Integration Libraries for the open Simulation Framework

OSFI

DEVELOPER’S MANUAL

Code : OPENSF-DMS-OSFI-DM
Issue : 1.18
Date : 17/07/2019
Name Function Signature

Prepared by

Enrique del Pozo
Jose Julio Ramos
Alberto Monescillo

Jose Luis Garcia))
) Project Engineers
Rui Mestre
Javier Martin
Gonzalo Vicario

Carlos Pérez Sancha

Reviewed by

Federico Letterio Project Manager

Approved by

Federico Letterio Project Manager

Signatures and approvals on original

DEIMOS Space S.L.U.
Ronda de Poniente, 19, Edificio Fiteni VI, 2-22
28760 Tres Cantos (Madrid), SPAIN
Tel.: +34 91 806 34 50 / Fax: +34 91 806 34 51
E-mail: deimos@deimos-space.com

© DEIMOS Space S.L.

DMS-DQS-QRE0609-SUM-10-E

mailto:deimos@space.com?subject=Deimos%20Space

R
s S
deimos

grupo elecnor

OSFI
Developer’s Manual

Code
Issue
Date

Page

OPENSF-DMS-OSFI-DM
1.18
17/07/2019

2 of 111

This page intentionally left blank

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

Code : OPENSF-DMS-OSFI-DM

OSFI Issue
Developer’s Manual

deimos Date 17/07/2019

1.18

grupo elecnor Page 3 of 111
Document Information
Contract Data
Contract Number: 4000120205/17/NL/CT/mg
Contract Issuer: ESA/ESTEC
Internal Distribution
Name Unit Copies
Antonio Gutierrez Head of the Ground Segment Business Unit 1
Internal Confidentiality Level (DMS-COV-POLO5)
Unclassified ™ Restricted 0O Confidential 0O
External Distribution
Name Organisation Copies
Michele Zundo ESA/ESTEC 1
Montserrat Pinol Sole ESA/ESTEC 1
Marcos Bento ESA/ESTEC 1
Archiving
Word Processor: MS Word 2016
File Name: OPENSF-DMS-OSFI-DM-118.doc

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

n a——
d elimos Developer’s Manual Date : 17/07/2019
eveloper’s Manua
grupo elecnor P Page : 4 0f 111

Document Status Log

Issue Change description Date
1.0 | First issue of this document 15/12/08
1.1 | ANSI C programming language support 27/04/09
1.2 | Quality indicators functionality added 26/05/09
1.3 | Mac Installation added 15/03/10
1.4 | OSFI library for F77, IDL and Matlab. 22/09/10

Added sections describing the integration of models in F77, IDL and
Matlab.
1.5 | Updated OSFI library for Matlab. 12/11/2010

U Added configuration for IDL.
U Section 4.1 now points to openSF ADD, OSFI section.
0 Added new section 4.4 with OSFI additional features.

1.6 | Updated OSFI library for Python. 02/04/2014

1.7 | Updated after review comments from ESA: implemented RIDS 30/04/2014
OPENSF_v3.2_RID_03, OPENSF_v3.2_RID_04 and OPENSF_v3.2_RID_05
by updating section 4.2.7.

1.8 | Updated OSFI library for Java 15/08/2016
Update of AD/RD

Reworded introduction

1.9 | Updated OSFI available APl (added existParameter method) 20/10/2016

1.10 | Updated after review comments from ESA: added Python 18/11/2016
requirements, added reference documentation (doxygen)

1.11 | Updated due to support to Python 3.X 16/06/2017

1.12 | Update version of compilers used in openSF 06/07/2017

1.13 | New section defining the OSFI implementation of the E2E ICD 13/09/2017

1.14 | New build system based on CMake 15/12/2017

New Fortran interface and Foreign Function Interface
Fortran 77 and IDL deprecated

1.15 | Introduction of new sections on building modules with OSFI and 14/06/2018
upgrading from previous OSFI versions.

Updated section on the API and added coverage tables.

1.16 | Updated Sec. 3.4.1 to clarify the use of CMake for Python and Matlab | 14/12/2018
implementations.

1.17 | Removed references to specific OSFI releases 11/06/2019

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

e Code : OPENSF-DMS-OSFI-DM

4 - OSFI Issue 1.18

d eimos Develober's Manual Date 17/07/2019
v u

grupo elecnor P Page 5 of 111

1.18 | Updated Sec. 3.4.3.3 to include build instructions for generating a 17/07/2019

Python Wheel binary package.

Updated Sec. 4.5.7 to include examples of use of OSFI Python
through an installed package.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

e =N Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

> o i %m’
delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 6 of 111

Table of Contents

1. INTRODUGCTION ..ottt b e sb e 10
1.1 PUIPOSE ..ttt r e r e n et r e nr e r e ne 10
1o o] o1 TP T U PP PR PRRT PSPPI 10
1.3. Acronyms and ABDIeviationscccccveiiiiiiciciece e 10

2. RELATED DOCUMENTSooiiiiiiiiiie s 13
N AN o o] [To=1 o] (ST B o Yol] =1] £SO U ORR 13
2.2. RETErenCe DOCUMIBNTSc.viiiiiiiiieiieeee ettt ene s 13
pZ T = 1 - U0 PSSR 13

3. GETTING STARTEDooiiiii s 15
3L INEFOTUCTION.....eitiite ettt et st b bt enenneas 15
3.2. Conventions used in this Manual ..o 15

3.2. 1. FOSFI_HOME ...ttt bbbt 15
R B L - R Y/ 01 SR PPPRRRI 15
3.3, INitial REQUIFEMENTScciiiiiiic ettt st sttt ra e nas 16
3.3.1. Hardware REQUITEIMENTS..........ccviiiiiieieieis et 16
3.3.2. SOftware REQUITEMENTSooiiiiriiiieieeeees e 16
B4, INSTAIALION......cuiieicee ettt ene s 18
3.4.1. BUIIA INSEIUCTIONS ...ttt sttt s 20
3.4.2. Packaging and/or INStallation ..o 21
3.4.3. Building and Distribution of Modules with OSFI..........c.ccccoeeviiiiiieiiccce e 21

4. OPENSF INTEGRATION LIBRARIES. ..ot 27
4. 1. ArChItECTUIAl OVEIVIEWcoecviiiiiicie et ane s 27
4.2. OSFI COMMON PACKAGES.ccviiiiiiiiiiieieeieee e 29

4.2.1. Command Line Parser (CLP) ..o 30
L o To o T =1 o T) TSR 31
4.2.3. Configuration File Manager (CONFM)cccciiriiiniiiieees e 34
4.3. Language-SPecific INTEITACESccoiiiiriieiei e 46
4.3.1. C ++ Programming LANGUAGEccuerurreererieieeeeneeeee e sieeee e ereeneeseeeneeseesneenee e 46
4.3.2. ANSI C Programming LaNQUAGEcc.eeeererrereeeenieaeeniesieeeeseeeeeenie e eneeseesneenee e 52
4.3.3. Fortran Programming LaNQUAGEcoveereriiierienierieieeeese s 59
4.3.4. Fortran 77 Programming LANGUAGEccevrrereeirneieeneeee e see e see e 65
4.3.5. IDL Programming LANQUAGEcccveiueerirerieeieeseesneseeesteesieesseessnesseesnsesssessensssnes 66

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

=N Code : OPENSF-DMS-OSFI-DM

= =

"

= OSFI| Issue : 1.18

= -
delm S Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 7 of 111

4.3.6. Matlab Programming LanQUAGE.........ccevvveeeieiirerieie e se et st 69
4.3.7. Python Programming LanQUAGE.........ccceveeieieiieeriesie e se et sre e 75
4.3.8. Java Programming LaNQUAGEccuervereiririinieriesieseeeeeeis s 81
4.4, ADAITIONAI FEATUIESvoviiiiiiiiiiiisie ettt bbbt ene s 87
N T o TH T Y o o ST SP 87
4.4.2. COIOUIBA LOUS ...ttt 87
4.5, EXAMPIES OF USE.....oiiiiiiiicieie et 88
4.5.1. C++ Programming LANQUAGEcceeveieieerieieseeeeste e e ste e sre e saesre e sre s e 88
4.5.2. ANSI C Programming LaNQUAGEcc.coveierieiieeieieiee e ste et sre e sre e 89
4.5.3. Fortran Programming LANQUAGEccveiriririerienierieeeeeese st 90
4.5.4. Fortran 77 Programming LaNQUAOEcccveveiieriiieiie et sre e e s 91
4.5.5. IDL Programming LANQUAGEcccvevueieeiiieieeiesie e te e sreste e e e sre e 92
4.5.6. Matlab programming lanNQUAGEeoveiririiiriienceee e 95
4.5.7. Python Programming LaNQUAGEcueoveeeeririerienienieieeeese st 97
4.5.8. Java Programming LaNQUAgEcccvevueieeiiieir ettt sre e e 99
5. COMPATIBILITY WITH PREVIOUS VERSIONS........cccooiiiiieiie e 100
5.1. Migrating from OSFI 3.4 10 3.5 e 100
5.1.1. AII/MUItIPIE LANQUAGEScveviieieieieeieee st 100
TN O RSP 101

o T0 00 TR OSSPSR 102
LI o 1 - o TP OO T RSP PUPPOPPOP 103
D00, JAVA 1ttt e e ree s 103
516, PYENON <ttt ne s 106
B.L7 IMALIAD ...t es 108

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

e Code : OPENSF-DMS-OSFI-DM
. S OSFI Issue : 1.18
d eimos Developer’s Manual bate 1710772019
grupo elecnor Page 8 of 111
List of Tables
Table 1: Applicable dOCUMENEScoiviiiiiiii e 13
Table 2: ReferenCe dOCUMENTSc.coiiiiiiicie e 13
Table 32 STANUAIAS ... bbb e 13
Table 4: Suggested COMPIIErS FOr SOUITESoiviiiiieiiieisise e 16
Table 5: SyStem Pre-rEQUISTIESc.viviiiiriiie e 17
Table 6: RecOMMENdEd ULHTTIEScveiiiiiiiiiee e e 17
Table 7: Functions of the CLP Packagecccccveiiiiiiiiii et 31
Table 8: Additional functions of the CLP packageccocuuirereiiiiiiise e 31
Table 9: Functions of the EHLOQ PACKAGEccoveiviiiiiiiiceccc e 34
Table 10: Additional functions of the EHLOQ packageccceeveieieiieeie i 34
Table 11: Functions of the CONFM Packagecceoviiiiiiiiieece e 44
Table 12: Additional functions of the CONFM Packagecccoeeveieiiiinininineeeeee 45
Table 13: Functions of the CLP module in CH+ ... 48
Table 14: Functions of the EHLOG module in CH ... 48
Table 15: Functions of the ConFM module in CH ..o 49
Table 16: Functions of the CLP module in C.........ccceieiiiiicieeeee e 54
Table 17: Functions of the EHLog module in C ... 55
Table 18: Functions of the CONFM mModule iN C.......cccovviiiieiiiie e 56
Table 19: Functions of the CLP module in FOrtran...........cc.coovvieniceiesece e 61
Table 20: Functions of the EHLog module in FOrtrancccoooveveiieic i 61
Table 21: Functions of the ConFM module in FOrtran............ccocvevevveiene e 62
Table 22: Functions of the CLP module in Matlabccoocvivivi i 71
Table 23: Functions of the EHLog module in Matlab...............ccccooiviiiiiiiicic e, 72
Table 24: Functions of the ConFM module in Matlabcccoovevivviiii i, 73
Table 25: Functions of the CLP module in PYthon ... 77
Table 26: Functions of the EHLog module in Python...........ccccooiiiiiiiiiee e 78
Table 27: Functions of the ConFM module in Python ..., 79
Table 28: Functions of the CLP module in Javacccoccvvviieiiiic e 83
Table 29: Functions of the EHLog module in Java...........ccoceiiiiiiiiiieecece e 84
Table 30: Functions of the ConFM module iNJavaccooeiiiiiiiii i 85

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

_— Code : OPENSF-DMS-OSFI-DM

‘ 3 L OSFI| Issue : 1.18

dEl MoOS Develober’s Manual Date 17/07/2019

grupo elecnor evetoper's Manua Page : 9 of 111
List of Figures

Figure 1: OSFI diStrIDULIONc.couviiiiiiiii s 19

Figure 2: Relationship with openSF and ModulIES...........ccccovivieiiieeie i 27

28

Figure 3 : OSFI common packages

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

. Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

C a—
delmOS Develober's Manual Date 17/07/2019
eveloper's Manua
grupo elecnor P Page : 10 of 111

1. INTRODUCTION

The open Simulation Framework (openSF) relies on a well-defined set of interfaces [E2E-
ICD] that the participating modules have to adhere to. The OSFI activity addressed the
definition and development of a set of software libraries to ease the integration of
modules into openSF system by providing a ready-made implementation of these
interfaces.

Usage of OSFI libraries are therefore a key component to easily develop modules using
openSF as orchestrating framework.

Terminology Note: starting with openSF 3.3 the recommended term to identify the
orchestrated software components within an E2E simulation is Module instead of
Model.

The text in this document has been amended accordingly however the name of
software functions and variables still reflects the old naming convention.

1.1. Purpose

The objective of this document is to provide a detailed description and a development
manual for the set of software libraries (OSFI) that can be used during the development
and deployment of the modules within an E2E Mission Performance simulator

The intended readerships for this document are model developers and scientists that are in
charge of integrate those models into the openSF.

This document is also useful to software engineers responsible of the testing stage.

1.2. Scope

This document shows a detailed description of the integration libraries and an API that
can be used as a reference manual by model developers. It also includes a brief
architecture description and some examples of use.

This document contains the following sections:
O An introduction (current section 1) for giving a quick overview of the project;
O A list of related documents to provide a documentary background (section 2)

O An introduction to the integration libraries, installation and linking instructions
(section 3)

O A description of the architecture, the process logic and some examples of use. It also
includes the coding guidelines (section 4)

1.3. Acronyms and Abbreviations

The acronyms and abbreviations used in this document are the following ones:

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

.

Code

OPENSF-DMS-OSFI-DM

- - OSFI Issue 1.18
dEl MoOS , Date 17/07/2019
grupo elecnor Developer’s Manual page 1 of 111
Acronym Description
AD Acrchitectural Design
Applicable Document
ADD Architectural Design Document
API Application Programming Interface
AR Acceptgnce Revigw
Analysis of Requirements
CFlI Customer Furnished Item
CLP Command Line Parser
cM Configuration Management
Configuration Manager
CMP Configuration Management Plan
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
DD Detailed Design
DMS DEIMOS Space
DRR Document Review Record
ECP Engineering Change Proposal
E-R Entity Relationship
FFI Foreign Function Interface
GUI Graphical User Interface
HW Hardware
I/F Interface
1/0 Input/Output
ICD Interface Control Document
ITT Invitation To Tender
KOM Kick-Off Meeting
MD Managing Director
MMI Man-Machine Interface
MoM Minutes of Meeting
MR Management Review
NCR Non-Conformance Report
(07 Operating System
PA Product Assurance
PDR Preliminary Design Review
M| vt anager
PMP Project Management Plan
QA Quality Assurance
RD Reference Document
RID Review Item Discrepancy

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

Code

OPENSF-DMS-OSFI-DM

T OSFI Issue 1.18
dEl MoOS , Date 17/07/2019
grupo elecnor Developer’s Manual page 12 of 111
Acronym Description
SOow Statement Of Work
SPR Software Problem Report
SR Software Requirements
SRD Software Requirements Document
SRN Software Release Note
SRS Software Requirements Specification
STR Software Test Report
SUM System User Manual
SVS Software Validation Specification
SW Software
TBC To Be Confirmed
TBD To Be Defined / Decided
TER Test Execution Record
TN Technical Note
TP Test Plan
TR Test Report
TS Technical Specification
UML Unified Modelling Language
URD User Requirements Document
V&V Verification & Validation

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

grupo elecnor

Code : OPENSF-DMS-OSFI-DM

OSFI Issue 1.18

, Date 17/07/2019
Developer’s Manual

Page 13 of 111

2. RELATED DOCUMENTS

2.1. Applicable Documents

The following table specifies the applicable documents compliant with OSFI

development.

Table 1: Applicable documents

Reference Code Title
[OSF-1CD] openSF-DMS-ICD-001 OpenSF Interface Control Document Issue 3.0
[E2E-ICD] PE-ID-ESA-GS-464 ESA Generic E2E ICD Issue 1 Rev. 2.4

2.2. Reference Documents

The following table specifies the reference documents to be taken into account during
module development.

Table 2: Reference documents

cfi.esa.int/Repo/PUBLIC/DOCU

MENTATION/OPENSF/DOXY

GEN/

Reference Code Title

[OSF-SUM] | OPENSF-DMS-SUM-001 OpenSF System User Manual Issue 3.14
[OSF-ADD] |openSF-DMS-ADD-001 OpenSF Architecture Design Document Issue 2.2
[OSF-SRD] |openSF-DMS-SRD-001 OpenSF System Requirements Document Issue 3.2
[OSF-DOC] | http://eop- OSFI Doxygen documentation

2.3. Standards

The following table specifies the standards complied with during project development.
Table 3: Standards

Reference Code Title Issue Date
[XML] (www.w3.0rg/TR/xmlI11/) | Extensible Markup Language| Second Sep 29
(XML) 1.1 Edition 2006
[UML] www.uml.org/#UML2.0) | Unified Model Language (UML) 2.1 Oct 6 2006
[BNF] (see also en.wikipedia.org | Algol-60 Reference Manual 5 1979
/wiki /Backus-Naur_form)

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

http://eop-cfi.esa.int/Repo/PUBLIC/DOCUMENTATION/OPENSF/DOXYGEN/
http://eop-cfi.esa.int/Repo/PUBLIC/DOCUMENTATION/OPENSF/DOXYGEN/
http://eop-cfi.esa.int/Repo/PUBLIC/DOCUMENTATION/OPENSF/DOXYGEN/
http://eop-cfi.esa.int/Repo/PUBLIC/DOCUMENTATION/OPENSF/DOXYGEN/

- Code : OPENSF-DMS-OSFI-DM
] . S OSFI Issue 1.18
d eimos Develober’s Manual Date 17/07/2019
\" u
grupo elecnor P Page 14 of 111
Reference Code Title Issue Date
[C++11] ISO/IEC 14882:2011 Information technology — Ed.3 Sep 2011
Programming languages — C++
[C99] ISO/IEC 9899:1999 Information technology — Cor3,ed.1 | Jan 2007
Programming languages — C
[F2003] ISO/IEC 1539-1:2004 Information technology — Cor4, ed.1 | Sep 2009
Programming languages — Fortran
[Java7] https://docs.oracle.com/ja | The Java® Language Java SE 7 | Feb 2013
vase/specs/jls/se7/html Specification
[Py2.7] https://docs.python.org/2. | The Python Language Reference 2.7 Jul 2010
I/reference/
[Py3.5] https://docs.python.org/3. | The Python Language Reference 35 Sep 2015
5/reference/
[F77] 1SO 1539:1980 Programming languages — 1 Mar 1980
FORTRAN
[PEP427] |https://www.python.org/d | The Wheel Binary Package 1 Sep 2012

ev/peps/pep-0427/

Format 1.0

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

https://docs.oracle.com/javase/specs/jls/se7/html
https://docs.oracle.com/javase/specs/jls/se7/html
https://docs.python.org/2.7/reference/
https://docs.python.org/2.7/reference/
https://docs.python.org/3.5/reference/
https://docs.python.org/3.5/reference/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/

e =N Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

> o i %m’
delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 15 of 111

3. GETTING STARTED

3.1. Introduction

In the frame of concept and feasibility studies for the Earth Observation (EO) activities,
mission performance in terms of final data products needs to be predicted by means of so-
called end-to-end (E2E) simulators.

A specific mission E2E simulator is able to reproduce all significant processes and steps
that impact the mission performance and gets simulated final data products.

The open Simulation Framework (openSF) is a generic simulation framework aimed to
cope with these major goals. It provides end-to-end simulation capabilities that allow
assessment of the science and engineering goals with respect to the mission requirements
and it is available for Linux and OSX.

This openSF framework allows the users to integrate and execute pieces of code,
«modules» that form the building blocks of a simulation process.

To integrate an external module into the framework, the module needs to fulfil a series of
interface requirements detailed in [OSF-ADD] and [OSF-ICD].

The Integration Libraries activity provides the module developer with a set of routines
with a well-defined public interface hiding the implementation details. This set of
routines is currently available in C++, ANSI C, Fortran, Fortran 77, IDL, Matlab, Python
and Java (Fortran 77 and IDL are deprecated).

3.2. Conventions used in this Manual

This chapter lists all the conventions used throughout this Developer’s Manual

3.2.1. SOSFI_HOME

All through the contents of this Developer Manual, a “variable” called SOSFI_HOME is
exhaustively used as a placeholder. The variable value points to the root folder that
contains the OSFI installation. Typically, this folder could be similar to this:

/home/user name/OSFI

3.2.2. Data Types

Every requested or given piece of data in OSFI is formatted in one of the following data
types, as defined in [E2E-ICD]:

O STRING. A string of alphanumeric characters. While the ICD limits strings to 255
characters, OSFI places no a priori restriction on their size.

O INTEGER. Integer number (no decimal part) between -2% and 23!-1. This matches the
ranges of the C and Java data types int32_t and int, respectively. FLOAT. Decimal
number with a range defined by the Java type double (IEEE-754 binary64 format)..

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

Code :
Issue
Date

OPENSF-DMS-OSFI-DM
1.18
17/07/2019

16 of 111

dgé%\‘

deimos

grupo elecnor

OSFI

Developer’s Manual
Page :

0 BOOLEAN. TRUE of FALSE.

Q FILE. The absolute (or $OSFI_HOME-relative) path and name of a file into the file
system.

