. domain

	Figure 6-3: openSFpms.domain packages diagram
	6.4.2.1.1. Parameter
	6.4.2.1.1.1. Type
	6.4.2.1.1.2. Purpose
	6.4.2.1.1.3. Function
	6.4.2.1.1.4. Dependencies
	6.4.2.1.1.5. Interfaces

	Table 21: list of Parameter class public operations
	Figure 6-4: openSFpms.parameter class diagram
	6.4.2.1.2. RulesInterface
	6.4.2.1.2.1. Type
	6.4.2.1.2.2. Purpose
	6.4.2.1.2.3. Function
	6.4.2.1.2.4. Dependencies
	6.4.2.1.2.5. Interfaces

	Table 22: list of RulesInterface public operations
	Figure 6-5: openSFpms.domain.rules class diagram
	6.4.2.2. manager

	Figure 6-6: openSFpms.manager packages diagram
	6.4.2.3. view

	Figure 6-7: openSFpms.view packages diagram
	6.4.3. GUI design

	Figure 6-8: Parameter Editor draft interface
	Figure 6-9: Rule Editor draft interface
	7. OSFI – openSF Integration Libraries
	7.1. Introduction

	Figure 7-1: OSFI Integration with openSF
	7.2. Integration Libraries Design

	Figure 7-2: OSFI common packages
	7.2.1. CLP

	Figure 7-3: CLP class diagram
	7.2.2. EHLog

	Figure 7-4: Logger class diagram
	7.2.3. ConFM

	Figure 7-5: ConFM class diagram
	7.3. OSFI Other programming languages
	7.3.1. OSFI wrappers – C, Fortran 90 and Fortran 77

	Figure 7-6: OSFI wrapper, implementation diagram
	7.3.2. OSFI Matlab

	Figure 7-7: OSFI Matlab Implementation diagram
	7.3.2.1. OpenSF Integration: Executing Matlab models

	Figure 7-8: Matlab Model Execution
	7.3.3. OSFI IDL
	7.3.3.1. idl-model

	Figure 7-9: OSFI IDL implementation diagram
	7.3.3.2. OpenSF Integration: Executing IDL models

	Figure 7-10: IDL model execution modes.
	8. OSFEG – openSF Error Generation Libraries
	8.1. Error generation libraries overview
	8.2. Error generation libraries architecture

	Figure 8-1: OSFEG deployment
	8.3. OpenSF error generation libraries specification
	8.3.1. Error definition files
	8.3.2. Error Functions

	8.4. Error Generation Libraries Design

	Figure 8-2: OSFEG main packages
	8.4.1. ErrorSources

	Figure 8-3: ErrorSources class diagram
	8.4.2. Error Functions

	Figure 8-4: Analytical hierarchy class diagram
	Figure 8-5: RandomFunctions hierarchy class diagram
	9. Traceability Matrixes
	9.1. Direct Traceability

	Table 23: Direct Traceability Table
	9.2. Inverse Traceability

	Table 24: Inverse Traceability Table