O FOLDER. The absolute (or $OSFI_HOME-relative) path and name of a folder into the
file system.

Parameter elements may have compound types, such as ARRAY or MATRIX, as defined
in the referred document. The element type of the compound will be one of the above.

3.3. Initial Requirements

The OSFI system is prepared to run in a hardware and software platform with the
following requirements. These must be fulfilled before installing the distribution.

3.3.1. Hardware Requirements

OSFI is compatible with the following architectures and operating systems:
O Operating systems: Linux, OSX

O Architectures: x86-64 (also known as AMD64 or Intel 64)

3.3.2. Software Requirements
This is the list of suggested compilers for the sources.

Table 4: Suggested compilers for sources

Language Compiler Licensing Distribution Site
Fortran Intel Fortran compiler | Several options. There | http://support.intel.co
vo.l is a free edition for the | m/support/performan
community cetools/fortran/linux
Fortran GNU Fortran Compiler | GNU General Public | http://gcc.gnu.org/for
v 4.9 or superior License, GNU Lesser | tran/
General Public
License
C/C++ GNU C/C++ compiler | GNU General Public | http://gcc.gnu.org
V4.9 or superior License, GNU Lesser
General Public
License
Java Oracle Oracle Binary Code | http://www.oracle.co
Java® Runtime :‘_Icenii ,?greem(;r:zt m(;tecrr:?etlworkhava/l
Environment, Standard Polrtf eP ;vat NEEX. NI
Edition 1.7 or superior atform Froduc

Nevertheless, developers can use their favorite compilers in each case, as long as they
support the relevant standards (C++11, C90, Fortran 2003, etc.).

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

http://support.intel.com/support/performancetools/fortran/linux
http://support.intel.com/support/performancetools/fortran/linux
http://support.intel.com/support/performancetools/fortran/linux
http://gcc.gnu.org/fortran/
http://gcc.gnu.org/fortran/
http://gcc.gnu.org/
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

s Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 17 of 111

Table 5 shows the system pre-requisites in order to build the OSFI libraries.

Table 5: System pre-requisites

Component Purpose License | Distribution Site
De-compressor Extract files from release | N/A N/A
packaged in a compressed
tarball
CMake 3.9 or higher Build, test and pack the | BSD 3- | Linux repository or
OSFI libraries clause | https://cmake.org/

Table 6 shows a set of utilities that are recommended to build the OSFI libraries. If
Xercesc is not installed in the system, the OSFI build system can be configured to
download and build it.

Table 6: Recommended utilities

Component Purpose License | Distribution Site

Doxygen 1.8.13 or | Generate OSFI libraries | GNU Linux repository or
higher documentation General | http://www.stack.nl/
Public ~dimitri/doxygen/
License | index.html

Google Test Generate and execute | BSD 3- | Linux repository or
C++, C and Fortran tests | clause https://github.com/
google/googletest

Xercesc 3.2.0 or higher | Parse XML files Apache | http://xerces.apache.org/
License
2.0

3.3.2.1. IDL

To execute modules in IDL with openSF it is necessary to have installed IDL software on
the computer. openSF has been tested with the following versions of this software:
version 7.1, 8.0 and 8.1. If the user has a previous version, the application may eventually
not work. It is recommended to have installed at least IDL 7.1, and whenever possible
version 8.0 or later.

An important requirement for the correct functioning is that IDL is installed in the default
path, because if not some features of the OSFI library will not work properly. This
problem is related with ConFM module, which uses some internal classes of IDL that
must be in the default path, because otherwise the application does not find them. This is
caused because IDL looks for these classes only in the default directory, and if it does not
find them generates an error.

For IDL 7.1 the default path is ‘/usr/local/itt/idl” and for IDL 8.x the default path is
‘fusr/local/itt/idl/idl’.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

https://cmake.org/
http://www.stack.nl/%0b~dimitri/doxygen/%0bindex.html
http://www.stack.nl/%0b~dimitri/doxygen/%0bindex.html
http://www.stack.nl/%0b~dimitri/doxygen/%0bindex.html
https://github.com/%0bgoogle/googletest
https://github.com/%0bgoogle/googletest
http://xerces.apache.org/

. Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

delmOS Develober's Manual Date 17/07/2019
eveloper's Manua
grupo elecnor P Page : 18 of 111

Furthermore, IDL provides three types of licenses according to the user needs, as can be
seen below:

Q IDL development: Full license for IDL that allows to the user to use all its
functionalities. Users can access to the IDL Development Environment, the IDL
command line, and having the ability of compiling and executing IDL .pro files and
executing .sav files.

Q IDL runtime: Allows executing IDL programs precompiled and saved as .SAV files,
or .pro files without any type of restriction.

Q IDL virtual machine: It is a free license that allows to the user to execute IDL
programs precompiled and saved as .SAV files, or .pro files. This kind of license has a
few restrictions, like displaying a splash screen on start-up, callable IDL applications
are not available.

To execute a .sav or a .pro file without any type of restriction it is necessary to have
installed the development license or the runtime license on the computer. If user wants to
generate .sav files by compiling .pro files, it is mandatory to have the development
license. If the user only has the virtual machine license, he can execute .pro and .sav files
but with restrictions, as many functionalities are not available for this type of license.

3.3.2.2. Matlab

To execute modules in Matlab with openSF Matlab software must be installed on the
computer.

The only requirement is that Matlab version must be R2009a or later, with the
corresponding license.

3.3.2.3. Python

There are two prerequisites to execute a Python module from openSF:

1. Python correctly installed

2. Environment variable PYTHONPATH configured to point to the necessary libraries
(e.g. with PYTHONPATH=$OSFI_HOME/include/Python).

Python interpreter could be found in the public repositories for the most popular Linux
distributions, in Yum system for SUSE/RedHat or Synaptic in Debian/Ubuntu. For
further details about installation please visit the Python Project webpage
(https://www.python.org)

The OSFI Python libraries are developed to be compliant with both Python 2.X and
Python 3.X interpreter. The recommended version is Python 2.7.

3.4. Installation

OSFI is distributed as source package, with the necessary sources in every language
supported, for including and compiling with other sources. Figure 1 shows a high-level
view of the contents of the OSFI distribution:

O The folder include contains the header files of the library

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

https://www.python.org/

s Code : OPENSF-DMS-OSFI-DM

=

R

— OSFI Issue 1.18

o . &=
delmo Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 19 of 111

O The folder releng (release engineering) contains CMake configuration files
O The folder src contains the source files of the library

O The folder test contains a set of unit and integration tests that ensure the proper
performance of the library

In addition, the distribution includes the main CMake make file, the license, the release
notes and the version information file.

J include

J releng

J SrC

J test
| CMakelists.bet
] lgpl-3.0.tt
|| ReleaseMotes

|| Version

Figure 1: OSFI distribution

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

s Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 20 of 111

3.4.1. Build Instructions

Note: The build step described in this section is not necessary for the Matlab and
Python versions of OSFI. These libraries can be used directly as source code, but
notice that the build process provisions packaging and testing for all versions of OSFI,
including those languages.

First, extract the integration libraries into the desired location and enter it:

$ tar —-xvzf OSFI-<version>-src.tar.gz
$ cd OSFI

Next, create a folder where the products of the building process will be generated (e.g.
build) and enter it:

$ mkdir build
$ cd build

The command to configure the make files have a set of optional arguments that must be
reviewed. First of all, the default behavior of the build system is to configure the make
files for all the languages supported by the OSFI libraries that are not deprecated (F77
and IDL). Nevertheless, the user can choose which languages to build by providing the
OSFI_LANGS argument with either:

U A semicolon-separated list of the languages to be built. E.g.. CXX;Fortran;Python
U The special value “ALL” which enables all languages, even the deprecated ones

It shall be remarked that the OSFI implementations of C and Fortran (the two of them)
depend on the C++ implementation. Thus, the C++ language cannot be deactivated if one
of the aforementioned implementations is active.

In addition, the OSFI libraries depend on Xerces-C v3.2.0. The default behavior of the
build system is to look for the library in the user’s system, but two optional arguments
can be used to change the behavior:

U XercesC_DIR: it forces CMake to look there for the Xerces library.

U BUILD_XERCES: if this boolean flag is set to true, CMake will download and
build Xerces-C 3.2.0 in the xerces/ExternalProject folder under the build folder.

Other optional arguments accepted by the build configuration are:

U BUILD_SHARED_LIBS, default value OFF. If set to ON, the build process
generates shared libraries. If not, static libraries are created.

U BUILD_DOC, default value ON. Enables building the Doxygen documentation,
but requires Doxygen to be installed on the machine.

U BUILD_TESTING, default value ON. If set to ON, each language will generate
extra targets to build tests for OSFI itself, and the “test” target will be available to
run such tests. Note that some tests are language-specific and may require extra

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

e =N Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

> o i %m’
delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 21 of 111

libraries, e.g. some C++ tests require the GoogleTest library, while some of the
Java tests use JUnit.

The following example shows how to configure the OSFI make files from the build folder
created inside the OSFI directory to generate the static libraries. It can be seen that the
IDL, Matlab, Java, Fortran 77 and Python languages are disabled and that the Xerces
library is downloaded and built. It shall be remarked that the optional arguments are
provided starting with “-D”.

$ cmake -DBUILD XERCES=ON -D "OSFI_LANGS=CXX;Fortran;Python" .y

Once the build system is configured, the selected OSFI libraries with the appropriate
build-system specific command; or in general with the following call to CMake executed
from the build directory:

$ cmake --build .

If enabled, the OSFI unit tests can be launched by using the “test” target of the build
system, or with the following command executed from the build directory:

$ ctest

3.4.2. Packaging and/or Installation

An additional “package” target is available to generate an “installation package” the last
step is to package the OSFI build products with the following command:

$ cpack

If the installation has been successful, the package folder structure should be as follows:
O include: header files for C/C++, plus the Python and Matlab files.

U lib: dynamic or static libraries of OSFI. In addition, the folder cmake/OSFI
contains the CMake configuration files.

U share: documentation of the libraries APl in html format. This folder is not
available if the documentation is not created.

The module developer has the responsibility to include in the package the Xerces library
used during the build process. If the library was built with OSFI, the generated products
are located in the build directory in the folder xerces/ExternalProject/Install.

3.4.3. Building and Distribution of Modules with OSFI

It is under the module developer responsibility to distribute it with the OSFI libraries and
other dependencies of the module, ensuring that it will execute properly in the
environment of the E2E Mission Performance simulator.

For simulators with few modules, it is recommended to compile them statically with the
static version of the OSFI libraries, in order to guarantee its execution in any
environment. However, for simulators with a large number of models, it is more efficient
in terms of simulator size to build the modules with the dynamic version of OSFI

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

Devel < l Date : 17/07/2019
eveloper’s Manua
grupo elecnor P Page : 22 of 111

libraries, although the compilation process becomes more critical in order to avoid
potential conflicts during modules execution.

This section provides instructions for building the modules using CMake, the suggested
build system. It assumes that OSFI (and Xerces, where needed) are already built. It also
provides advice for setting up such modules correctly to ease their distribution and
execution from an E2E simulation orchestrator compatible with [E2E-ICD], like openSF.

3.4.3.1. C++, C and Fortran

In order to provide the Xerces and OSFI libraries to the building system, the user should
use the CMake command find_package. Firstly, the developer shall add the Xercesc
package with the commands shown below. It can be seen that function find_package
allows the user to input the location of the library to be added. The package Threads
refers to the threading library of the system and it is usually needed by Xercesc.

find package (Threads REQUIRED)
find package (XercesC REQUIRED CONFIG HINTS "${XercesC_DIR}")

The OSFI libraries are added using the same command. It can be seen that with the option
COMPONENTS, the developer can select the libraries needed in terms of the module
programming language. In the example below, both C++ and Fortran are selected.

find package (OSFI REQUIRED CONFIG
COMPONENTS CXX Fortran
HINTS "${OSFI_HOME}")

After these commands, Xercesc and OSFI are available for the building process, which
shall be performed with the proper CMake commands:

enable language (CXX)
add_executable (mymodule main.cpp otherfile.cpp)
target link libraries (mymodule OSFI::osfi-common)

In order to distribute such a module, the integrator must ensure that all required dynamic
libraries are available when it is going to be executed. Note that OSFI and Xerces are
only part of the larger set of libraries required by the program: the C/C++/Fortran runtime
may also need to be distributed in a platform-dependent manner. For example:

U In Linux, the “rpath” attribute of the executable itself may list absolute or
module-relative paths to try. Thus, build options could be provided to set rpath to
“$ORIGINY/../lib”, so the module could be distributed in a folder called “X/bin”
and its dynamic libraries (OSFI/Xerces, runtimes...) could be placed in “X/lib”.

O In Windows, the folder containing the executable is tried first, then those in the
PATH variable. Thus, OSFI and Xerces, if built as DLLs, could simply be
deployed alongside the executable file.

Another option is to try and build a fully statically-linked executable, which may bloat the
binary size but makes it easily redistributable. However, this option may require custom
build options, and is not always available in all platforms.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

e =N Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

> o i %m’
delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 23 of 111

Thus, the module developer/integrator would have to use the proper build settings to
create the desired scenario (building with/without dynamic libraries) and then take the
proper actions on installation to deploy all needed files in the necessary structure.

3.4.3.2. Java

Should the user want to use CMake for building a Java module with OSFI (instead of
Maven, Ant or other systems), they may use the find_package command to import the
OSFl-Java target. Unlike in C++, there is no need to find other libraries first; only Java
should be available beforehand. The OSFI libraries are added using the same command as
before, and the COMPONENTS option allows selecting only some languages:

find package (OSFI REQUIRED CONFIG
COMPONENTS Java
HINTS "${OSFI_HOME}")

After these commands, OSFI is available for the building process, which shall be
performed with the CMake commands. The OSFI-Java target can be linked into a JAR:

find package(Java 1.7 COMPONENTS Development) # find javac
include (UseJava)
add_jar (mymodule com/dms/ModMain.java com/dms/ModComp.java
ENTRY POINT com/dms/ModMain
INCLUDE JARS OSFI::osfi-java
)

Install phase: copy the JAR to the “bin” folder
install jar (TestModel DESTINATION bin)

Then copy the OSFI jar to some other path we can find, e.g. “1lib”
get_target property(osfijar OSFI::osfi-java JAR FILE)

install (FILES "${osfijar}" DESTINATION "lib")

In order to distribute such a module, the OSFI-Java JAR needs to be available on
execution too. Note, however, that the CMake Java-related functions will not install the
OSFI JAR along with the module automatically, hence the extra step above.

For the same reason, and since it does not know where such dependencies will be found,
CMake does not add them to the Class-Path attribute in the JAR manifest either. The
main consequence is that the class path needs to be indicated on execution, as follows:

$ java —-cp bin/mymodule.jar:lib/osfi.jar com.dms.ModMain

In order to ensure that the class path stored in the JAR can find the dependencies, the
module developer needs to decide at build time where they will be installed (relative to
the module JAR file). The following addition will generate the required Class-Path entry:

Generate a custom manifest so we can put the OSFI jar in the
Class-Path property. We will install the module at X/bin, and its
dependencies at X/lib.
file (GENERATE

OUTPUT "$ {CMAKE CURRENT BINARY DIR} /MANIFEST .MF"

CONTENT [[Class-Path: .. /1ib/$<TARGET_FILE_NAME :OSFI::osfi-java>
1]1) # Note this extra newline in the content - it is important!
Otherwise this will not be "merged" with the CMake-made manifest
add_jar (mymodule com/dms/ModMain.java com/dms/ModComp.Jjava

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

. Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

., &
de" NnosS Devel < M l Date : 17/07/2019
eveloper’s Manua
grupo elecnor P Page : 24 of 111

ENTRY POINT com/dms/ModMain
INCLUDE_JARS OSFI::osfi-java
MANIFEST "$ {CMAKE_CURRENT_BINARY_DIR} /MANIFEST .ME"

)

If the module is built and installed with this configuration, it can be executed with the
default class path in the JAR manifest, like:

$ java -jar bin/mymodule.jar

3.4.3.3. Python and Matlab

Python and Matlab are mainly interpreted languages, and thus they are not compiled by
CMake in any way. The only condition to execute a module using OSFI in those
languages is that the libraries in question are accessible to the modules at runtime, using
any of the language-specific methods:

U In Python: two different approaches are feasible:

o Using Python modules: if a single version of OSFI is used, the library may be
installed under the site-packages directory of the Python interpreter. If it
ought to be distributed alongside the module, the OSFI Python modules shall
be available in the directory in which the interpreter is running, or the OSFI
Python path can be added to the PYTHONPATH environment variable, or to
the sys.path list.

o Using a Python package: a Python binary package can be generated from the
distributed sources and installed in the system or in a virtual environment,
being automatically available for any module that desires to import it.

U In Matlab: the library needs to be available in the Matlab path. In general, the
module function itself will be in the Matlab path, so the OSFI library files could
be placed in the same folder, this may not be valid solution if the target folder
may be cluttered.

If the Python/Matlab modules are going to be used as they are (first approach for Python
and unique approach for Matlab), CMake can be used to aid in the install and distribution,
since the OSFI build defines imported targets for the Python and Matlab OSFI libraries.
Such targets are defined as INTERFACE libraries, which places them in the same
category as C++ header-only libraries, for example.

This means that they are not built as such, but still are able to provide relevant properties,
in particular INTERFACE_INCLUDE_DIRECTORIES, which is a list of paths that will
contain the OSFI-Python/Matlab library directory as its first item. It can then be used in
order to install the library alongside the module as follows:

find package (OSFI REQUIRED CONFIG
COMPONENTS Python Matlab
HINTS "${OSFI_HOME}")

Install our Python module to the bin folder. Using PROGRAMS will
ensure that the executable bit is set
install (PROGRAMS "mymodule.py" DESTINATION bin)

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

e Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

; _ ——
delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 25 of 111

Also get the path where the OSFI-Python libs are, and copy them
to the 1lib/OSFI folder on install
get property (OSFI_PYTHON DIR
TARGET OSFI::osfi-python
PROPERTY INTERFACE INCLUDE DIRECTORIES)
list (GET OSFI_PYTHON DIR 0 OSFI_PYTHON DIR) # Get lst element
install (DIRECTORY "${OSFI_PYTHON_DIR}"
DESTINATION "l1lib/OSFI" # Will create a OSFI/Python/ dir
FILES_MATCHING PATTERN "*.py") # Avoid copying *.pyc, etc.

The above setup ensures that the library files (in this case, OSFI-Python) are copied to the
“lib” folder of the install directory, while the module itself is copied with execution
permissions to the “bin” folder. The code for Matlab is exactly the same, performing the
adequate substitutions of “osfi-python” for “osfi-matlab” and “.py” for “.m”.

In order for a module to be executable, it needs to be able to find the library, so in the
case of Python, the following code would need to be inserted at the start of the module. It
first tries to load OSFI from the default Python path, and if that fails it tries to load it from
the module-relative path “../lib/OSFI/Python”, which is where the above CMake code will
have installed it.

#!/usr/bin/env python

from os.path import dirname, realpath, join
import sys
try: # Try to load something from OSFI in case it is in sys.path
import Logger
except ImportError:
If not, add the known path $moduledir/../lib/OSFI to sys.path
cur_fdir = dirname (realpath(__ file))
osfi dir = realpath(join(cur_fdir, '..',6 'lib',6'OSFI', 'Python'))
sys.path.append(osfi_dir)
try: # And try again
import Logger
except ImportError as e: # Give up
raise ImportError ("Cannot find the OSFI library in the"
"Python path, or at " + osfi_dir)
import other_ things
Rest of the module code

If the above steps are followed, the Python/Matlab module will always be able to access
the OSFI library, and so it will be able to be executed from the command line without
adding any special variables or settings to the environment:

$./bin/mymodule.py

The Matlab version of the module code adaptation is similar in both methodology and
implementation, although the way of calling the module is E2E-ICD implementation
dependent — check the corresponding manual for details.

function testModel (configurationParameters, inputs, outputs)
% Check that OSFI is in the Matlab path. If not, add the known path
% Smoduledir/../1lib/OSFI/Matlab to it and check again.

if ~exist('ConFM', 'class')
cur_fdir = fileparts(mfilename ('fullpath'));
osfi dir = fullfile(cur_ fdir, '..', 'lib', 'OSFI', 'Matlab');

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

— Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

- . 2
delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 26 of 111

addpath (osfi dir);
if ~exist('ConFM', 'class')
error ('mymod:depmissing', ['Cannot find the OSFI library'
'in the Matlab path, or at %s'], osfi dir)
end
end
% Rest of the module code

In order to use the “installed package” approach for OSFI Python, first the built-package
shall be generated from the sources. Wheels [PEP427] are the new standard of Python
distribution and are intended to replace eggs. A wheel package can be generated as
follows:

$ cd osfi/include/Python
$ python setup.py bdist wheel clean --all

The wheel package will be generated into a new “dist” subdirectory and will have the
following naming convention “OSFI-{version}-{python}-{abi}-{platform}.whl”, where
possible options for the various tags can be checked in [PEP427].

Once generated, the wheel package can be installed into the system, or into any desired
virtual environment, by simply using the pip Python package manager:

$ pip install dist\OSFI-{version}-{python}-{abi}-{platform}.whl

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

e Code : OPENSF-DMS-OSFI-DM

OSFI Issue 1.18

; _ ——
delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 27 of 111

4. OPENSF INTEGRATION LIBRARIES

In this section, the following is given:

O An architectural overview, giving structural descriptions of the elements offered in
the APIs (such as inheritance diagrams for C++ classes, etc).

O A complete set of examples of how to use the APIs and how to compile and execute
them.

4.1. Architectural Overview

The Integration Libraries will serve as interface between the openSF component and the
external module, as shown in Figure 2.

Implementation Diagram OSFI[E'l_y OSFI Concept U

< <component> > =] < <component> > =] <<component>> =]
openSF OSFI Model

< <component> > &

ModelEXecutor | | cLp
|
A

_ _Logger | <<‘°:En:f::nt>>g]
7

< <component> > =]
ConFM

ConfigMgr

Figure 2: Relationship with openSF and modules
The package “Model” depends on the functionalities implemented in the “OSFI” package.

This package, in turn, depends on the functionalities provided by the “ConfigMgr” and
“Model Executor” interfaces of the “openSF” package. This “Model Executor” is the
responsible to provide the proper command line arguments for the module execution. The
“ConfigMgr” is the module generating the XML configuration files.

There exists a tight integration between the “openSF” package and the “Integration
Libraries” package because the former also needs the latter for reading the events raised
and logged out from the module execution.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

e Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

; _ ——
delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 28 of 111

package common| [ﬁj Diagram of common package U

common
] Ll [
CLP EHLog ConFM

Figure 3 : OSFI common packages

This diagram shows how a system is split up into logical groupings by showing the
dependencies among these groupings. As a package is typically thought of as a directory,
package diagrams provide a logical hierarchical decomposition of a system.

It can be seen that both “CLP” and “ConFM” packages depend on the “EHLog” package
because they are also able to raise certain events to be logged out.

Regarding the interaction between languages, the C++ implementation serves as a
reference for function naming convection and availability to the module developer. The
Fortran and C OSFI libraries use the C++ libraries by means of an intermediate bridging
C++ library called FFI (Foreign Function Interface). This library implements an interface
to the OSFI functions that can be called without C++ name mangling or other C++-
specific features such as exception handling. It is intended as an intermediate layer to
OSFI-C++ from other languages and should be used to extend OSFI capabilities to other
languages that are not currently supported natively.

For a deeper analysis of OSFI libraries there is a section in [OSF-ADD] describing the
architecture and the interaction with the different programming languages.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

— Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

dei mos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 29 of 111

4.2. OSFI Common Packages

This section describes the functions provided by the OSFI common packages in terms of
input, output and behavior. In it, the general API of OSFI is described using concepts
such as “a list of X”, which are later determined in each language-specific section to the
concrete implementation provided, e.g. List<X> in Java, a cell array in Matlab, etc.

The handling of error conditions is also language specific: when this section mentions
that certain condition “results in an error”, that will in general log an error to the OSFI
logger, but other extra effects could be:

O In C++, Java or Python, raise an exception or simply return a certain flag value.
U In C, return an error code or a null pointer.

U In Fortran, both of the above depending on the presence or not of the STAT
argument

In general, functionalities provided by each module will be described as a series of
“cards” in the following format:

Operation name: (inputs...) 2 (outputs...)

Component Name of the (sub-)component e.g. CLP or ConFM.Parameter

Generic name Name that in most cases will the part of the name of the actual
function implementing the operation.

Precondition Conditions that need to hold before calling this operation. Does not
include conditions only on the inputs, which are described in their
own slot.

Inputs List of inputs for the operation, and conditions that they need to hold.

For object-oriented languages, it does not include the “this” or “self”
object handle, which is listed in preconditions.

Outputs List of outputs from the operation, and conditions that are verified by
them. For object-oriented languages, it does not include the “this” or
“self” object handle, changes to which are listed in postconditions.

Postconditions | Conditions that are verified after returning from the call.

Errors List of error conditions. Unless otherwise specified here, what OSFI
does in an error is language-specific.

Furthermore, “none” here does not preclude language-specific
problems such as out-of-memory errors in list-related operations, etc.

Notes Any extra comments.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

Code :
Issue
Date

OPENSF-DMS-OSFI-DM
1.18
17/07/2019

30 of 111

OSFI
Developer’s Manual

deimos

grupo elecnor Page :

4.2.1. Command Line Parser (CLP)

According to section 2.1.2 of E2E-ICD, a module shall be invoked with three-command
arguments: two configuration files separated by commas., multiple (at least one) input

files separated by commas and multiple (at least one) output files separated by commas.

This package provides the following functionalities:

Build CLP: args =2 ()

Component

CLP

Generic name

Build CLP, usually class constructor, or “create”

Precondition

None

Inputs Command-line arguments. Depending on the language, it may be a list
of strings, three strings, or even optional (causing the program
command line arguments to be read by OSFI).

Outputs None per se (usually, the constructed CLP object)

Postconditions

The CLP is properly initialized; functions to query the lists of C/I/O
files can be called and will return without errors.

Errors In general, if the format does not match the description of 2.1.2 of E2E-
ICD. Possible problems are: the number of command line arguments is
not 3, the number of configuration files is not 2, the name of a file
contains an invalid character, etc.

Get the list of C/1/O files: () => files

Component CLP

Generic names

getConfigFiles, getlnputFiles, getOutputFiles

Precondition

CLP has been built

Inputs

None (or, if a single function, the type of files)

Outputs

List of files of the required type

Postconditions

None

Errors

None directly.

Notes

In some languages, may be implemented as a pair of functions to get
the number of elements and the individual list item by index.

Table 7 summarizes the functionalities that this package shall provide (Function column)
and the current state in terms of implementation depending on the programming language
(a red cell means that the function is missing). The column labeled as E2E-ICD contains
the functions that are strictly needed taken into account the description given by the
document.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

/Q Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

u o
dEI mOS Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 31 of 111

In addition, Table 8 shows some functions (blue cells) that are currently implemented by
some languages and accessible to the user, but are not needed to comply with the
requirements derived from E2E-ICD. Thus, they may be deprecated and later eliminated
from the public interface.

Table 7: Functions of the CLP package

Function

E2E-
ICD
C++
Fortran
Java
Matlab
Python
F77
IDL

Parse command
line arguments
(“constructor”)

Get (full) list of
C/1/0O files

Table 8: Additional functions of the CLP package

Function

E2E-
ICD

Legacy: get single
configuration file

Query (only)
number of C/1/0

files

Tokenize string as
list of C/I/O files

List of C/1/O files
to string format

Check that a file
name is valid

Legacy: get single
input file

Legacy: get single
output file

4.2.2. Logger (EHLog)

According to section 2.2.4 and 2.2.5 of E2E-ICD this package shall provide functions to
send information, warning, error, debug and progress messages. Thus, the EHLog
package shall provide the following functions:

O Information: it sends an informative message raised by the module describing a
harmless event.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

_— Code : OPENSF-DMS-OSFI-DM

. S OSFI Issue 1.18

deimos | pate 1710772019
Developer’s Manual

Page 32 of 111

grupo elecnor

O Warning: it sends a message of a non-fatal error or anomalous condition in data or
during the processing that may cause a fatal error or affect the outputs in format or
content. The execution should continue with no interruption.

Q Error: it raises an error. For those programming languages able to throw exceptions,
this strategy will be used.

O Debug: it sends an information message only if the debug mode is active.

Q Progress: it sends numerical information on the amount of module execution

performed.

Additionally, the OSFI implementation introduces extra functions. For example, a
function to terminate the execution and exit with a certain exit code is present in all
implementations even though it’s not a strict requirement. Also, other types of messages
with similar formats are supported, like “quality messages”.

Show info/warning/error/debug message: text 2 ()

Component

Logger

Generic names

info, error, warning, debug

Precondition

Logger has been initialized (if necessary in the language)

Inputs

Message text

Outputs

None

Postconditions

The given message is written to the log output, formatted according to
the corresponding E2E-ICD message type.

Errors None directly.

Notes If the message type is debug, the message is only written if the debug
mode is activated.
Implementations may allow formatting of extra data in a language-
specific way, e.g. the C implementations have API similar to “printf”.

Show progress notice: (currentStep, totalSteps) 2 ()
Component Logger
Generic name progress

Precondition

Logger has been initialized (if necessary in the language)

Inputs Integers representing the number of the current work step and the total
amount of steps to be done, respectively. It must hold that 0 <
currentStep < totalSteps.

Outputs None

Postconditions

The given message is written to the log output, formatted according to
the E2E-ICD “progress” message type.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

Code : OPENSF-DMS-OSFI-DM

OSFI Issue : 1.18

, Date 17/07/2019
Developer’s Manual

Page 33 of 111

Errors None directly.
Notes -

Finish execution: (exitCode) = ()
Component Logger

Generic names

finishExecution

Precondition

Logger has been initialized (if necessary in the language)

Inputs

Integer exit code to be passed to the language runtime / OS.

Outputs

N/A

Postconditions

This function does not return normally, instead attempting to
terminate execution of the module through language-specific means.

Errors None directly.
Notes OSFI extension

Show quality message: (name, value) 2 ()
Component Logger

Generic names

qualityReport

Precondition

Logger has been initialized (if necessary in the language)

Inputs Quality indicator name: string
Quality indicator value: number or string
Outputs None

Postconditions

The given message is written to the log output, formatted according to
a custom message type in the vein of E2E-ICD formats.

Errors

None directly.

Notes

OSFI extension

Table 9 summarizes the functionalities that this package provides, along with the current
state in terms of implementation depending on the programming language: a red cell
means that the function is missing, a blue one that it is available.

The column labeled as E2E-ICD contains the functions that are strictly needed taken into
account the description given by the document. It can be seen that the function finish
execution is not defined in the E2E-ICD, but since it has been implemented in all the
languages and is useful, it has been kept as a function to be provided by the package.

In addition, Table 10 shows some functions (blue cells) that are currently implemented by
some languages and accessible to the user, but are not needed to comply with the

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

/‘Q Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

u o
dEI mOS Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 34 of 111

requirements derived from E2E-ICD. Thus, they may be deprecated and later removed
from the public interface.

Table 9: Functions of the EHLog package

Function

E2E-
ICD
C++
Fortran
Java
Matlab
Python
F77
IDL

Show I/W/E/D msg

Show progress

Finish execution

Table 10: Additional functions of the EHLog package

Function

E2E-

Quality reports

Format I/W/E/D
msg with extra data

Query debug mode

Set debugging
mode

Query color output

Redirect output to a
file (instead of out)

Get OSFI version

4.2.3. Configuration File Manager (ConFM)

This group of functions deals with the configuration files. First, user code must read a
configuration file, and then the parameters inside can be accessed.

4.2.3.1. Parsing and validating configuration files

Read configuration file: xmlPath = ()

Component ConFM.ParamReader

Generic names | Constructor, read/create

Precondition None
Inputs Path to an existing file formatted according to E2E-ICD.
Outputs None, possibly a handle to the constructed object

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

dei mos Date : 17/07/2019

Developer’s Manual

grupo elecnor Page : 35 of 111

Postconditions

The configuration file is parsed and functions to access parameters
may be called.

Errors If the file cannot be found or read as XML.
If the file is valid XML but is malformed according to E2E-ICD.
Notes -
Validate configuration file against XSD: xsdPath = valOk
Component ConFM.ParamReader

Generic names

validateAgainst

Precondition

ParamReader has been initialized successfully.

Inputs

Path to an existing file describing a XSD 1.0 schema.

Outputs

One flag value (e.g. Boolean “true™) if the file passes validation, a
different one if the schema can be read but the file does not validate.

Postconditions

Errors

If the file cannot be found or parsed as an XSD schema.

Notes

Some languages also support an alternative form that takes no
arguments: “validateAgainstInternalSchema”. It works as described
but the path to the schema is taken from the XML file itself as noted
in an xsi:[noNamespace]Schemalocation attribute.

4.2.3.2. Finding and accessing parameters

The parameters are identified by its complete path, which is obtained concatenating the
name of the groups that contain the parameter (from least to most nested) and the
parameter name, all separated by dots. Note that the root element of the XML file does
not count as a group, so its parameter children have paths without any dots.

The following functions are related with parameter access. If the file that contains them
has not been validated previously and/or if the format of the parameters declared is not
correct, these functions may raise errors themselves or defer them to a later time (e.g.
when trying to retrieve a parameter value).

Check parameter existence by path: path = paramExists

Component

ConFM.ParamReader

Generic names

existParameter

Precondition

ParamReader has been initialized successfully.

Inputs

String describing a parameter path

Outputs

True if a parameter under that name has been parsed, false otherwise.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

Code :
Issue
Date

OPENSF-DMS-OSFI-DM
1.18
17/07/2019

36 of 111

OSFI

Developer’s Manual
Page

Postconditions

Errors None directly.
Notes -

Get parameter by name: path = handle
Component ConFM.ParamReader

Generic names

getParameter

Precondition

ParamReader has been initialized successfully.

Inputs

String describing a full parameter path

Outputs

Some kind of handle that may later be used to query information
about the parameter.

Postconditions

Errors If a parameter by that name does not exist.

Notes Depending on the language, the “handle” may be an actual copy of the
parameter data, or a reference to ParamReader-held data.
Get parameters by group: path = list of handles

Component ConFM.ParamReader

Generic names

getParameters

Precondition

ParamReader has been initialized successfully.

Inputs

String describing a partial parameter path.

Outputs

List of handles that may later be used to query information about the
parameters.

Postconditions

The list is always valid, although it may be empty.

For every parameter p, if its path begins by the given argument, it is
contained in the list.

For every handle in the list, the path of the parameter it refers to
begins by the given argument.

Errors

Notes

Depending on the language, the “handles” may be actual copies of the
parameter data, or references to ParamReader-held data.

An extra version may be provided that does not take any arguments
and simply returns handles to all parameters read from the file.

Furthermore, some versions include a function to print information about either a single
parameter, or all read from the file. It usually prints the attributes defined by the user (see
section 2.2.6.2 of E2E-ICD) and its value.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

dei mos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 37 of 111

4.2.3.3. Get parameter value (for non-ARRAY parameters)

This set of functions is in charge of reading the value of the parameter. They shall support
the different element types in section 2.2.6.2 of E2E-ICD. Currently, type TIME is
generally unsupported because it was introduced in a review of the standard document
very close to the release of this version of OSFI.

For those programming languages where the type of the output returned by a function
must be known at compilation time (C++, C, Java, Fortran 77 and Fortran) many different
functions will be available, covering each data combination of type and element types.
However, for languages where the type of the data is known at run time (Matlab, Python
and IDL), these capabilities could be encapsulated in a single generic function.

Depending on the element type and structure of the value to read, there are certain details
that must be considered that are described in the following sections. Note that these
functions may also be applied to an ARRAY parameter; depending on the specific
language they may return a nested structure as described in the following section, or if the
getVector(T) functions are used the array is first flattened in a depth-first fashion before
parsing the elements and returning a 1D list.

Get non-ARRAY parameter value: paramHandle = value

Component ConFM.Parameter

Generic names | All languages: get(T)Value, getVector(T), getMatrix(T)
Dynamic languages may also have a getValue / getParsedValue

Precondition -

Inputs Valid parameter handle

Outputs Parsed parameter value according to the declared or chosen element
type and data structure. For vectors, a list of values. For matrices, a
list of lists or other language-specific concept representing a matrix.

Postconditions -

Errors If the value is not formatted according to E2E-ICD.
If the value does not have the declared dimensionality.

If any of the individual values cannot be parsed as the detected or
chosen element type.

Notes An extra version may be provided where the user is allowed to
override the element type declared in the XML.

If getVector(T) is applied to an ARRAY parameter, or a node thereof,
the elements of the chosen subtree will be enumerated depth-first, and
the result will be returned as a list of values.

OSFI does not apply the limit of 255 characters for strings in E2E-ICD
or check the string contents for non-alphanumeric characters.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

dei mos Date : 17/07/2019

Developer’s Manual

grupo elecnor Page : 38 of 111

4.2.3.4. Access parameter values (for ARRAY parameters)

Two different approaches are possible when accessing ARRAY parameters:

U The “getArrayValue” convention, where the implementation provides functions

with an interface similar to the getVector(T) functions used for non-ARRAY
parameters, but which take an additional argument representing indices into the
parsed value of the parameter. Depending on the implementation, the return value
may be restricted to a single vector (so only leaf nodes produce values) or an
object representing the parsed value of (part of) the full structure.

U The “getRootNode” convention, where the library provides access to the structure
of the unparsed ARRAY parameter. User code may navigate this structure,
indexing into it to examine the number and value of its children. Upon reaching a
leaf node, use code can ask for the parsed value of this node. Optionally, an
implementation may also provide for a way to parse (part of) the full structure,
returning a different type with a similar API that allows navigating the parsed

structure and extracting the values.

Each implementation of OSFI provides at least one of these approaches. As mentioned in
both descriptions, they may provide an extra optional feature which is a way to represent
the parsed value of (part of) the full ARRAY structure. This is easier to do in dynamic
languages, but e.g. OSFI-Java does provide this feature too.

Get ARRAY leaf node value: (paramHandle, nodelndex) - value

Component

ConFM.Parameter

Generic names

getArrayValue, getLeafVector(T)

Precondition

Parameter is of type ARRAY

Inputs Valid parameter handle of type ARRAY.
List of indices into the structure of the ARRAY
Outputs Parsed parameter value according to the declared or chosen element

type and data structure. For vectors, a list of values. For matrices, a
list of lists or other language-specific concept representing a matrix.

Postconditions

Errors If the value is not formatted according to E2E-ICD.
If the indices do not reach a leaf node (containing data) or the node
contents do not match its declared dimensionality.
If any of the individual values cannot be parsed as the detected or
chosen element type.

Notes An extra version may be provided where the user is allowed to

override the element type declared in the XML.

OSFI does not apply the limit of 255 characters for strings in E2E-ICD
or check the string contents for non-alphanumeric characters.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

Code : OPENSF-DMS-OSFI-DM

OSFI Issue : 1.18

, Date 17/07/2019
Developer’s Manual

Page : 39 of 111

Get ARRAY root node: paramHandle = arrayNodeHandle

Component

ConFM.Parameter

Generic names

getArrayValue, getLeafVector(T)

Precondition

Parameter is of type ARRAY

Inputs

Valid parameter handle of type ARRAY.

Outputs

Handle to an ArrayNode object representing the unparsed structure as
defined in the XML.

Postconditions

Errors -
Notes -

Get type of array node: arrayNodeHandle - nodeType
Component ConFM.ArrayNode

Generic names

isLeaf, isDataNode, etc.

Precondition

Inputs

Valid array node handle.

Outputs

Flag value representing either a data/leaf node (directly containing
values) or internal node (containing other array nodes reproducing the
XML structure).

Postconditions

Errors

Notes

Get array node children: arrayNodeHandle > arrayNodeHandles

Component

ConFM.ArrayNode

Generic names

getSubNodes

Precondition

Inputs

Valid array node handle representing an internal node.

Outputs

List of handles to ArrayNode objects representing the children of this
node in the structure defined in the XML.

Postconditions

Errors

If the node is a data/leaf node that cannot contain child nodes.

Notes

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

deimos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 40 of 111

Get array node data: arrayNodeHandle = values

Component ConFM.ArrayNode

Generic names | getData

Precondition -

Inputs Valid array node handle representing a data/leaf node of either an
unparsed or parsed node structure.

Outputs If the node represents unparsed values, returns an object that contains
both the number of declared values (in the XML) and the unsplit,
unparsed string.

If the node represents parsed values, returns a list of parsed values of
the right size.

Postconditions -

Errors If the node is an internal node (and does not contain data)

Notes -

Parse value of array node: arrayNodeHandle = value

Component ConFM.Parameter

Generic names | getArrayValue, getLeafVector(T)

Precondition Parameter is of type ARRAY

Inputs Valid array node handle representing an unparsed data/leaf node.

Outputs Parsed parameter value according to the declared or chosen element
type and data structure. For vectors, a list of values. For matrices, a
list of lists or other language-specific concept representing a matrix.

Postconditions -

Errors If the value is not formatted according to E2E-ICD.

If the indices do not reach a leaf node (containing data) or the node
contents do not match its declared dimensionality.

If any of the individual values cannot be parsed as the detected or
chosen element type.

Notes An extra version may be provided where the user is allowed to
override the element type declared in the XML.

OSFI does not apply the limit of 255 characters for strings in E2E-ICD
or check the string contents for non-alphanumeric characters.

An extra version may be provided that parses the full structure from
this node downwards, instead

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

Code : OPENSF-DMS-OSFI-DM

OSFI Issue : 1.18

, Date 17/07/2019
Developer’s Manual

Page 41 of 111

4.2.3.5. Query parameter attributes

This set of functions is used to read the attributes of a parameter.

Get number of dimensions: paramHandle = ndims

Component

ConFM.Parameter

Generic names

getNdims

Precondition

Inputs

Valid parameter handle

Outputs

Number of dimensions of a parameter. Will be zero for scalars, 1 for
vectors and 2 for matrices. For ARRAY-typed parameters, the number
of dimensions of the rectangular envelope of the actual shape.

Postconditions

Errors None directly.
Notes -

Get dimensions: paramHandle 2 dims
Component ConFM.Parameter

Generic names

getDims

Precondition

Inputs

Valid parameter handle

Outputs

List of dimensions for a parameter. For scalars it is empty, while it has
one element for vectors and two for matrices: (cols, rows). For arrays
it represents the rectangular envelope of the actual shape.

Postconditions

Errors

None directly.

Notes

Get description/units/maximum/minimum: paramHandle = attrVal

Component

ConFM.Parameter

Generic names

get(Description, Units, Max, Min)

Precondition

Inputs

Valid parameter handle

Outputs

String, possibly empty

Postconditions

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

Code : OPENSF-DMS-OSFI-DM

OSFI Issue : 1.18

, Date 17/07/2019
Developer’s Manual

Page 42 of 111

Errors None directly.
Notes -

Get data element type: paramHandle = elType
Component ConFM.Parameter

Generic names

getElementType

Precondition

Inputs

Valid parameter handle

Outputs

Token representing an element type, may be a value from an
enumerated type if the language supports such a concept.

Postconditions

Errors None directly.
Notes See section 2.2.6.2 of E2E-ICD

Query parameter structure: paramHandle 2 isArray
Component ConFM.Parameter

Generic names

iSArray

Precondition

Inputs

Valid parameter handle

Outputs

Flag representing whether or not a parameter has the ARRAY
structure type.

Postconditions

Errors None directly.

Notes This returns a false flag value for MATRIX parameters, since they
cannot sport a tree-like structure with different sizes.
Get unparsed value: paramHandle = rawValue

Component ConFM.Parameter

Generic names

getRawValue

Precondition

Inputs

Valid parameter handle

Outputs

String representing the unparsed value of the parameter, as read,
without any XML syntax.

For MATRIX parameters, the values in each row are joined, with

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

= Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 43 of 111

matrix elements appearing in row-major ordering.

For ARRAY parameters, the returned string is language-specific, but
it should represent the structure of the parameter.

Postconditions | -

Errors None directly.

Notes -

4.2.3.6. Files and Folders

One function is provided to check if a file or folder provided by a parameter exists.

QO File exists: returns true if the file exists and false otherwise. The function will raise an
error if the parameter that provides the file is not of type file (or the elements if it is a
complex type). For complex types like array or matrix, the operation will be
performed element by element, returning an array or matrix of booleans.

4.2.3.7. Summary tables

The analysis of section 2.2.6.2 of E2E-ICD and the current implementation of OSFI
libraries reveals a set of functions that are needed to read the parameters that the users can
define, which are described in Table 11. The first two columns of the table list the
functions and group them according to their functionality.

The blue cells of the third column of Table 11 shows the functions that are strictly needed
to comply with E2E-ICD according to the types of parameters defined in section 2.2.6.2.
For instance, the functions related with accessing vectors appear in red because the
complex type vector is not defined in E2E-ICD. Other functions that are red in Table 11
are the ones related with reading arrays and matrices of element type folder, since its
definition is also omitted in E2E-ICD.

The rest of the columns of Table 11 refer to an implementation of the ConFM package on
a certain programming language. It shall be remarked that the C++, C, Fortran 77 and
Fortran implementations do not have function specifically dedicated to access arrays,
although this functionality is supported by the functions to read matrices. Other
remarkable gap in Table 11 is related to the lack of functions in Fortran 77 and Fortran to
get the attributes of the parameters. In addition, although it is very useful, some
implementations and the E2E-ICD do not offer the possibility to access multiple
parameters at the same time (either under the same group or all the parameters in the file).

In addition, Table 12 shows some functions (blue cells) that are currently implemented by
some languages and accessible to the user but are not needed to comply with the
requirements derived from E2E-ICD. Thus, they should be eliminated from the public
interface. It is especially remarkable the case of the C++ language, which has a wide set
of functions that should not be available to the user (such as functions to edit parameters,
get vectors of nodes or split strings).

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

/Q Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

- &
dEI mOS Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 44 of 111

Table 11: Functions of the ConFM package

Group | Function

E2E-
ICD
C++
Fortran
Java
Matlab
Python
F77
IDL

Parse Load file
file Validate
against XSD

Access | By name
params | By group
Get full list
Existence

INTEGER
FLOAT
BOOLEAN
STRING
FILE
FOLDER
TIME
INTEGER
FLOAT
BOOLEAN
STRING
FILE
FOLDER
TIME
INTEGER
FLOAT
BOOLEAN
STRING
FILE
FOLDER
TIME
INTEGER
FLOAT
BOOLEAN
STRING
FILE
FOLDER
TIME

Scalar

Vector

Matrix

Get Parameter Value
General array

1 Only a single configuration file may be loaded at once; calling the loading function a second time
unloads the previously loaded file

2 Only if the Ixml library is available; otherwise the xml.etree package provided by the standard
CPython library is used instead and calling validation functions raises an exception.

3 The parameter type FOLDER is recognized; functions used to access it are the same as for FILE.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

. S
deimos

grupo elecnor

OSFI
Developer’s Manual

Code :
Issue

Date
Page

OPENSF-DMS-OSFI-DM
1.18
17/07/2019

45 of 111

Group | Function

dimensions

Dimensions

Full path

Description

Units

Max

Min

Element type

Is array

Raw value

Query parameter attributes

Print

Files File exists

Table 12:

Additional functions of the ConFM package

Function

E2E-
ICD
C++

Set value

Tokenize string
according to type

Get complex type
(equivalent to “is
MATRIX”)

Get extended attribute

Set extended attribute

Add extended attribute

Get path from a
Parameter instance

Fortran
77
IDL

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

=N Code : OPENSF-DMS-OSFI-DM

= =

"

= OSFI| Issue : 1.18

= -
delm S Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 46 of 111

4.3. Language-specific interfaces

In this section, the process logic of using the libraries in modules source code is shown. It
is described for C++, Fortran, IDL, Matlab, Python and Java module developers. Note
that additional documentation on the APIs available for several languages is available
through [OSF-DOC].

4.3.1. C ++ Programming Language

OSFI-C++ code is written to comply with the [C++11] standard, although compilation
settings may be set for C++14 if Xerces-C requires so. A main header file OSFl.h is
provided which exposes all public API, but module-specific headers are also provided.

The implementation of OSFI-C++ is object-oriented, with both the CLP and ConFM
modules implemented using classes: CLP, ParamReader and Parameter are the main ones.
The Logger module is mainly function-based and stores any state globally. In general,
errors are communicated through exceptions, although some methods just log errors to
the OSFI log stream and return token values instead.

General description:

U All classes are directly in the global namespace. In future versions, it is possible
that a namespace will be introduced.

U Types in E2E-ICD are mapped to their reasonable equivalents: INTEGER to int,
FLOAT to double, BOOLEAN to bool and the STRING, FILE and FOLDER
types to std::string. In future versions, it is possible that the arithmetic types will
be mapped to a different type (e.g. std::int32_t).

O 1-D “list” types are generally mapped to std::vector<T> except in the CLP class.
Matrices (described in the general API as “lists of lists”) are represented by a
custom DynamicArray<T> class wrapping a vector of vectors.

O Access to ARRAY-typed parameters is twofold, implementing both the
“getRootNode” and the “getArrayValue” approaches described in §4.2.3.4. The
latter is implemented as getVectorT functions that take the desired slice indices.

Known issues:

U Currently some OSFI headers import the std namespace (“using namespace std;”)
but this is considered bad form and will be removed in the future. Thus, for future
compatibility, do not depend on OSFI importing any namespaces.

U Large objects are frequently returned directly (lists, vectors). While the penalty in
performance may be reduced by compiler optimizations (RVO, NRVO) and has
also recently been ameliorated by move semantics in C++11, user code should
consider this fact when making use of such methods.

U Const correctness of the code is an issue, and it is difficult to effectively utilize
const references to OSFI objects. This is likely to be improved in the future.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

Code : OPENSF-DMS-OSFI-DM

OSFI Issue : 1.18
Developer’s Manual Date : 17/07/2019
grupo elecnor p Page - o

4.3.1.1. CLP

The CLP module API is provided by header cLp/crp.h. The implementation takes the
form of a single class “CLP” which parses command line arguments as passed. No global
state is stored and thus multiple instances can coexist. Furthermore, all parsing is done by
the constructor, and accessor functions only return copies of stored data.

Table 13 details the interface of the CLP module in OSFI-C++.

4.3.1.2. EHLog

The EHLog module API is provided by header EHLog/Logger.h. The implementation
provides the functions as static member functions of a fake class named Logger. Extra
data-formatting is implemented by returning C++ streams that the user can append to.

Relevant status variables (debug/color) are initialized at first execution of an output, and
stored as global data from them on. Furthermore, functions operate on the global streams
cout and cerr. Thus, thread safety is not guaranteed in these functions.

Table 14 details the interface of the EHLog module in OSFI-C++.

4.3.1.3. ConFM

The ConFM module API is provided by four headers under the conrm folder:
ArrayNode.h, DynamicArray.h, Parameter.h and ParamReader.h. Each defines the
class of the same name, and the latter header transitively includes all four.

The ParamReader class is the main access point to the module interface. Each instance is
independent and holds no global state, so several instances can be kept (e.g. for the global
and local configuration files). The instance holds ownership of and provides access to a
set of Parameter instances, which are likewise independent of any other instance.
However, thread safety is not guaranteed in any of the functions because they may call
the Logger functions to report errors.

Table 15 details the interface of the ConFM module in OSFI-C++.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code : OPENSF-DMS-OSFI-DM

Issue : 1.18
Date : 17/07/2019
Page : 48 of 111

Table 13: Functions of the CLP module in C++

General operation

C++ Prototype

Notes

Parse command
line arguments
(“constructor”)

CLP:: CLP(int argc, char* argv[])

The inputs are those provided to the C++ main() function.

Get (full) list of
C/1/0 files

list<string> CLP:: getConfFiles ()

Same signatures: getlnputFiles and getOutputFiles.

Should be const. If no file of a type is provided, they return
an empty list.

Legacy: get single
configuration file

string CLP:: getConfFile()

Should be const. If called in a case with two configuration
files, returns the unparsed string (“filel,file2”).

Table 14: Functions of the EHLog module in C++

General operation

C++ Prototype

Notes

Show I/W/E/D
message

static void Logger:: info(string msgq)

Same signatures: warning, error and debug.

The user should not introduce newlines in the string, because
it will break the output format.

Extension: format
I/W/E/D message
with extra data

static ostream& Logger:: getInfoStream()

Same signatures: getWarningStream, getErrorStream,
getDebugStream.

The user should not introduce newlines in the output given
to those streams, because it will break the output format.

Show progress
indication

static void Logger:: progress(int, int)

No validation is performed.

Finish execution

[[noreturn]] static void Logger::
finishExecution (int exitCode)

Calls std::exit with the given value as exit code.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code OPENSF-DMS-OSFI-DM
Issue 1.18
Date 17/07/2019
Page 49 of 111

General operation

C++ Prototype

Notes

Extension: show
quality report

static void Logger::quality(string name, double v)

static void Logger::quality(string name, string v)

The user should not introduce newlines in the strings,
because it will break the output format.

Extension: format
quality report

static ostream& Logger:: getQualityStream()

The user should not introduce newlines in the output given
to those streams, because it will break the output format.

Query debug and
colored output.

static bool Logger:: isColored()

Same signature: isDebugging

Status set from environment variables DEBUG_MODE and
OSFI_LOG_COLOR on first query.

Table 15: Functions of the ConFM module in C++

General operation

C++ Prototype

Notes

Load config file

ParamReader:: ParamReader (const string& xmlFile)

Throws std::exception if the file cannot be parsed.

Validate against
XSD

bool ParamReader:: validateAgainst (const stringé&
xsdFile) const

Throws std::invalid_argument if the schema cannot be
parsed.

Extension: validate
against internal
schema

bool ParamReader:: validateAgainstInternalSchema ()
const

Returns failure if the schema cannot be found or parsed.

Get parameter by
full path

Parameter ParamReader:: getParameter (string)

Parameter& ParamReader:: getParameterRef
(const stringé&)

The first form returns a “dummy” parameter if the name is
not found; the second throws std::invalid_argument. The
lifetime of its return value matches that of the ParamReader
instance.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code OPENSF-DMS-OSFI-DM
Issue 1.18
Date 17/07/2019
Page 50 of 111

General operation

C++ Prototype

Notes

Get parameters by
partial path

vector<Parameter> ParamReader::
(string)

getParameters

Returns an empty vector if no parameter matches.
Copies Parameter objects

Get all parameters

t_params_map ParamReader:: getParameters()

The map key is the full path, which is not accessible from
within each Parameter item.

t_params_map is an alias to map<Parameter,string,X> with
X a custom comparer.

Copies Parameter objects

Query existence

bool ParamReader:: existParameter (string)

Get parameter
parsed value
(scalar, vector,
matrix)

#V# Parameter:: get#T#Value ()
vector<#V#> Parameter:: getVector#Ti ()

DynamicArray<#V#> Parameter::getMatrix#T# ()

#T# is one of Int, Double, Boolean, String or File, and #V#
is the corresponding type (int, double, bool, string, string).

On parsing error, a log message is emitted and a default
value is returned (see docs). If the getVector#T# functions
are used on an ARRAY parameter, it is flattened to 1D.

Extension: query
file existence

DynamicArray<bool> Parameter::fileExists()

For FILE parameters. If the parameter is a scalar or vector, a
1x1 or single-row matrix is returned, respectively.

Query parameter
attributes

int Parameter:: getNdims ()
const vector<int>& Parameter:: getDims () const

Parameter: :ElementType Parameter::
getElementType () const

string Parameter: :getName ()

Same sig.: getDescription, getUnits, getMax, getMin, getType

Parameter::ElementType is a C++11 scoped enum (“enum
class”) with the E2E-ICD simple types, that is, it does not
represent types ARRAY or MATRIX.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code : OPENSF-DMS-OSFI-DM

Issue : 1.18
Date : 17/07/2019
Page : 51 of 111

General operation

C++ Prototype

Notes

ARRAY access —
getArrayValue API

int Parameter:: getDims (vector<int>)
bool Parameter:: isLeaf (vector<int>)

vector<#V#> Parameter:: getVector#T# (vector<int>)

The vector represents the index of the desired slice. Slices of
a parameter with dimensionality d must have at most d—1
indices, because a vector is returned for the last dimension.

The getVector#T# functions do not flatten sub-elements:
they only return non-empty values for leaf nodes.

ARRAY access —
ArrayNode API

const ArrayNodeé& Parameter:: getRootNode() const
ArrayNode Parameter:: getNode (vector<int>)
vector<#V#> ArrayNode:: getVector#T#() const

int ArrayNode:: getDegree() const

const vector<string>é&
ArrayNode:: getElements() const

const vector<ArrayNode>é&
ArrayNode:: getChildren() const

bool ArrayNode:: isLeaf()cons

For getNode, indices must have at most one dimension less
than the parameter, since the last dimension (leaf node)
contains a vector itself.

getElements returns an empty vector for non-leaf nodes.
getChildren returns an empty vector for leaf nodes.
getDegree returns the size of the vector that is not empty.

The getVector#T# functions do not flatten sub-elements:
they only return non-empty values for leaf nodes.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

. Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

del MoOS Develober's Manual Date 17/07/2019
eveloper's Manua
grupo elecnor P Page : 52 of 111

4.3.2. ANSI C Programming Language

OSFI-C code is written to comply with the [C99] standard formally, although the design of
the interface is not modern. A single header file osrIc.h is provided which exposes all
public API.

The implementation of OSFI-C is not object-oriented: it is implemented as a wrapper
around OSFI-C++ which keeps a single instance of the CLP and ConFM classes live at
any point. In general, errors are communicated through return codes, although some
methods just log errors to the OSFI log stream and return token values instead.

General description:

U Types in E2E-ICD are mapped to their reasonable equivalents: INTEGER to int,
FLOAT to double, BOOLEAN to _Bool (bool with stdbool.h) and the STRING,
FILE and FOLDER types to character arrays. In future versions, it is possible that
the arithmetic types will be mapped to a different type (e.g. int32_t).

O 1-D “list” types are generally mapped to arrays except in the CLP class. Matrices
(described in the general API as “lists of lists”) are represented by linear (1D)
arrays containing the matrix elements in row-major order.

O Access to ARRAY parameters is provided using the the “getArrayValue”
approach described in 84.2.3.4. It is implemented as getLeafVectorT functions
that take the desired slice indices.

Known issues:

U Memory allocation must be performed by the user, leading to possible buffer
overflows if the sizes indicated by the API are not respected. A series of constants
are available for the user to perform these allocations. In general, user code
should preallocate string buffers to a size of MAX_x+1, where X is the constant in
question, since the API expects that the buffer may hold MAX_x chars plus the C
string terminator character.

4.3.2.1. CLP

All CLP functions are prefixed by “osfiCLP” except for the “general destructor”
osfiCommonClose that destroys the held CLP and ConFM instances. Table 16 details the
interface of the CLP module in OSFI-C.

4.3.2.2. EHLog

All EHLog functions are prefixed by “osfiLogger”, and they relay calls to the related C++
versions. Thus, status variables (debug/color) are initialized at first execution of an output
and stored as global data from them on. Furthermore, functions operate on the global C++
output and error streams, which may or may not be synchronized with the C conterparts.
Thread safety is not guaranteed in these functions.

Table 17 details the interface of the EHLog module in OSFI-C.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

-

)

= =)
M e
e ——

deimos

grupo elecnor

OSFI
Developer’s Manual

Code :
Issue

Date
Page

OPENSF-DMS-OSFI-DM
1.18
17/07/2019

53 of 111

4.3.2.3. ConFM

All ConFM functions are prefixed by “osfiConFM” except for the “general destructor”

osfiCommonClose that destroys the held CLP and ConFM instances.

The interface does not provide individual functions to query all the parameter attributes,
but it does provide a structure to read them all at once (struct osfiParameter and function
osfiConFMGetParameter). However, as mentioned in the general considerations and
known issues, it is the responsibility of the user to allocate and free memory for such a

structure.

Table 18 details the interface of the ConFM module in OSFI-C.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code : OPENSF-DMS-OSFI-DM

Issue : 1.18
Date : 17/07/2019
Page : 54 of 111

Table 16: Functions of the CLP module in C

General operation

C Prototype

Notes

Parse command
line arguments
(“constructor”)

int osfiCLP(int argc, char* argv[])

Returns FALSE (zero) in case of error, TRUE (nonzero)
otherwise. If the call is successful and this function had
already been called before, the stored parsed data is replaced.

Get (full) list of
C/1/0O files

void osfiCLPGetConfFiles
(char *confFiles[], int *noFiles)

Same signatures: osfiCLPGetInputFiles and
osfiCLPGetOutputFiles.

If the buffer is NULL, it is not touched and only the number
of files is returned in *noFiles.

Otherwise, the function assumes that the number of slots
available is enough (*noFiles is not checked on entry) and
that every slot in the buffer is preallocated to a capacity of

MAX_LENGTH_FILE_ NAME+1.

Legacy: get single
configuration file

void osfiCLPGetConfFile
(char *fileName, int *length)

The buffer must be preallocated to
MAX_LENGTH_FILE_NAME+1.

The actual length of the file name is returned in *length.

Language-specific:
free OSFI-C
resources

int osfiCommonClose ()

Destroys the held instances of both the C++ CLP and
ParamReader objects. Returns zero on failure, nonzero on
success.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code OPENSF-DMS-OSFI-DM
Issue 1.18
Date 17/07/2019
Page 55 of 111

Table 17: Functions of the EHLog module in C

General operation

C Prototype

Notes

Show I/W/E/D
message (also,
extension: format
I/W/E/D message
with extra data)

void osfiloggerInfo (char *format,...)

Same signatures: osfiLoggerInfo, osfiLoggerError and
osfiLoggerDebug.

The user should not introduce newlines in the output given
to those streams, because it will break the output format

Show progress
indication

void osfiloggerprogress (int, int)

No validation is performed.

Finish execution

_Noreturn void
osfiloggerfinishExecution (int exitCode)

Calls exit with the given value as exit code.

The _Noreturn attribute is only declared if the C version
reported by the compiler (__STDC_VERSION__) is at least
C11 (value greater than or equal to 201112L).

Extension: show
quality report

void osfiloggerQuality (char *name, double v)

void osfiloggerQualityDouble (char *name, char *v)

The user should not introduce newlines in the strings,
because it will break the output format.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code OPENSF-DMS-OSFI-DM
Issue 1.18
Date 17/07/2019
Page 56 of 111

Table 18: Functions of the ConFM module in C

General operation

C Prototype

Notes

Load config file

bool osfiConFMReadConfigFile (const char *xmlFile)

Returns false if errors prevent reading the file. If successful,
parameters from any previous call to this functions are
discarded and replaced from the values read from this file.

Validate against
XSD

enum osfi confm val res
osfiConFMValidateAgainst (const char* schemaFile)

The result enum has three values for “validation passed”,
“validation ran but failed” and “validation could not run”.

Get parameter by
full path

All remaining functions in the ConFM module address a
parameter by its full path.

Query parameter
existence

bool osfiConFMExistParameter (char* paramName)

Query parameter
element type

ParamType osfiConFMGetElementType
(const char *paramName)

ParamType is an enum with the E2E-ICD simple types, that
is, it does not represent types ARRAY or MATRIX.

Query parameter
structure type

bool osfiConFMIsArray (const char* paramName)

Query parameter
dimensions

void osfiConFMGetDimension (char *paramName,
int index, int *size)

int osfiConFMGetRows (char *paramName)

int osfiConFMGetColumns (char *paramName)

If index is past the dimensionality of the parameter, O is
returned.

Rows and columns are defined as dimensions #2 and #1,
respectively, according to E2E-ICD.

Query parameter
attributes

void osfiConFMGetParameter (osfiParameter *param,
char *paramName)

Both param and all fields of *param must point to properly
allocated buffers of the right sizes.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code : OPENSF-DMS-OSFI-DM

Issue : 1.18
Date : 17/07/2019
Page : 57 of 111

General operation

C Prototype

Notes

Get parameter
parsed value
(scalar)

bool osfiConFMGetBoolValue (char *paramName)

void osfiConFMGetIntegerValue (int *value,
char *paramName)

void osfiConFMGetDoubleValue (double *value,
char *paramName)

void osfiConFMGetStringValue (char *value,
int *length, char *paramName)

void osfiConFMGetFileValue (char *value,
int *length, char *paramName)

For all versions taking a pointer, it must not be NULL.
Furthermore, for strings, the length is written to *length on
output but not checked in input: the code always assumes
that buffers are preallocated to hold MAX_x+1 characters,
where X is LENGTH_STRING or LENGTH_FILE_NAME.

Get parameter
parsed value
(vector)

void osfiConFMGetVector#T#Values (#V# *vals,
int *size, char *paramName)

#T# is one of Integer, Double, Boolean, String or File, and
#V# is the corresponding C type, namely int, double, bool,
char* and char* respectively.

If vals is NULL, only the required size is returned in *size.
Otherwise, the array is assumed to be large enough. For
string types, the same consideration as for the scalar getters
operates: every slot of the buffer array must be preallocated
to the mentioned size.

Get parameter
parsed value
(matrix)

void osfiConFMGetMatrix#T#Values (#V# *vals,
int *rows, int *cols, char *paramName)

Same as for the vector getters. The buffer used is a 1-D
array, not an array of arrays (except for strings). Matrix
elements are written to it in row-major order.

Extension: query
file existence

void osfiConFMfileExist (bool *booleanMatrix,
int *rows, int *columns, char *paramName)

For FILE parameters. If the parameter is a scalar or vector, a
1x1 or single-row matrix is written, respectively.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code OPENSF-DMS-OSFI-DM
Issue 1.18
Date 17/07/2019
Page 58 of 111

General operation

C Prototype

Notes

ARRAY access —
getArrayValue API

void osfiConFMGetNodeDimension (char *paramName,
int node[], int depth, int *size)

bool osfiConFMIsLeaf (char *paramName, int node[],

int depth)

void osfiConFMGetLeafVector#T#Values (#V# *vals,
int *size, char *paramName)

In all cases, “depth” is the number of elements in the input
array “node”. Together, both parameters represent the
concept of a list if ints.

For the getLeafVector#T# functions, same notes as for the
non-ARRAY vector getters. Furthermore, they do not flatten
sub-elements: they only return non-empty values for leaf
nodes.

Language-specific:
free OSFI-C
resources

int osfiCommonClose ()

Destroys the held instances of both the C++ CLP and
ParamReader objects. Returns zero on failure, nonzero on
success.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

e Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

canl . &
deimos e

Developer’s Manual
grupo elecnor P Page . 59 of 111

4.3.3. Fortran Programming Language

The OpenSF integration libraries for Fortran language are designed to comply with the
[F2003] standard. They mimic the design pattern (object oriented) and functions of the
C++ implementation. It is to be highlighted that the Fortran libraries rely on the FFI
library, which in turn calls the C++ implementation. However, due to the particularities of
the Fortran language, there are certain differences that shall be noted.

If should be noted that OSFI-Fortran libraries use standard Fortran 2003 features
thoroughly. In particular, FINAL subroutines are used to provide automatic clean-up of
OSFI objects, and both the implementation and the examples use automatic left-hand side
reallocation on assignment. This feature means that it is not necessary to explicitly
allocate an ALLOCATABLE variable or array that is being assigned: if it is not allocated
or the size is incorrect, it is automatically deallocated (if needed) and reallocated to the
new, correct size. Before Fortran 2003 this was not the case, and some compilers keep the
old behavior even when compiling new code. Make sure to look at your compiler
documentation to enable “realloc_lhs” or “Fortran 2003 standard compliant mode”.

General description:

U Five modules are provided: OSFI, OSFI_base, OSFI_EHLog, OSFI_CLP and
OSFI_ConFM. The first includes all others, while the second declares some
shared elements and data types.

U Types in E2E-ICD are mapped as follows: INTEGER to (default) integer, FLOAT
to double precision and BOOLEAN to (default) logical. The STRING, FILE and
FOLDER types are all mapped to a character variable with LEN=* on input and
LEN=: on output (as a deferred-length allocatable output argument or return). In
future versions, it is possible that the arithmetic types will be defined to use a
specific KIND (instead of default integer).

U 1-D “list” and 2-D “list of list” types are generally mapped to arrays and matrices
of the corresponding Fortran type, except in the case of strings. Since an array or
matrix of character variables would all share the same length (because the length
is part of the type), a derived type OSFI_Str is provided whose only member is a
deferred-length allocatable character variable. Thus, a 1D list of strings is a
Fortran array of OSFI_Str instances.

O Access to ARRAY-typed parameters is provided using the “getArrayValue”
approach described in 84.2.3.4. It is implemented in the form of getVectorT
functions that take the desired slice indices.

O Error conditions are reported in one of two ways: some functions return an object
instance (e.g. of type CLP, Parameter) and this object instance has an isValid
method that returns a logical value. In other cases, the Fortran functions of which
the C++ equivalent can raise them have an optional output parameter called
“stat”. If this parameter is given, it will have a value of zero on successful
execution, and nonzero on error.

Known issues:

U Some functions of the C++ OSFI libraries do not raise exceptions when a problem
is detected. Thus, in this case the Fortran function using it will not be able to

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

= Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

canl . &
deimos e

Developer’s Manual
grupo elecnor P Page . 60 of 111

report the problem and make it visible in to the module developer. Nevertheless,
the C++ functions always write warnings when such thing happens, so the user is
able to know if something has gone wrong. Future releases of the OSFI libraries
will fix these bugs in the C++ implementation

4.3.3.1. CLP

The CLP module API is provided by module OSFI_CLP. The implementation takes the
form of a single class “CLP” which parses command line arguments as provided by the
Fortran runtime. Unlike in other OSFI implementations, this one does not allow user code
to replace the arguments to be parsed. No global state is stored and thus multiple
instances can coexist. Furthermore, all parsing is done by the “constructor”, and accessor
functions only return copies of stored data.

Table 13 details the interface of the CLP module in OSFI-Fortran.

4.3.3.2. EHLog

The EHLog module API is provided by module OSFI_EHLog, which contains free
subroutines (not type-bound procedures). Relevant status variables (debug/color) are
initialized at first execution of an output, and stored as global data from them on.
Furthermore, functions operate on the global output and error streams (from C++). Thus,
thread safety is not guaranteed in these functions.

Note that no custom formatting routines are available: in order to write a formatted string
to the OSFI log in Fortran, use code must first render it into a string by using Fortran
internal-file write statements.

Table 14 details the interface of the EHLog module in OSFI-Fortran.

4.3.3.3. ConFM

The ConFM module API is provided by module OSFI_ConFM. It defines the two derived
types OSFI_ParamReader and OSFI_Parameter.

The ParamReader class is the main access point to the module interface. Each instance is
independent and holds no global state, so several instances can be kept (e.g. for the global
and local configuration files). The instance holds ownership of and provides access to a
set of Parameter instances, which are likewise independent of any other instance.
However, thread safety is not guaranteed in any of the functions because they may call
the Logger functions to report errors.

Table 15 details the interface of the ConFM module in OSFI-Fortran.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code OPENSF-DMS-OSFI-DM
Issue 1.18
Date 17/07/2019
Page 61 of 111

Table 19: Functions of the CLP module in Fortran

General operation

Fortran procedure “interface”

Notes

Parse command
line arguments
(“constructor”)

Function OSFI_CommandLineParser () Result (newClp)
Type (OSFI_CommandLineParser) newClp

On error, the returned object has newClp%isValid set to false
and calling any getter functions returns empty arrays.

Get (full) list of
C/1/0O files

stat])
::this

Subroutine getConfFiles (this, files],
Class (OSFI_CommandLineParser) ,h Intent(In)
Type (OSFI_Str), Allocatable files
Integer, Optional stat
Intent (Out) files, stat

Same signatures: getlnputFiles and getOutputFiles.

If no file of a type is provided, the subroutines still allocate
“files” (to an empty array) and set “stat” to zero if present.

On error, “files” is not allocated and “stat” (if present) is set
to nonzero.

Table 20: Functions of the EHLog module in Fortran

General operation

Fortran procedure “interface”

Notes

Show I/W/E/D
message

Subroutine osfi_info (message)

Character (len=*), Intent(In) :: message

Same signatures: warning, error and debug.

The user should not introduce newlines in the string, because
it will break the output format.

Show progress
indication

Subroutine osfi_ progress(n, m)
Integer, Intent(In) n, m

No validation is performed.

Finish execution

Subroutine osfi_ finishExecution (errorCode)
Integer, Intent(In) errorCode

Calls the C++ equivalent to this function — beware if Fortran
runtime-specific termination actions are required.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code : OPENSF-DMS-OSFI-DM

Issue : 1.18
Date : 17/07/2019
Page : 62 of 111

General operation

Fortran procedure “interface”

Notes

Extension: show
quality report

Subroutine osfi_qualityReport (name, value)
Character(*), Intent(In) name
! Either type is accepted (generic interface)
Character(*), Intent(In) :: wvalue
Double precision, Intent(In) :: value

The user should not introduce newlines in the strings,
because it will break the output format.

Query debug mode

Logical Function osfi_logger_isDebugging()

Status set from environment variables DEBUG_MODE on
first query or write to OSFI output.

Table 21: Functions of the ConFM module in Fortran

General operation

Fortran procedure “interface”

Notes

Test if instance is
valid

Logical Function isValid(this)

Class (OSFI_Handle), Intent(In) this

Both OSFI_ParamReader and OSFI_Parameter extend
OSFI_Handle. Returns true if the handle is valid, that is, if
the constructor completed without errors.

Load config file

Function OSFI_ParamReader (fileName[, stat])
Result (this)
Character (*), Intent(In)
Integer, Intent(Out), Optional
Type (OSFI_ParamReader) this

fileName
stat

On success, returns a valid instance and, if stat is present,
sets it to zero.

On error, returns an invalid instance and, if stat is present,
sets it to a nonzero value.

Validate against
XSD

Logical Function validateAgainst(pr, xsdFile
[, stat])
Class (OSFI_ParamReader), Intent(In) :: pr
Character(*), Intent(In) :: xsdFile
Integer, Intent(Out), Optional stat

Combinations of: (return value, stat) are (.true., 0) for a
passed validation, (.false., 0) for a validation that ran but did
not pass; and (.false., nonzero) if the validation could not
run, e.g. because the XSD could not be parsed.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code : OPENSF-DMS-OSFI-DM

Issue : 1.18
Date : 17/07/2019
Page : 63 of 111

General operation

Fortran procedure “interface”

Notes

Extension: validate
against internal
schema

Logical Function validateAgainstInternalSchema
(pr[, stat])
Class (OSFI_ParamReader), Intent(In) :: pr
Integer, Intent(Out), Optional :: stat

Result as above.

Get parameter by
full path

Function getParamRef (pr, paramName[, stat])
Class (OSFI_ParamReader), Intent(In) :: pr
Character (*), Intent(In) :: paramName
Integer, Intent(Out), Optional :: stat
Type (OSFI_Parameter) getParamRef

On success, returns a valid instance and, if stat is present,
sets it to zero.

On error, returns an invalid instance and, if stat is present,
sets it to a nonzero value.

Query existence

Logical Function existParameter (pr, paramName)

Same argument types as getParamRef.

Get parameter
parsed value
(scalar, vector,
matrix)

Function get#T#Value(p[, stat]) Result(out)
#Vi# :: out

Function getVector#T# (p[, stat]) Result(out)
#V#, Allocatable out(:)

Function getMatrix#T# (p[, stat]) Result(out)
#V#, Allocatable out(:,:)

! Common parameter “p” is the “this” argument:
Class (OSFI_Parameter), Intent(In) :: p
Integer, Intent(Out), Optional :: stat

#T# is one of Int, Double, Boolean, String or File, like in
C++. #V# is the corresponding type according to the type
mapping (integer, double precision, logical, character).

Note that #V# for string types is:

U For scalar getter: Character(len=:), adding the
Allocatable attribute

U For vector/matrix getters: Type(OSFI_Str)

On a parsing error, a log message is emitted and a default
value is returned (see docs). If stat is present, it is set to
NONZero on error, or Zero on Success.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code OPENSF-DMS-OSFI-DM
Issue 1.18
Date 17/07/2019
Page 64 of 111

General operation

Fortran procedure “interface”

Notes

ARRAY access —
getArrayValue API

Integer Function getDims (p, node)
Logical Function isLeaf (p, node)

Function getVector#T# (p, node[, stat]) Result(out)
Integer, Intent(Out), Optional stat
#V#, Allocatable out(:)

! Common parameters: (“p” is the “this” argument)
Class (OSFI_Parameter), Intent(In) :: p
Integer, Intent(In) node (:)

The vector represents the index of the desired slice. Slices of
a parameter with dimensionality d must have at most d—1
indices, because a vector is returned for the last dimension.

The getVector#T# functions do not flatten sub-elements:
they only return non-empty values for leaf nodes, that is,
those for which isLeaf returns true.

#V# is the same as for the non-ARRAY vector getter
functions, and the “stat” parameter of the getter function
works the same as described there.

Extension: query
file existence

Function getFileExists (p, stat) Result(out)
Class (OSFI_Parameter), Intent(In) :: p
Integer, Intent(Out), Optional stat
Logical, Allocatable out(:,:)

For FILE parameters. If the parameter is a scalar or vector, a
1x1 or single-row matrix is returned, respectively.

Query parameter
attributes

Function getDims (p) Result (dims)
Integer, Allocatable dims (:)

Function getElementType (p) Result (elType)
Type (OSFI_ParamElemType) elType

Function getName (p) Result (name)

Character(len=:), Allocatable name
Logical Function isArray (p)

! The common parameters is the “this” argument
Class (OSFI_Parameter), Intent(In) :: p

OSFI_ParamElemType is a derived type with an integer
field “repr” which approximates an enumeration. It
represents the E2E-ICD simple types, that is, it does not
contain values for types ARRAY or MATRIX.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

e =N Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

> o i %m’
delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 65 of 111

4.3.4. Fortran 77 Programming Language

OSFI-F77 is deprecated. It is no longer in active development, and this section is no
longer updated. Since almost no F77-only compilers remain in the market, it is
recommended to use the OpenSF integration libraries for Fortran instead (see 4.3.3).
4.3.4.1. CLP

Steps for using the Command Line Parser module.

1. Init the Command Line Parser using the subroutine OCLP()

2. Access the fields with one of the following methods:

e OCLPNC (nconf): get the number of configuration files

OCLPNI (nin): get the number of input files

e OCLPNO (nout): get the number of output files
e OCLPGC (i, fname): getconfiguration file “i”
e OCLPGI (i, fname): getinput file “i”

e OCLPGO (i, fname): getoutput file “i”

4.3.4.2. EHLog
Steps for using the Error Handler and Logging module.
1. Use the provided subroutines to generate logs:
e OLERR (mess): error message
e OLINFO (mess): information message
e OLWAR (mess): warning message
e OLDEB (mess): debug message
e OLPROG (n, m): progress message (step n of m)
e OLFE (errcod): finish execution with error code “errcod”
e 0LQC (vname, value): quality with message

e OLQD (vname, value): quality with double value

4.3.4.3. ConFM

Steps for using the Configuration File Manager module.

1. Initialise the param-reader using the following subroutine:
e OPREAD(cnfile,scfile,stat)

2. Use one of the following subroutines to access the parameter values or properties:

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

e Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

; _ ——
delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 66 of 111

OPEX (pname, pexist):check if a parameter exists

e OPGPR (pname, rows): get number of rows

e OPGPC (pname, cols):get number of columns

e OPDOUB (dvalue, pname): get double parameter

e OPINT (ivalue, pname): getinteger parameter

e OPBOOL (bvalue, pname): get boolean parameter

e OPFILE (fvalue, length, pname): get file parameter

e OPSTR(svalue, length, pname):getstring parameter

e OPINV (vector, vsize, pname): getinteger vector

e OPDBV (vector, vsize, pname):getdouble vector

e OPBLV (vector, vsize, pname):getboolean vector

e OPSTRV (vector, vsize, pname):get string vector

e OPFLV (vector, vsize, pname): get file vector

e OPINM(vector, rows, cols, pname):getinteger matrix
e OPDBM (vector, rows, cols, pname):getdouble matrix

e OPBLM(vector, rows, cols, pname):getboolean matrix
3. Close param reader:

e OPCLS()

4.3.5. IDL Programming Language

OSFI-IDL is deprecated. It is no longer in active development, and this section is no
longer updated.

Before using the IDL library for OSFI, it is necessary to compile the corresponding
modules: ‘CLP.pro’, ‘Logger.pro’, ‘Parameter.pro’ and ‘ConFM.pro’ so that all functions
are available for IDL.

These files are located in: $OSFI_HOME/include/IDL/
A possible example is:

.COMPILE '/home/abma/OSFI/include/IDL/CLP.pro"
.COMPILE '/home/abma/OSFI/include/IDL/Logger.pro'
.COMPILE '/home/abma/OSFI/include/IDL/Parameter.pro'
.COMPILE '/home/abma/OSFI/include/IDL/ConFM.pro'

Once these files have been compiled, the developer can define objects of these classes in
his own module, and run it.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

e =N Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

> o i %m’
delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 67 of 111

4.3.5.1. CLP
Steps for using the Command Line Parser module:

1. Create an object of the CLP class passing it as arguments the configuration files, the
input files and the output files. It is important to pass these arguments in the correct
order.

2. Access the fields with one of the following methods:
e getConfFiles (): Returnall the configuration files inside a matrix
e getInputFiles ():Returnall the input files inside a matrix
e getOutputFiles (): Returnall the output files inside a matrix
e getConfFile (index): Return the configuration file at the position ‘index’.
e getInputFile (index): Return the input file at the position ‘index’.
e getOutputFile (index): Return the output file at the position ‘index’.

3. Destroy the object once not needed.
An example of this procedure is shown below:

CLP = OBJ NEW('CLP', ConfFiles, InputFiles, OutputFiles)
InputFiles = CLP->getInputFiles()

OutputFiles = CLP->getOutputFiles ()

ConfFiles = CLP->getConfFiles ()

Input = CLP->getInputFile (2)

Output = CLP->getOutputFile (3)

Conf = CLP->getConfFile (0)

OBJ_DESTROY, CLP

4.3.5.2. Logger
Steps for using the Logging module:

1. Create an object of the Logger class passing it as argument the debug mode (On=1 or
Off=0).

2. Use one of its methods to show different types of messages in stdout:
e error, message: Shows an error message in openSF format
e warning, message: Shows a warning message in openSF format
e info, message: Shows an information message in openSF format

e debug, message: Shows a debug message in openSF format if debug mode is
activated

e progress, step, nsteps: Shows the progress of the module in openSF format
e finishExecution: Shows that the module has finished with an information message
e qualityReport, name, value: Shows a variable and its value

e setDebugMode, debugMode: Set the debug mode property (On=1, Off=0).

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

o i -
delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 68 of 111

S e

3. Destroy the object once not needed.
An example of this procedure is shown below:

LOG = OBJ_NEW('Logger', DebugMode)
LOG->Info, "This is an info message"
LOG->warning, "This is a warning message"
LOG->error, "This is an error message"
LOG->debug, "This is a debug message"
LOG->progress, 2, 21

LOG->qualityReport, 'a', 23

OBJ_DESTROY, LOG

4.3.5.3. ConFM

Steps for using the Configuration File Manager module:

1. Create an object of the ConFM class passing the name of the XML configuration file.

2. Optionally, check for a parameter existence with a given name:
xmlObj->ExistParameter('los.LOS.name")

3. Obtain a parameter of the configuration file by their complete name, using the
associated method of ConFM class:

parameter = GetParameter, path
This method returns an instance of an object of the Parameter Class.

4. Access the parameter values using several methods:
e getPath (): Returns the path of the parameter
e getName () :Returns the name of the parameter
e getDescription ():Returns the description of the parameter
e getType () :Returns the type of the parameter
e getUnits () :Returns the units of the parameter
e getNDims () :Returns the number of dimensions of the parameter
e getDims () :Returns the dimensions of the parameter
e getValue () :Returns the value of the parameter
e getMin () :Returns the minimum value of the parameter
e getMax () :Returns the maximum value of the parameter

e print: Shows all the attributes of the parameter in stdout
5. Destroy the objects of classes ConFM and Parameter once not needed.

An example of this procedure is shown below:

xmlObj = OBJ_NEW('ConFM', Conf)
xmlPar = xmlObj->GetParameter ('los.LOS.name')
print, xmlPar->GetPath ()

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

=N Code : OPENSF-DMS-OSFI-DM

= =

"

= OSFI| Issue : 1.18

= -
delm S Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 69 of 111

print, xmlPar->GetValue ()
xml->print

OBJ_DESTROY, xmlPar
OBJ_DESTROY, xmlObj

4.3.6. Matlab Programming Language

OSFI-Matlab code is tested to work in Matlab 2013b. The implementation is pure Matlab,
not depending any MEX code, although XML parsing does depend on Java and thus will
not work if Matlab is started without a JVM. Its design is object-oriented, and in general
error conditions are communicated through Matlab errors, although some methods just
log errors to the OSFI log and return token values instead.

General description:

U Types in E2E-ICD are mapped to their reasonable equivalents: INTEGER to int32,
FLOAT to double, BOOLEAN to logical and the STRING, FILE and FOLDER
types to char array strings.

U 1-D “list” types are generally mapped to vector-shaped matrices or cell arrays
containing the appropriate types. Matrices (described in the general API as “lists
of lists”) are represented by actual matrices or matrix-shaped cell arrays.

U Access to ARRAY-typed parameters is provided with the “getArrayValue”
approach described in §4.2.3.4.

U In order to use OSFI in Matlab the library must be accessible through the Matlab
path. Either it must be deployed in a folder in the path or it must be available in a
folder known to the script so it can be added to it. Look at 83.4.3.3 for more
information on this.

Known issues: none currently

4.3.6.1. CLP

The CLP module API is provided by the single class “CLP”. The class parses command
line arguments as passed. No global state is stored and thus multiple instances can
coexist. Furthermore, all parsing is done by the constructor, and accessor functions only
return copies of the stored data.

Table 28 details the interface of the CLP module in OSFI-Matlab

4.3.6.2. EHLog

The EHLog module API is provided by the single class “Logger”. Unlike other OSFI
implementations, functions are instance method, not static, and thus several instances of
the logger can coexist with different settings. Output does not support coloring, and other
relevant status variables (debug mode) are initialized on construction.

Table 29 details the interface of the EHLog module in OSFI-Matlab.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

. Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

del MoOS Develober's Manual Date 17/07/2019
eveloper's Manua
grupo elecnor P Page : 70 of 111

4.3.6.3. ConFM

The ConFM module API is provided by the ConFM and Parameter classes. ConFM is the
main access point to the interface. Each instance is independent and holds no global state,
so several instances can be kept (e.g. for the global and local configuration files).

The ConFM class provides access to a set of Parameter instances, which are likewise
independent of any other instance. The main API they offer is the getValue function
which returns the parsed value of the parameter. For ARRAY parameters, this is in the
form of nested cell arrays reproducing the structure in the XML.

An additional way to access ARRAY parameters is provided through the getArrayValue
function, which can be passed a set of indices and returns the corresponding slice of the
structure that getValue would have returned. Calling getArrayValue with a series of
indices is equivalent to calling getValue and then applying those indices to the result; the
main difference is that with getArrayValue, the indexing is applied before parsing.

Table 30 details the interface of the ConFM module in OSFI-Matlab.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code : OPENSF-DMS-OSFI-DM

Issue : 1.18
Date : 17/07/2019
Page : 71 of 111

Table 22: Functions of the CLP module in Matlab

General operation

Matlab function

Notes

Parse command
line arguments
(“constructor”)

obj = CLP.CLP(confFiles, inputFiles, outputFiles)

The function initializes the object by parsing the three
arguments. The output files argument is optional.

Get (full) list of
C/1/0O files

files = CLP.getConfFiles (clp)

Same signatures: getlnputFiles and getOutputFiles.

The return value is a cellstr. If no file of a type is provided,
an empty cell is returned.

Legacy: get single
C//O file

file = CLP.getConfFile(clp, index)

Same signatures: getlnputFile and getOutputFile.

Returns files{index} where files is the corresponding full
C//O files list.

Legacy: number of
C/1/0 files

num = CLP.nConfFiles (clp)

Same signatures: ninputFiles and nOutputFiles.

Returns length(files) where files is the corresponding full
C//0O files list.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code : OPENSF-DMS-OSFI-DM

Issue : 1.18
Date : 17/07/2019
Page : 72 of 111

Table 23: Functions of the EHLog module in Matlab

General operation

Type-annotated Python Function

Notes

Initialize EHLog

obj = Logger.Logger ()

Parses the DEBUG_MODE environment variable.

Show I/W/E/D
message

Logger.info(obj, message)

Same signatures: warning, error and debug.

The user should not introduce newlines in the string, because
it will break the output format.

Show progress
indication

Logger.progress (obj, step, nSteps)

No validation is performed.

Finish execution

Logger.finishExecution (obj, [exitCode])

If exitCode is provided, calls exit(exitCode).
Otherwise, throws an error to exit.

Extension: show
quality report

Logger.qualityReport (obj, name, wvalue)

The user should not introduce newlines in the strings,
because it will break the output format.

Extension: set
debug mode

Logger . setDebugMode (obj, debug)

Extension: set
output to file

Logger.setStandAlonMode (obj, standAlone)

If true, further outputs of the Logger object will be written to
a file in the current working directory named “.tmpLogFile”.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code OPENSF-DMS-OSFI-DM
Issue : 1.18
Date : 17/07/2019
Page 73 of 111

Table 24: Functions of the ConFM module in Matlab

General operation

Type-annotated Python Function

Notes

Load config file

obj = ConFM.ConFM([fileName])

ConFM.parseFile (obj, fileName)

An error is raised if the file cannot be found, or if it cannot
be parsed as a configuration file. Using parseFile replaces
the stored parameter map in the ConFM object.

Validate against
XSD

valOk = ConFM.validateAgainst(obj, xsdFile)

Throws an error if the schema file cannot be loaded or
parsed.

Extension: validate
against internal
schema

valOk

ConFM.validateAgainstInternalSchema (obj)

Throws an error if the linked schema cannot be loaded.

Get parameter by
full path

P = ConFM.getParameter (obj, name)

Returns a Parameter instance. Throws an error if the path is
not found.

Get all parameters

map = ConFM.getParameters (obj)

Returns a containers.Map instance with string keys and
Parameter values.

Get parameter raw
value

Parameter.getRawValue (self) -> RawType

For non-ARRAY parameters, the return value is the
unparsed string value (for matrices, rows are joined).

For ARRAY parameters, a structure of cell arrays
reproducing the XML structure is returned. Each cell may
contain other cells or a 2-element cell {nElems, stringVal}.

Get parameter
parsed value with
automatic type

val = Parameter.getValue (p)

For non-ARRAY parameters, the return value is a matrix or
cell array of the type corresponding to the declared type.

For ARRAYS, a nested structure of cell arrays is returned,
where the last level contains a vector of data elements.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

Code : OPENSF-DMS-OSFI-DM

i . - -— OSFI Issue : 1.18
dEl MosS Develober’s Manual Date : 17/07/2019
' u
grupo elecnor P Page : 74 of 111
General operation | Type-annotated Python Function Notes
ARRAY access val = Parameter.getArrayValue(p, varargin) Each element in varagin is interpreted as a subindex into the

structure of cell arrays returned by getValue. The last
element may also index into the data itself.

Query parameter ndims = Parameter.getNdims (p) The second returns a vector of sizes, while the first returns

dimensionality dims = Parameter.getDims (p) the length of that vector.

Query parameter pt = Parameter.getType (p) Returns a value from ParamType, an enumerated class that

element type represents the E2E-ICD simple types, that is, it does not
contain values for types ARRAY or MATRIX.

Query parameter val = Parameter.getName (self) -> str All return strings except for getMin and getMax, which try

attributes Same signature: getPath, getDescription, getUnits, getMax, to parse the related attribute with str2double.

getMin

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

. Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

del MOosS Develober's Manual Date : 17/07/2019
eveloper's Manua
grupo elecnor P Page : 75 of 111

4.3.7. Python Programming Language

OSFI-Python code is written to work in both Python 2.7 [Py2.7] and 3.5 [Py3.5]. The
library is presented as a folder (currently not a package) containing several classes.

The implementation is pure Python, not depending on native OSFI libraries. Its design is
object-oriented, with both the CLP and ConFM modules implemented using classes:
CLP, ParamReader and Parameter are the main ones. On the other hand, the Logger
module defines a set of functions and stores its state “globally” in the module itself. In
general, errors are communicated through exceptions, although some methods just log
errors to the OSFI log stream and return token values instead.

General description:

U Types in E2E-ICD are mapped to their reasonable equivalents: INTEGER to int,
FLOAT to float, BOOLEAN to bool and the STRING, FILE and FOLDER types
to str (in both Python 2 and 3).

O 1-D “list” types are generally mapped to either lists or tuples. Matrices (described
in the general API as “lists of lists”) are indeed represented by lists of lists.

U Access to ARRAY-typed parameters is provided with the “getArrayValue”
approach described in §4.2.3.4.

O In order to use OSFI in Python the library must be accessible through the import
path. Either it must be deployed in a folder in PYTHONPATH or it must be
available in a folder known to the script, so that it can add the folder to sys.path as
needed. Look at §3.4.3.3 for more information on this.

Known issues:

U The XSD validation functions require the presence of the Ixml library. If this is
not available, the xml.etree library will be used for parsing, but calling any XSD
validation-related function will raise NotimplementedError.

Note that, in the detailed API tables, the functions are described with type annotations and
(where applicable) keyword-only arguments as supported in Python 3.5, as if the typing
and typing.io packages had been imported. However, the actual functions are Python 2.7-
compatible, and thus do not carry type annotations. Similarly, keyword-only arguments
are implemented as **kwargs where any unknown arguments trigger an error.

4.3.7.1. CLP

The CLP module API is provided by the single class “CLP” in module CLP. The class
parses command line arguments as passed. No global state is stored and thus multiple
instances can coexist. Furthermore, all parsing is done by the constructor, and accessor
functions only return copies of the stored data.

Table 28 details the interface of the CLP module in OSFI-Python.

4.3.7.2. EHLog

The EHLog module API is provided by functions in module Logger. Relevant status
variables (debug/color) are initialized at first execution of an output, and stored as global

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

. Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

del MoOS Develober's Manual Date 17/07/2019
eveloper's Manua
grupo elecnor P Page : 76 of 111

data from them on. Furthermore, functions operate on the global streams sys.stdout and
sys.stderr. Thus, thread safety is not guaranteed in these functions.

Table 29 details the interface of the EHLog module in OSFI-Python.

4.3.7.3. ConFM

The ConFM module API is provided by the ParamReader and Parameter classes.
ParamReader is the main access point to the interface. Each instance is independent and
holds no global state, so several instances can be kept (e.g. for the global and local
configuration files).

The ParamReader class provides access to a set of Parameter instances, which are
likewise independent of any other instance. However, thread safety is not guaranteed in
any of the functions because they may call the Logger functions to report errors.

There is a generic function getValue which returns the parsed value of the parameter,
considering the dimensionality declared in the XML. Thus, a 1x1 integer matrix with
value “1” will return the list-of-list-of-int result [[1]]. If this is undesired, specific
functions are available to override the dimensionality and the type. For ARRAY-typed
parameters, getValue returns a structure of nested lists with the parsed values of each
node from the XML.

Furthermore, sliced access to ARRAY parameters is provided through the getArrayValue
function, which can be passed a set of indices and returns the corresponding slice of the
structure that getValue would have returned. Calling getArrayValue with a series of
indices is equivalent to calling getValue and then applying those indices to the result; the
main difference is that with getArrayValue, the indexing is applied before parsing.

Table 30 details the interface of the ConFM module in OSFI-Python.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

= Ll
deimos e
Developer’s Manual
grupo elecnor P Page : 77 of 111

Table 25: Functions of the CLP module in Python

General operation | Type-annotated Python Function Notes

Parse command CLP.__init__ (self: CLP, argv: List[str] = None) If None is given in argv, the function will use the value of
line arguments sys.argv instead.

(“constructor”)

Get (full) list of CLP.getConfFiles (self: CLP) -> List[str] If no file of a type is provided, they return an empty list.
C/I/O files Same signatures: getInputFiles and getOutputFiles.

Legacy: getsingle | CLP.getConfFile(self: CLP) -> str If called in a case with two configuration files, returns the
configuration file unparsed string (“filel,file2”).

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code : OPENSF-DMS-OSFI-DM

Issue : 1.18
Date : 17/07/2019
Page : 78 of 111

Table 26: Functions of the EHLog module in Python

General operation

Type-annotated Python Function

Notes

Show I/W/E/D
message

info(msg: str) -> None

Same signatures: warning, error and debug.

The user should not introduce newlines in the string, because
it will break the output format.

Extension: format
I/W/E/D message
with extra data

getInfoStream() -> TextIO

Same signatures: getWarningStream, getErrorStream,
getDebugStream.

The user should not introduce newlines in the output given
to those streams, because it will break the output format.

Show progress
indication

progress (step: int, nSteps: int) -> None

No validation is performed.

Finish execution

finishExecution (exitCode: int) -> None

Calls sys.exit with the given value as exit code.

Extension: show
quality report

qualityReport(name: str, value: Any)

The user should not introduce newlines in the strings,
because it will break the output format.

Extension: format
quality report

getQualityStream() -> TextIO

The user should not introduce newlines in the output given
to those streams, because it will break the output format.

Query debug and
colored output.

isColored() -> bool

Same signature: isDebugging

Status set from environment variables DEBUG_MODE and
OSFI_LOG_COLOR on first query.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code OPENSF-DMS-OSFI-DM
Issue 1.18
Date 17/07/2019
Page 79 of 111

Table 27: Functions of the ConFM module in Python

General operation

Type-annotated Python Function

Notes

Load config file

ParamReader._ init__ (self, xmlFile: str)

An exception is raised if the file cannot be found, or if it
cannot be parsed as a configuration file.

Validate against
XSD

ParamReader.validateAgainst (self, xsdFile:
-> bool

str)

Raises an exception if the schema file cannot be loaded or
parsed as valid XSD.

Extension: validate
against internal
schema

ParamReader.validateAgainstInternalSchema (self)

Returns failure if the schema cannot be found or parsed.

Get parameter by
full path

ParamReader.getParameter (self, name: str)

-> Parameter

Returns null if the name is not found.

List[List[V]] # for matrices

left. For ARRAYS, a nested structure of lists is returned,

Get parameters by | ParamReader.getParameters(self, groupName: str) Returns an empty list if no parameter matches.

mehIpaﬂl -> List[Parameter]

Get all parameters | ParamReader.getAllParameters (self) The map key is the full path, which is not accessible from
-> Dict[str, Parameter] within each Parameter item.

Query existence ParamReader.existParameter (self, name:str) -> bool | -

Get parameter Parameter.getValue(self, asType: ParamType = None) |V s the parsed type corresponding to for asType, or, it if is

parsed value with -> ValType None, to the declared element type.

automatic ValType .

. S If the parsed element type is called T, the return type
dimensionality and =V # for scalars g (pj e o)){jpd' o e _)k/)pd "
possibly type = List[V] # for vectors epends on the declared dimensionality, as described on the

List[X] # for ARRAY, where X is V or List[X]

where the last level is of type List[T]

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code
Issue
Date

OPENSF-DMS-OSFI-DM
1.18
17/07/2019

Page 80 of 111

General operation

Type-annotated Python Function

Notes

Get parameter
parsed value
(scalar, vector,

Parameter.get#T#Value (self) -> V

Parameter.getVector#T# (self) -> List[V]

Parameter.getMatrix#T# (self) -> List[List[V]]

#T# is one of Int, Double, Boolean, String or File, and V is
the corresponding type (int, float, bool, str, str).

On parsing error, a log message is emitted and a default

matrix) value is returned (see docs). If the getVector#T# functions
are used on an ARRAY parameter, it is flattened to 1D.
ARRAY access Parameter.getArrayValue(self, *indices, ValType is as defined for getValue.

asType: ParamType = None) -> ValType

Each element in indices is interpreted as a subindex into the
structure returned by getValue. The last element may also
index into the data itself.

Get parameter raw
value

Parameter.getRawValue (self) -> RawType

For non-ARRAY parameters, the return value is the
unparsed string value (for matrices, rows are joined).

For ARRAY parameters, a structure of nodes reproducing
the XML is returned.

Extension: query
file existence

Parameter.fileExists (self) -> List[List[bool]]

For FILE parameters. If the parameter is a scalar or vector, a
1x1 or single-row matrix is returned, respectively.

Query parameter
attributes

Parameter.getNdims (self) -> int

Parameter.getDims (self) -> List[int]
Parameter.getElementType (self) -> ParamType

Parameter.getName (self) -> str

Same signature as getName: getDescription, getUnits, getMax,
getMin, getType

ParamType is an enum with the E2E-ICD simple types, that
is, it does not represent types ARRAY or MATRIX.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

. Code : OPENSF-DMS-OSFI-DM
OSFI Issue 1.18

delmOS Develober's Manual Date 17/07/2019
eveloper's Manua
grupo elecnor P Page : 81 of 111

4.3.8. Java Programming Language

OSFI-Java code targets Java SE 7, with the language specification defined in [Java7]. The
library is presented as a single JAR file which does not have any external dependencies.
The JAR is also an OSGi bundle, which exports the package “esa.opensf.osfi”.

The implementation of OSFI-Java is object-oriented, with both the CLP and ConFM
modules implemented using classes: CLP, ParamReader and Parameter are the main ones.
The Logger module is mainly static method-based and stores its state globally. In general,
errors are communicated through exceptions, although some methods just log errors to
the OSFI log stream and return token values instead.

General description:
U All classes are directly in the “esa.opensf.osfi” package.

U Types in E2E-ICD are mapped to their reasonable equivalents: INTEGER to int,
FLOAT to double, BOOLEAN to boolean and the STRING, FILE and FOLDER
types to java.lang.String.

U 1-D “list” types are generally mapped to either java.util.List<T> or arrays.
Matrices (described in the general API as “lists of lists”) are represented by arrays
of arrays.

U Access to ARRAY-typed parameters is provided implementing the
“getRootNode” approach described in §4.2.3.4.

Known issues: none for the moment

4.3.8.1. CLP

The CLP module API is provided by the single class “CLP”. The class parses command
line arguments as passed. No global state is stored and thus multiple instances can
coexist. Furthermore, all parsing is done by the constructor, and accessor functions only
return copies of the stored data.

Table 28 details the interface of the CLP module in OSFI-Java.

4.3.8.2. EHLog

The EHLog module API is provided by the “fake” class “Logger”. The implementation
provides the functions as static methods of that class.

Relevant status variables (debug/color) are initialized at first execution of an output, and
stored as global data from them on. Furthermore, functions operate on the global streams
System.out and System.err. Thus, thread safety is not guaranteed in these functions.

Table 29 details the interface of the EHLog module in OSFI-Java.

4.3.8.3. ConFM

The ConFM module API is provided by the ParamReader, Parameter and ArrayNode
classes. ParamReader is the main access point to the module interface. Each instance is
independent and holds no global state, so several instances can be kept (e.g. for the global
and local configuration files).

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

Code : OPENSF-DMS-OSFI-DM

OSFI Issue : 1.18
Developer’s Manual Date : 17/07/2019
grupo elecnor p Page - L

The ParamReader class provides access to a set of Parameter instances, which are
likewise independent of any other instance. However, thread safety is not guaranteed in
any of the functions because they may call the Logger functions to report errors.

Parsing code employs primitive arrays as much as possible, avoiding boxing large
quantities of data. Thus, the getVVector and getMatrix functions return primitive arrays for
types INTEGER, FLOAT and BOOLEAN.

Access to ARRAY parameters is provided through the ArrayNode class. It is an abstract
class, defined as ArrayNode<Es,S>. Es is the data type contained, and S is the actual type
of the node, since it will be a subclass of ArrayNode®. In particular, nodes are always
instances of either of two concrete subclasses:

U ArrayNode.Raw, which contains String data. This represents the structure of
the parameter read in the XML and has methods to parse the contents into either
an array (flattening the structure to one dimension in depth-first order) or a parsed
node which keeps the structure but contains parsed data.

U ArrayNode.Parsed<A> which contains data of type A, where A will be an
array type. This is done because Java generics cannot be primitives, so A could
not be e.g. “int”, but it can be int[] because array types are objects.

The parent class ArrayNode, and thus both subtypes of nodes, contain methods to
navigate the tree structure: getDataAt(indices) and getSubNodeAt(indices) are the main
features, which can be explored in the documentation.

Table 30 details the interface of the ConFM module in OSFI-Java.

4 S is sometimes called a CRTP type parameter, using terminology borrowed from C++ and its
Curiously Recursive Template Pattern.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code : OPENSF-DMS-OSFI-DM

Issue : 1.18
Date : 17/07/2019
Page : 83 of 111

Table 28: Functions of the CLP module in Java

General operation

Java Method

Notes

Parse command
line arguments
(“constructor”)

CLP.CLP(String[] args)

The input is the array provided to the entry point.

Get (full) list of
C/1/0O files

List<String> CLP.getConfFiles ()

Same signatures: getlnputFiles and getOutputFiles.

If no file of a type is provided, they return an empty list.

Legacy: get single
configuration file

String CLP.getConfFile()

If called in a case with two configuration files, returns the
unparsed string (“filel,file2”).

Extension: parse
string to files

List<String> CLP.parseFiles(String argqg)
throws Exception

Extension: format
files to string

static String CLP.arrayToString
(List<String> values)

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code OPENSF-DMS-OSFI-DM
Issue : 1.18
Date : 17/07/2019
Page : 84 of 111

Table 29: Functions of the EHLog module in Java

General operation

Java Method

Notes

Show I/W/E/D
message

static void Logger.info (String msq)

Same signatures: warning, error and debug.

The user should not introduce newlines in the string, because
it will break the output format.

Extension: format
I/W/E/D message
with extra data

static OutputStream Logger.getInfoStream()

Same signatures: getWarningStream, getErrorStream,
getDebugStream.

The user should not introduce newlines in the output given
to those streams, because it will break the output format.

Show progress
indication

static void Logger.progress(int, int)

No validation is performed.

Finish execution

static void Logger.finishExecution (int exitCode)

Calls System.exit with the given value as exit code.

Extension: show
quality report

static void Logger.qualityReport(String name,
double value)

static void Logger.qualityReport(String name,
String value)

The user should not introduce newlines in the strings,
because it will break the output format.

Extension: format
quality report

static OutputStream Logger.getQualityStream()

The user should not introduce newlines in the output given
to those streams, because it will break the output format.

Query debug and
colored output.

static boolean Logger.isColored()

Same signature: isDebugging

Status set from environment variables DEBUG_MODE and
OSFI_LOG_COLOR on first query.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code OPENSF-DMS-OSFI-DM
Issue 1.18
Date 17/07/2019
Page 85 of 111

Table 30: Functions of the ConFM module in Java

General operation

Java Method

Notes

Load config file

ParamReader.ParamReader (String xmlFile) throws
FileNotFoundException, XMLParser.ParseException

The first exception is thrown if the file cannot be found, the
second if it cannot be parsed as a configuration file.

Validate against
XSD

boolean ParamReader.validateAgainst
(String xsdFile)

Throws Illegal ArgumentException if the schema file cannot
be loaded or parsed.

Extension: validate
against internal
schema

boolean
ParamReader.validateAgainstInternalSchema ()

Returns failure if the schema cannot be found or parsed.

Get parameter by
full path

Parameter ParamReader.getParameter (String name)

Returns null if the name is not found.

Get parameters by
partial path

List<Parameter> ParamReader.getParameters
(String groupName)

Returns an empty list if no parameter matches.

Get all parameters

Map<String, Parameter>
ParamReader.getAllParameters ()

The map key is the full path, which is not accessible from
within each Parameter item.

Query existence

boolean ParamReader.existParameter (String name)

Get parameter
parsed value
(scalar, vector,
matrix)

#V# Parameter.geti#T#Value ()
#V#[] Parameter.getVector#T# ()
#V#[]1[] Parameter.getMatrix#T# ()

#T# is one of Int, Double, Boolean, String or File, and #V#
is the corresponding type (int, double, boolean, String,
String).

On parsing error, a log message is emitted and a default
value is returned (see docs). If the getVector#T# functions
are used on an ARRAY parameter, it is flattened to 1D.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

deimos

grupo elecnor

OSFI
Developer’s Manual

Code OPENSF-DMS-OSFI-DM
Issue : 1.18
Date 17/07/2019
Page 86 of 111

General operation

Java Method

Notes

Extension: query
file existence

boolean[] [] Parameter.fileExists()

For FILE parameters. If the parameter is a scalar or vector, a
1x1 or single-row matrix is returned, respectively.

Query parameter

int Parameter.getNdims ()

Parameter.ParamType is an enum with the E2E-ICD simple

attributes List<Integer> Parameter.getDims () types, that is, it does not represent types ARRAY or
Parameter.ParamType Parameter.getElementType () MATRIX.
String Parameter.getName ()
Same sig.: getDescription, getUnits, getMax, getMin, getType
ARRAY access — ArrayNode.Raw The parameter returns an ArrayNode.Raw element, which
ArrayNode API Parameter.getRootNode () contains String data (without splitting).

ArrayNode.Parsed<#V#[]>
ArrayNode.Raw.getTree#T# ()

#VH#[]
ArrayNode.Raw.getVector#T# ()

<Es> Es ArrayNode<Es, ?>.getData()

<Es> Es ArrayNode<Es, ?>.getDataAtSub(int... idxs)
<S> S ArrayNode<?,S>.getSubNodes ()
<S> S ArrayNode<?,S>.getSubNodeAt(int... idxs)

int ArrayNode.getDim()
List<Integer> ArrayNode.getDimsEnvelope ()

boolean ArrayNode.isDataNode ()

Raw ArrayNodes can be parsed either by flattening to 1D
(getVector#T#) or by keeping its structure (getTree#T#)
obtaining an ArrayNode.Parsed<#V#[]> element, which
contain arrays of type #V# (possibly primitive).

The other methods can be applied to either subclass: Es will
be String in Raw nodes and an array in Parsed nodes. S will
be the same type of node that is receiving the call
(Raw/Parsed).

The return value of getDimsEnvelope is the rectangular
envelope of the dimensions of the structure at that node.

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

R
s S
deimos

grupo elecnor

OSFI
Developer’s Manual

Code :

Issue
Date

Page

OPENSF-DMS-OSFI-DM
1.18
17/07/2019

87 of 111

4.4. Additional Features

4.4.1. Debug Mode

Debug mode logs are activated creating the environment variable “DEBUG_MODE” and
setting it to “On”. By default if this variable is not present, no debug logs are shown

during the execution.

export DEBUG_MODE=On

4.4.2. Coloured Logs

OSFI provides a mechanism to colour logs when the module is run from command line

(only for Unix terminals).

Coloured logs are activated creating the environment variable “OSFI_ LOG COLOR”

and setting it to “On”.

export OSFI_LOG_COLOR=On

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

P Code : OPENSF-DMS-OSFI-DM

OSFI Issue : 1.18

& [
del mos Date : 17/07/2019

Developer’s Manual

grupo elecnor Page : 88 of 111

4.5. Examples of use

4.5.1. C++ Programming Language
Here is an example of C++ code that uses the different modules of the integration

libraries.

#include
#include
#include
#include

"OSFI.h"
<iostream>
<iomanip>
<string>

using namespace std;

int main (int argc, char * argv[])

try {

CLP clp{argc, argv}; // Parse command line arguments

cout << "input files = ";

for (auto& if : clp.getInputFiles())
cout <K if << ", ";

cout << endl;

const string lcf = clp.getConfFiles () .back() ;
ParamReader reader (lcf); // Parse LCF
Logger: :info ("Printing whole parameters file");
reader.print() ;

DynamicArray<int> mi = reader.getParameter ("mat") .getMatrixInt() ;
for (int i = 0, n = mi.getRows(); i < n; i++) {

for

(int j = 0, m = mi.getColumns(); j < m; j++) {

cout << setw(4) << mi[i][J] << '\t';

}

cout << endl;

}

Logger: :info ("vec") ;

for (double d : reader.getParameter ("vec") .getVectorDouble ())
cout << fixed << setw(4) << setprecision(l) << d << '\t';

cout << endl;

return O;
} catch (const std::exception& e) {
Logger: :getErrorStream() << "Module failed: " << e.what() << endl;

Logger: : finishExecution (1) ;

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

P Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

& [
del mos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 89 of 111

4.5.2. ANSI C Programming Language

Here is an example of ANSI C code that uses the different modules of the integration
libraries.

#include "OSFIC.h"
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
osfiCLP(argc, argv); // Initialize CLP component
char cfgFiles[2] [MAX LENGTH FILE NAME+1];
int numCfgFiles;
osfiCLPGetConfFiles (cfgFiles, &numCfgFiles);

if (numCfgFiles '= 2 || 'osfiConFMReadConfigFile (cfgFiles[1])) {
osfiloggerError ("Bad number of cfg files (%d) "
"or error reading file %s", numCfgFiles, cfgFiles[1])
osfiloggerFinishExecution (1) ;

}

double fltParVal; // Scalar parameter
osfiConFMGetDoubleValue (&fltParVal, "los.LOS.initialTime.second") ;
printf ("Scalar float parameter = %g\n", floatParam, fltParVal);

char *matPar = "matrix5x4"; // Matrix Parameters
int m = osfiConFMGetRows (matPar), n = osfiConFMGetColumns (matPar) ;
int *intMat = malloc(m * n * sizeof(int));
int rows, cols;
osfiConFMGetMatrixIntegerValues (intMat, &rows, &cols, matPar);
for (i = 0; i < rows; i++) {

for (j = 0; j < cols; j++)

printf ("$s[%d] [$d] = %d\n", matPar, i, j, intMat[i*cols+j]);

}
free (intMat) ;

osfiParameter param; // Parameter Attributes Retrieval
param.name = malloc (MAX PARAMETER NAME SIZE + 1);
param.description = malloc(MAX PARAMETER DESC_SIZE + 1);
param.value = malloc(MAX PARAMETER FIELD SIZE + 1);
param.units malloc (MAX PARAMETER FIELD SIZE + 1);
param.min = malloc(MAX PARAMETER FIELD SIZE + 1);
param.max = malloc(MAX PARAMETER FIELD SIZE + 1);
osfiConFMGetParameter (param, matPar) ;

printf ("%s, raw value=%s\n", param.name, param.value) ;
free (param.name) ;

free (param.description) ;

free (param.value) ;

free (param.units) ;

free (param.min) ;

free (param.max) ;

return 0;

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

P Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

& [
del mos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 90 of 111

4.5.3. Fortran Programming Language

Here is an example of Fortran code that uses the different modules of the integration
libraries.

Program f90Example
! Include the OSFI modules, fully or partially
Use OSFI_ConFM
Use OSFI_CLP
Use OSFI, Only: osfi error, osfi_info, osfi_ finishExecution

Type (OSFI_CommandLineParser) clp

Type (OSFI_STR), Allocatable, Dimension(:) :: &
cfgFiles, inputFiles, outputFiles
Character (*) , Parameter :: matPar = "sensor.NumericModel.polyParX"
Double precision, Allocatable :: doubleMatrix(:,:)
Character (1) tmp
Integer :: i, err

clp = OSFI_CommandLineParser ()
If (clp%isValid()) Call clp%getConfFiles (cfgFiles)
If (.not. allocated(cfgFiles)) Then
Call osfi_error('Command line arguments were not parsed')
Call osfi finishExecution(1)
End If
Do i=1, size(cfgFiles)
Write (tmp, '(I1)') i
Call osfi_info("Cfg File ("//tmp//") = "//cfgFiles (index)$str)
End Do

! ConFM Module Example

pr = OSFI_ParamReader (cfgFiles (1) $str)

If (.Not. pr%isValid()) then ! Triggered if the file is not found

or cannot be parsed

Call osfi_error('Could not read file ' // confFiles(1l)%str)
Call osfi_finishExecution(2)

End If

Call osfi_info("Printing whole parameters file")

Call pr%print()

P = pr%getParamRef (matPar, stat=err)

If (err == 0) doubleMatrix = p%getMatrixDouble (stat=err)

If (err /= 0) Then
Call osfi_error('Could not find or parse ' // matPar)
Call osfi finishExecution(3)

End If

Do i=1l,size(doubleMatrix,l) ! Write row by row
Write(*,*) doubleMatrix(i,:)

End Do

End Program

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

P Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

& [
del mos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 91 of 111

4.5.4. Fortran 77 Programming Language

Here is an example of Fortran 77 code that uses the different modules of the integration
libraries. Note that the F77 interface is deprecated and no longer developed.

program test

implicit none

INTEGER nconf, stat, i, j, nrows, ncols, p
CHARACTER*255 fname, tmp

LOGICAL*1 pexist, bmatrix(255)

c---- TEST OSFI COMMAND LINE PARSER
call OCLP()
c Get number of configuration files and print their names

call OCLPNC (nconf)
WRITE (tmp, '(I2)') nconf
call OLINFO ('Number of configuration files: '//tmp)
DO i = 1, nconf
call OCLPGC (i, fname)
WRITE (tmp,'(I2)') i

call OLINFO ('Configuration file '//tmp(1:2)//': '//fname)
END DO
c---- TEST OSFI LOGGER
call OLINFO (' TESTING LOGGER')

call OLPROG(3,4)

call OLERR('Test OSFI Error Message')
call OLWAR('Test OSFI Warning Message')
call OLDEB('Test OSFI Debug Message')

c---- TEST OSFI PARAM READING
call OPREAD ('exampleFile.xml',6'', stat)
if (stat.NE.1l) call OLERR('Error Parsing '//cnfile)

c---- Check if parameter exists
call OPEX ('los.LOS.polyParY',6 pexist)
WRITE (tmp,'(Ll)') pexist
call OLINFO('Parameter exists: '//tmp(1l:1))

c---- READING INTEGER SCALAR PARAMETER
call OPINT (ivalue, 'earth.Earth.demType')
WRITE (*,*) "Integer parameter value: ", ivalue
c---- READING BOOLEAN MATRIX PARAMETERS

call OPBLM (bmatrix, nrows, ncols, 'los.LOS.flagsMatrix')
DO i=1,nrows
DO j=1, ncols
P = (i-1)*ncols + j

WRITE (*,*) 'row=', i, ' col=', j, ' ==> "', bmatrix(p)
END DO
END DO
c---- Close OSFI param-reader
call OPCLS()

end

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

P Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

& [
del mos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 92 of 111

4.5.5. IDL Programming Language

Here is an example of IDL code that uses the different modules of the integration
libraries.

; openSF Integration Libraries (OSFI)
PRO test_IDL, ConfFiles, InputFiles, OutputFiles, DebugMode

IF N_PARAMS() LT 3 THEN BEGIN
EXECUTION MODE = GETENV ('IDL EXECUTION_ MODE')
IF (STRCMP (EXECUTION MODE, 'SAV') NE 1) THEN $
print, 'Number of arguments not valid'
ENDIF

IF N_PARAMS() EQ 3 THEN §
DebugMode = 0

;Show some logs

print, ''

print, 'Show some logs examples using Logger class...'
LOG = OBJ_NEW('Logger',6 DebugMode)

LOG->Info, "This is an info message"

LOG->warning, "This is a warning message"

LOG->debug, "This is a debug message"

LOG->progress, 2, 21

LOG->qualityReport, 'a', 23

;Show configuration files, inputs and outputs using CLP
print, ''
print, 'Parsing configuration, input and output files using CLP
class...'
CLP = OBJ NEW('CLP', ConfFiles, InputFiles, OutputFiles)
InputFiles = CLP->GetInputFiles()
OutputFiles = CLP->GetOutputFiles ()
ConfFiles = CLP->GetConfFiles ()
Input = CLP->GetInputFile (2)
IF (N_ELEMENTS (ConfFiles) EQ 1) THEN BEGIN
Conf = CLP->getConfFile (0)
ENDIF ELSE BEGIN
Conf = CLP->getConfFile (1)

ENDELSE

LOG->Info, "Configuration files: " + ConfFiles
LOG->Info, "Input files: " + InputFiles
LOG->Info, "Output files: " + OutputFiles
LOG->Info, "Configuration file: " + Conf
LOG->Info, "Input file: " + Input

success = 1

;Parse XML file and check read values

print, "'

print, 'Parsing XML file and checking that read values are
correct...'

xmlObj = OBJ _NEW('ConFM', Conf)

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

P Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

& [
del mos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 93 of 111

xmlPar = xmlObj->GetParameter ('los.LOS.name')
IF (STRCMP (xmlPar->GetValue(), 'my LOS') EQ 1) THEN BEGIN

print, 'Parameter: ' + xmlPar->GetPath() + ' --> OK'
ENDIF ELSE BEGIN
print, 'Parameter: ' + xmlPar->GetPath() + ' --> No OK'
success = 0
ENDELSE

xmlPar = xmlObj->GetParameter ('los.LOS.polyParY')
value = xmlPar->GetValue ()

result = [1,2,3,4,5,6,7,8,9,10,11,12]

IF max(value-result) EQ min(value-result) THEN BEGIN

print, 'Parameter: ' + xmlPar->GetPath() + ' --> OK'
ENDIF ELSE BEGIN
print, 'Parameter: ' + xmlPar->GetPath() + ' --> No OK'
success = 0
ENDELSE

xmlPar = xmlObj->GetParameter('los.LOS.initialTime.year"')
value = xmlPar->GetValue ()
IF value EQ 2009 THEN BEGIN

print, 'Parameter: ' + xmlPar->GetPath() + ' --> OK'
ENDIF ELSE BEGIN
print, 'Parameter: ' + xmlPar->GetPath() + ' --> No OK'
success = 0
ENDELSE

xmlPar = xmlObj->GetParameter ('los.LOS.missionNames')
value = xmlPar->GetValue ()

result = ['BioMass', 'Premier', 'CoreH20']

IF where(strcmp(value, result) NE 1) EQ -1 THEN BEGIN
print, 'Parameter: ' + xmlPar->GetPath() + ' --> OK'

ENDIF ELSE BEGIN
print, 'Parameter: ' + xmlPar->GetPath() + ' --> No OK'
success = 0

ENDELSE

OBJ_DESTROY, xmlPar
OBJ_DESTROY, xmlObj
OBJ_DESTROY, CLP
OBJ_DESTROY, LOG

print, ''
IF success EQ 1 THEN $
print, 'Successful test' $§
ELSE $
print, 'Failed test'

END

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

Code : OPENSF-DMS-OSFI-DM

OSFI Issue : 1.18
Develober’s Manual Date : 17/07/2019
grupo elecnor) Page o

4.5.5.1. IDL licenses
IDL provides three types of licenses in function of the needs of the user:

O IDL development: Full license for IDL that allows to the user to use all its
functionalities. Users can access to the IDL Development Environment, the IDL
command line, and having the ability of compiling and executing IDL .pro files.

O IDL runtime: Allows executing IDL programs precompiled and saved as .SAV files
without any type of restriction.

Q IDL virtual machine: It is a free license that allows to the user to execute IDL
programs precompiled and saved as .SAV files. This kind of license has a few
restrictions, like displaying a splash screen on startup, callable IDL applications are
not available...

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

P Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

& [
del mos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 95 of 111

4.5.6. Matlab programming language

Here is an example of Matlab code that uses the different modules of the integration
libraries.

function CloudsDetection (configurationParameters, inputs, outputs)

% Check input arguments
if (nargin<3)

error ('number of argumets not valid');
end

% Add OSFI path

OSFI_HOME = getenv('OSFI_HOME') ;

OSFI_MATLAB = [OSFI_HOME '/include/Matlab/'];
addpath (OSFI_MATLAB) ;

% Init CLP and Logger

clp = CLP (configurationParameters, inputs, outputs);
log Logger ()’

log.setDebugMode (true) ;

% Get inputs, outputs and configuration files using
inputFolder = clp.getInputFile (1) ;

outFile = clp.getOutputFile (1)

confFile = clp.getConfFile (1);

% Parse configuration files and read all the parameters
log.info (['Reading configuration parameters from ' confFile]);
cfm = ConFM (confFile) ;

brightness_ threshold = cfm.getParameter
('thresholds.brightness') .getValue;
NDSI_threshold = cfm.getParameter

('thresholds.NDSI') .getValue;
temperature_ threshold = cfm.getParameter
('thresholds. temperature') .getValue;

composite_ threshold = cfm.getParameter
('thresholds.composite') .getValue;
filter5_ threshold = cfm.getParameter
('thresholds.filter5') .getValue;
filter6_threshold = cfm.getParameter
('thresholds.filter6') .getValue;
filter7_threshold = cfm.getParameter
('thresholds.filter7') .getValue;

filter8 threshold = cfm.getParameter

('thresholds.filter8') .getValue;

% Read input images

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

P Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

& [
del mos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 96 of 111

log.info ('Reading input files');
BLUE = imread ([inputFolder '/B1l0.TIF']);

) blue-green band
GREEN = imread ([inputFolder '/B20.TIF']);

)

)

green
red

near infrared
mid-infrared
thermal infrared
mid-infrared

RED = imread ([inputFolder '/B30.TIF']
NIR = imread ([inputFolder '/B40.TIF']);
MIR1 imread ([inputFolder '/B50.TIF']);
TIR = imread ([inputFolder '/B60.TIF']);
MIR2 = imread ([inputFolder '/B70.TIF']);
[rows cols] = size (BLUE);

o° d° A0 o d° d° o°

% Process images

log.info ('Processing images') ;

ouT = [];

NDSI (GREEN - MIR1) ./ (GREEN + MIR1);
composite = (1 - MIR1).*TIR;

filter5 NIR./RED;

filter6 NIR./GREEN;

filter7 NIR./MIR1;

filter8 MIR1./TIR;

NO CLOUD =
(RED<brightness_threshold) | (NDSI>NDSI_threshold) | (TIR>temperature_thr
eshold) ;

AMBIGUOUS =

((composite>composite_threshold) | (filter5>filter5 threshold) | (filteré6
>filter6_threshold) | (filter7<filter7_threshold)) ;

WARM CLOUD = (filter8>filter8 threshold);

COLD_CLOUD = (filter8<=filter8 threshold);

OUT = AMBIGUOUS*50;

pos = find (OUT==0) ;

OUT (pos) = WARM CLOUD (pos) *150 + COLD_CLOUD (pos) *255;
OUT = OUT.*not (NO_CLOUD) ;

% Write data
log.info ('Writing output data');
imwrite (uint8 (OUT), outFile);

end

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

P Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

& [
del mos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 97 of 111

4.5.7. Python Programming Language

Here is an example of Python code that uses the different modules of the integration
libraries assuming that they are available either in the directory in which the interpreter is
running, or in the list of directories contained in the PYTHONPATH environment
variable or in the sys.path search path.

#!/usr/bin/env python

from __ future_ _ import print_ function # Py2/3 compatible code
from ParamReader import ParamReader

from CLP import CLP

import Logger

def main (argv=None) :

matrixIntParam = 'los.LOS.polyParY'
vectorDoubleParam = 'los.LOS.iDomain'
try:

clp = CLP(argv) # If given None, CLP will read sys.argv

Show conf files, inputs and outputs using CLP
cf = clp.getConfFiles()

Logger.info ('Configuration files: ' + ', '.join(cf))
inf = clp.getInputFiles ()

Logger.info ('Input files: '+ ', '".join(inf))
outf = clp.getOutputFiles ()

Logger.info ('Output files: '+ ', '.join(outf))

Read the local configuration file

reader = ParamReader (cf[1l])

Logger.info ("Printing whole parameters file")
reader.write ()

mi = reader.getParameter (matrixIntParam) .getMatrixInt ()
Logger.info (matrixIntParam)
for i in range(len(mi)):
for j in range(len(mi[0])):
print ("[{0}]1[{1}] = {2}".format(i, j, mi[i] [j]))

vd = reader.getParameter (vectorDoubleParam) .getVectorDouble ()
Logger.info (vectorDoubleParam)
print (vd)

return 0

except Exception as e:
Logger.error ("TestModule failed: " + str(e))
Logger. finishExecution (1)

if name == "_main_ ":
main() # CLP will read sys.argv itself

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

P Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

& [
del mos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 98 of 111

And here is the same example using the installed OSFI Python package as described in
section 3.4.3.3.

As it can be seen, the only lines modified have been the import statements which are now
done from the OSFI package, being all the rest of the code exactly the same as in the
previous approach.

#!/usr/bin/env python

from __ future_ _ import print_function # Py2/3 compatible code
from OSFI.ParamReader import ParamReader

from OSFI.CLP import CLP

from OSFI import Logger

def main (argv=None) :

matrixIntParam = 'los.LOS.polyParY'
vectorDoubleParam = 'los.LOS.iDomain'
try:

clp = CLP(argv) # If given None, CLP will read sys.argv

Show conf files, inputs and outputs using CLP
cf = clp.getConfFiles|()

Logger.info ('Configuration files: ' + ', '.join(cf))
inf = clp.getInputFiles ()

Logger.info ('Input files: '+ ', '".join(inf))
outf = clp.getOutputFiles ()

Logger.info ('Output files: '+ ', '.join(outf))

Read the local configuration file

reader = ParamReader (cf[1l])

Logger.info ("Printing whole parameters file")
reader.write ()

mi = reader.getParameter (matrixIntParam) .getMatrixInt ()
Logger.info (matrixIntParam)
for i in range(len(mi)):
for j in range(len(mi[0])):
print ("[{0}]1[{1}] = {2}".format(i, j, mi[i] [j]))

vd = reader.getParameter (vectorDoubleParam) .getVectorDouble ()
Logger.info (vectorDoubleParam)
print (vd)

return 0

except Exception as e:
Logger.error ("TestModule failed: " + str(e))
Logger. finishExecution (1)

if name == "_main_ ":
main() # CLP will read sys.argv itself

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

P Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

& [
del mos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 99 of 111

4.5.8. Java Programming Language

Below is an example of Java code that uses the different modules of the integration
libraries.

import java.util.List;

import esa.opensf.osfi.CLP;

import esa.opensf.osfi.Logger;
import esa.opensf.osfi.ParamReader;
import esa.opensf.osfi.Parameter;

public class TestModel {

public static void main(String[] args) {
try {
CLP clp = new CLP(args) ;
List<String> cf = clp.getConfFiles();

Logger.info ("Configuration files: " + cf);
Logger.info ("Input files: " + clp.getInputFiles());
Logger.info ("Output files: " + clp.getOutputFiles());

ParamReader cfm = new ParamReader (cf.get(l)); // Parse LCF

Parameter param = cfm.getParameter ("los.LOS.iDomain") ;

double[] valueVectorDouble = param.getVectorDouble() ;

for (int i = 0; i < valueVectorDouble.length; i++) {
System.out.println(valueVectorDouble[i]) ;

}

param = cfm.getParameter ("matrix5x4") ;
int[][] matrix = param.getMatrixInt() ;
for (int i = 0; i < matrix.length; i++) {
for(int j = 0; j< matrix[i].length; j++) {
System.out.println (matrix[i] [j])
}
}
} catch (Exception e) {
Logger.error ("TestModule failed: " + e.getMessage())
Logger. finishExecution (1) ;

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

s Code : OPENSF-DMS-OSFI-DM

e

"

= OSFI| Issue : 1.18

= -
delm S Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 100 of 111

5. COMPATIBILITY WITH PREVIOUS VERSIONS

Each release of OSFI is not guaranteed to be source or (for compiled languages) binary-
compatible with previous versions. However, we do strive to keep source compatibility
where possible, so that upgrading to a new version consists only of rebuilding against the
latest OSFI. In particular, releases with the same minor version (e.g. 3.5.x) should be
source-compatible.

In order to ease the upgrade path from previous versions of OSFlI, this section details the
incompatible API changes since the last version for each language. Note that, in general,
only breaking changes are detailed here, with “breaking” defined as changes that cause a
previously building source to fail to build, or to build but stop working. There may be
other changes with a “soft” upgrade path, like deprecated functionality that raises a
warning about the appropriate upgrade path. Such functionality will only appear in this
section when it is finally removed from OSFI.

5.1. Migrating from OSFI 3.4 to 3.5

5.1.1. All/multiple Languages

Removal of support for attribute “ndims” (all languages)

Affected API: ParamReader/ConFM, Parameter constructors, Parameter.getDims

The “ndims” attribute was never part of [E2E-ICD], but it was recognized by and affected
parsing behavior in several OSFI implementations. This attribute has been completely
removed from OSFI 3.5, and is now ignored if present in configuration files. In particular,
functions like Parameter.getDims now return consistent values across languages, while
getNdims returns the length of the vector/list returned by getDims.

Given a file like with a parameter like the following:

<!-- Old-style array, one dimension but ndims=2 -->

<parameter name="x" ndims="2" dims="3" type="INTEGER">
123

</parameter>

Implementations would previously have returned a variety of dimension arrays from
getDims depending on whether “ndims” was being parsed or not (e.g. [3 0] in C++, [3 1]
or [1 3] in other languages). In the new version, the “ndims” attribute is ignored and all
implementations concur that the parameter shown is a vector of dimension 3.

As a consequence of the above changes, the constructors for Parameter instances in all
languages no longer accept the “ndims” argument. In languages where arguments are
purely positional, this is a breaking change that may either prevent building or fail at
runtime, depending on the language. However, in most cases user code should not call
Parameter constructors directly, so the impact to user code is likely to be small.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

=T Code : OPENSF-DMS-OSFI-DM

e - - OSFI Issue : 1.18

delmOS Develober’s Manual Date : 17/07/2019
eveloper’s Manua

grupo elecnor P Page : 101 of 111

Parameter constructors now take different argument types (all languages)

Affected API: Parameter constructors

The specific effects depend on the language, but the “dims” argument is now a language-
specific dynamic array instead of a string. For example, the argument has the type
vector<int> in C++ and List<Integer> in Java, while in Matlab/Python an array/sequence
of integral values is expected.

Scalar parameters now have zero dimensions (all languages)

Affected API: Parameter.getNdims, Parameter.getDims

For scalar parameters that do not have an explicit “dims” attribute, the default is to return
zero from getNdims and the language-specific version of an empty integer list from
getDims. This may be a breaking change for many users which may expect getNdims to
never return zero, or for the dims return value to always have at least one element.

Xerces-C is now used privately (C++/FFIl, C, Fortran)
Affected API: most OSFI-C++ headers

Xerces-C is the XML library used by OSFI-C++, and indirectly by OSFI-C, OSFI-Fortran
and the deprecated OSFI-F77 to perform the low-level parsing of the configuration files.
Until the previous version, this was an open fact exhibited by the OSFI CMake
configuration and its headers. However, in the interest of encapsulation and a possible
future move to a different XML library, the new version uses Xerces-C privately, as an
implementation detail.

This means that, among other things, CMake target XercesC::XercesC is no longer part of
the INTERFACE_LINK_LIBRARIES specification of OSFI-C++, so client executables
or libraries declared to link against one of the mentioned OSFIs will not automatically get
to the Xerces-C include path and library® injected in its own build settings.

This may be a significant breaking change if the user code attempts to perform its own
XML parsing using Xerces but does not link against it itself, instead relying on the OSFI
dependency. User code that uses Xerces should thus depend on it directly.

5.1.2. C++

Internal files and classes removed from public interface

Affected API: class ParameterParsingException (moved to different header), class StrX,
class WriteErrorHandler, all functions in VectorTypes.h (removed), class XMLparser and
macros in vt100.h (moved to private sources folder), class ParamReader and class
UsageReader (inheritance tree modified).

The following headers have been removed, so trying to include them is now an error:

S If OSFI is built as a static library, it is possible that the Xerces-C library will still be a transitive
dependency, since in many platforms static libraries are merely “object archives” and not truly “linked”
until they are introduced into an executable or dynamic library.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

= Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 102 of 111

U conFM/ParameterParsingException.h, but not the class of the same name,
which has been moved to the conFM/Paramreader.h header

U conFM/strX.h, along with the class of the same name

U

ConFM/VectorTypes.h, including functions intVector, doubleVector, fileVector,
atob, str, boolVector and fileFormattedValue

U conFM/WriteErrorHandler.h, along with the class of the same name
U conFM/xMLparser.h, along with the class of the same name
U EHLog/vt100.h

These classes and/or functions were implementation details of other OSFI code, so they
have been removed, either from the public API exported by the library, or altogether sicne
they were made redundant by code rewrite. In particular, public API classes ParamReader
and UsageReader no longer inherit from XMLparser, using it privately instead.

Xerces-C headers are no longer included by OSFI headers
Affected API: most OSFI-C++ headers

As detailed in the previous section, Xerces-C is now used privately in the CMake
definition of the OSFI-C++ library. This means, among other things, that executables or
libraries linking to OSFI will not get the Xerces include paths automatically, which forces
OSFI to remove any mention of them from its own public headers.

Thus, user code using any Xerces type or function (e.g. XMLCh, DOMDocument) needs
to ensure that the proper Xerces-C headers are included directly.

5.1.3.C

Removed some included headers from OSFIC.h, added include guard

Affected API: none directly (“collateral damage™)

The OSFI C interface has been pruned and redundant code has been removed from the
headers. In particular, the main C header is now wrapped in a double inclusion guard with
the macro OSFI_C_INTERFACE. However, references to stdio.h and stdarg.h have
been removed from OSFIC.h. Thus, code that inadvertently used functions or definitions
from those files but did not include them directly will fail to build.

The solution is consistently including whatever headers your code uses, even if you
think/know that they are already included by third party library headers.

#include "OSFIC.h" // No longer includes stdio.h (FILE, fopen)
#include <stdio.h> // Insert this or the module will no longer build

int main(int, const char**) {
FILE* f = fopen("work.dat", "wb"); // Will no longer work
//...

return O;

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

. Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

., &
de" NnosS Devel < M l Date : 17/07/2019
eveloper’s Manua
grupo elecnor P Page : 103 of 111

Bugfix in matrix getters output arguments for sizes
Affected API: all osfiConFMGetMatrix(T)Values functions, osfiConFMfileExist.

A bug causing matrix sizes to be incorrectly returned by OSFI-C matrix getters has been
fixed. However, for code that depended on the returned (flipped) value of the “rows” and
“columns” output arguments to those functions, the change will be breaking.

It should be noted that the osfiConFMGetColumns and osfiConFMGetRows functions did
not exhibit this bug, so their return values have not changed.

5.1.4. Fortran

No breaking API changes exist between versions 3.4 and 3.5 of OSFI-Fortran, although
the API continues to be fleshed out with new functions.

However, some bugs related to the bridge between Fortran and C++ (mostly off-by-one
errors) have been fixed, which may be considered a breaking change if the code depended
on a workaround.

5.1.5. Java

Renaming of OSFI package
Affected API: all of OSFI-Java

A major breaking change is that the OSFI-Java classes are now under a package named
“esa.opensf.osfi” instead of simply “o0sfi”, in application of ESA Java coding guidelines.
This change obviously breaks both source and binary compatibility, but the fix is simply
renaming references accordingly in both import statements and fully-qualified names:

import osfi.Parameter; // Remove this
import esa.opensf.osfi.Parameter; // Replace with this

Parameter returns primitive arrays where appropriate
Affected API: Parameter.getVectorT and getMatrixT, with T = (Int, Double, Boolean)

After an overhaul of parameter parsing, the Parameter class will no longer return arrays of
boxed types like Integer or Boolean. Instead, those methods will return arrays of primitive
types. Types that return arrays of strings are not affected. This change speeds up parsing
of large parameter arrays, since the process directly generates primitive arrays with
contiguous values, instead of arrays of references to possibly scattered values.

Parameter p = ...;
Integer[][] val = p.getMatrixInt(); // Remove this
int[][] val = p.getMatrixInt(); // Replace with this

A possible secondary effect of this change is that primitive arrays do not play nicely
with some collection-utility methods such as java.util.Arrays.asList, so code that relied
on such methods to wrap the returned arrays with a List<T> will no longer work.

The solution is twofold: if your module is using Java 8+, you can probably switch
processing code to the Stream API, using Arrays.stream() and IntStream instead of

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

e =N Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

> o i %m’
delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 104 of 111

Arrays.asList() and List<Integer>. Otherwise, or if a List of a wrapper type is absolutely
required, you can either do the conversion yourself or use a supporting library like Guava.

// This won’t work anymore b/c java.util.Arrays does not produce
// a List<Integer> from an int[] argument - T must extend Object!
List<Integer> 1li = Arrays.aslist(p.getVectorInt())

// Solution 1, for Java 8+: switch to Stream API and work with it

// either directly or as a way to obtain a List.

IntStream is = Arrays.stream(p.getVectorInt())

int minPosVal = is.filter (v -> v>0) .min() .orElse(0); // Work directly
List<Integer> 1lil = is.boxed() .collect(Collectors.toList()); // List

// Solution 2a: manual conversion to Integer array
List<Integer> li2a = new ArrayList<>();
for (int v : p.getVectorInt())

1i2.add(v) ;

// Solution 2b: automatic conversion/wrapping with utility methods
// from external libraries e.g. Guava or Apache Commons Lang.
List<Integer> 1i2b = Ints.asList(p.getVectorInt()); // From Guava

New API for ARRAY-typed variables
Affected API: Parameter.getArrayValue (removed)

The parsing of structured types in OSFI-Java has been rewritten in this version. The
previous APl was incoherent with the rest of the OSFI-Java interface, since unlike the
other functions to retrieve a value, the getArrayValue function provided a single point
without the possibility to get a typed result, always returning an Object array.

Furthermore, the previous implementation introduced a confusing permutation of
dimensions for 3-D arrays, relabeling the outermost dimension of such an array as the
“third” dimension instead of the first as would be customary in Java.

The new API is introduced under the name getArrayRootNode, and is similar in design
to the C++ version. It exposes a tree of ArrayNode.Raw instances that can be navigated
starting from the 1% dimension (formerly the 3') or parsed in a type-safe fashion into
either a flattened array V[] or a parsed tree structure ArrayNode<V[]>. See §4.3.8 for the
detailed interface.

Given a configuration file with a parameter like:

<parameter name="arr" dims="2" type="ARRAY" elementType="INTEGER"..>
<parameter dims="3" type="ARRAY">
<parameter dims="4" type="ARRAY">1 2 3 4</parameter>
<parameter dims="4" type="ARRAY">5 6 7 8</parameter>
<parameter dims="4" type="ARRAY">9 10 11 12</parameter>
</parameter>
<parameter dims="2" type="ARRAY">
<parameter dims="4" type="ARRAY">-1 -2 -3 -4</parameter>
<parameter dims="4" type="ARRAY">-5 -6 -7 -8</parameter>
</parameter>
</parameter>

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

https://github.com/google/guava/wiki/PrimitivesExplained

e Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

; _ ——
delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 105 of 111

Previous versions of the OSFI-Java APl would have consumed the parameter with code
similar to the following:

Parameter p = pr.getParameter ("arr");

// Both calls return Object[] with Integer elements, not Integer[]!
Object[] a = p.getArrayValue(0, 1)); // row=0, thirdDimension=1
System.out.println(Arrays.toString(a)); // Prints “[-1, -2, -3, -4]1”

Object[] b = p.getArrayValue(l)); // row=1l, thirdDimension=0
System.out.println(b[2]); // Prints “7”

// Obtaining an array of primitives requires copying the data
int[] b_prim = new int[b.length];
for (int i=0; i < b.length; ++i)

b prim[i] = b[i]; // Auto-unboxing in Java 5+

However, in the new API the array root node does return primitive arrays (int[], etc.) for
the appropriate element types. User code may choose to retrieve and parse only a certain
slice of the parameter, as in the first example; or to parse the full parameter and then
access whatever slices are needed, as in the second example.

Parameter p = pr.getParameter ("arr") ;

// Now, getArrayRootNode returns an ArrayNode.Raw instance, which

// can be indexed first and then parsed partially...

ArrayNode.Raw raw = p.getArrayRootNode ()

int[] a = raw.getSubNodeAt(1l,0).getVectorInt(); // layer=1l, row=0
System.out.println (Arrays.toString(a)); // Prints “[-1, -2, -3, -4]1"

// ... or parsed as a full tree and then indexed into.
ArrayNode<int[],?> parsed = raw.getTreelnt() ;

int[] b = parsed.getDataAtSub (0, 1);
System.out.println(b[2]) // Prints “7”

Collection classes replaced by interfaces in API

Affected API: CLP, ParamReader.getParameters, Parameter.getDims (ArrayList to List),
Parameter.getOtherAttributes (HashMap to Map).

Instead of taking and/or returning concrete collection classes (ArrayList, HashMap), the
APl now works with the corresponding interface (List, Map) in order to improve
encapsulation. In cases where the API takes one such argument, existing code is source-
compatible, but for return values the compilation may fail if use code expects a collection
class to be returned.

ArrayList<Parameter> params = pr.getParameters ("group"); // 0ld
List<Parameter> params = pr.getParameters ("group"); // New

Internal classes and methods removed from public interface
Affected API: Vt100, XMLParser, Logger.readFile

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

—— Code : OPENSF-DMS-OSFI-DM

il o - OSFI Issue : 1.18

deimos om. 1071201
eveloper’s Manua

grupo elecnor P Page : 106 of 111

These classes were implementation details of Logger and ParamReader, respectively, so
they have been removed from the public APl exported by the library. If your code
absolutely must use such a class, you can find it in the OSFI source.

5.1.6. Python

As in other languages, the parameter parsing code was rewritten in this version of OSFI-
Python. Most of the changes are non-breaking, such as the fact that getMatrixX functions
no longer raise Exception but the subclass TypeError.

Removal of the duplicated “constructor” in Parameter

Affected API: Parameter.init (removed), Parameter.__init__

As part of the removal of support for the “ndims” attribute, the function Parameter.init
was also removed from the OSFI-Python interface. This was an unpythonic pseudo-
constructor that allowed a Parameter object to be “reinitialized” after being created.
Instead, if changes are needed to the basic attributes of a Parameter object, it should be
replaced with a newly initialized one. The main breaking change could surface if it was
paramount that the same instance of the class was modified.

For example, if a module variable is created and then the code wants to re-initialize the
parameter, Python will assume that the assignment to the name (when using the new
constructor-based syntax instead of the old function) creates a local variable instead. In
this case, the workaround is simply telling Python that the variable to be assigned to is the
module-scoped one, using the “global” keyword as in the example.

Note, however, that this is still a workaround, since the module-scoped variable no longer
points to the same instance of Parameter as it did before.

Create a module-level Parameter object and then write to it
p = Parameter(..) # Create with some data at module level

def func_that_alters_module_ var(newVal, newLen):
Previously: reinitialize with special function
p-init("name", "description", "INTEGER", newVal,
mw o ownw nin str(newlLen), None)
New version: replace object with constructor
global p # So that we don’t create a local variable p instead
p = Parameter ("name", "description", "INTEGER", newVal, newLen)

Parameter constructor arguments renamed
Affected API: Parameter.__init__
The following arguments to the Parameter constructor have been renamed:

U aName - name
aDescription = description
aType - elType

0O 00

aValue = value

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

= Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

,//.,.—::::; ’. 5 _
delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 107 of 111

Since the mentioned arguments are compulsory, the renaming will not affect user code
providing them via positional syntax, but it is a breaking change for code that tries to pass
the old parameters via keywords.

Getters for scalar values now return None on failure
Affected API: Parameter.get(T)Value function, for all T

The previous version of OSFI returned a type-specific default value if the parameter value
could not be parsed. This could result in correct but unintuitive behavior, like “true” being
parsed as False (since the correct value is only “TRUE”, in capitals). Instead, the new
version returns None in such situations.

While this change is compatible in many common situations, like Boolean evaluation, it
may be breaking depending on the usage made by user code and the version of Python, as
shown in the example below:

val = pr.getParameter ("param") .getIntValue ()

This code for a user code-specific default will still be valid

v = val if val else 7

The new None return also allows telling an actual “0” from an error
v = val if val is not None else 7

However, this will fail in Python 3, since NoneType is no longer
comparable to int
sig =1 if val >= 0 else -1

New API for ARRAY-typed variables
Affected API: Parameter.getArrayValue, Parameter.getValue

Like in other languages, the parsing of structured types has been reimplemented in this
version. In 3-D arrays, the first dimension in the file is no longer permuted to the 3™
dimension in the parameter, so for any code that read such arrays, this change is breaking.

Given a configuration file with a parameter like:

<parameter name="arr" dims="2" type="ARRAY" elementType="INTEGER"..>
<parameter dims="3" type="ARRAY">
<parameter dims="4" type="ARRAY">1 2 3 4</parameter>
<parameter dims="4" type="ARRAY">5 6 7 8</parameter>
<parameter dims="4" type="ARRAY">9 10 11 12</parameter>
</parameter>
<parameter dims="2" type="ARRAY">
<parameter dims="4" type="ARRAY">-1 -2 -3 -4</parameter>
<parameter dims="4" type="ARRAY">-5 -6 -7 -8</parameter>
</parameter>
</parameter>

The indices used to address the sections of the array change so that the dimension that is
actually first in the file also becomes the first in the code, instead of being permuted. The
combination of that behavior with the defaulting of the “third dimension” (actually first)
to 1 will cause different results, since the new API will, if insufficient indexes are given
to return a single vector or element, return a cell array with subtree of values.

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

P Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

- . -
delmos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 108 of 111

P = pr.getParameter ("arr")

Previous syntax with “third dimension” for the outermost layer
print (p.getArrayValue(0, 1)) # row, thirdDimension -> “[-1,-2,-3,-4]1"
print (p.getArrayValue(l)) # row=1l, thirdDimension=0 -> “[5,6,7,8]”

Currently, the same slices must be addressed like:
print (p.getArrayValue(l, 0)) # Now prints “[-1,-2,-3,-4]"
print (p.getArrayValue (0, 1)) # Now prints “[5,6,7,8]"”

The function also allows returning larger slices or single elements
print (p.getArrayValue(l)) # Prints “[[-1,-2,-3,-4],[-5,-6,-7,-8]1"
print (p.getArrayValue(0,2,3)) # Now prints “12”

Furthermore, the getValue function that returns the unparsed value of the parameter will
now return an ArrayNode instance that allows user code to examine the structure of the
unparsed strings at each level of the parameter.

The getValue function now returns the parsed value

Affected API: Parameter.getValue

The function returning the raw (unparsed) value of a parameter has been renamed
getRawValue for uniformity across OSFI implementations. The getValue function now
returns the parsed value with the declared type (which can be overridden) and
dimensionality/structure.

Create a module-level Parameter object and then write to it
P = pr.getParameter ('integerParam')

rawVal = p.getValue() # This was a string before, but is now an int
rawVal = p.getRawValue() # This is a string

intvVal = p.getValue() # New interface for general parsed value
dblval = p.getValue (asType=ParamType.FLOAT) # Type can be overridden

The actual return type of the new getValue depends on the dimensionality and ARRAY -
ness of the parameter: a scalar parameter will return a single instance of the correct type,
while a vector (matrix) will return a list (of lists) of such instances. The return value for
ARRAY parameters is the same as calling getArrayValue, that is, nested lists representing
the parameter structure in the XML.

5.1.7. Matlab

New Parameter parsing engine: removal of N/A and str2num usage
Affected API: ConFM, Parameter

Previously, many fields of a Parameter instance used the str2num function to parse inputs.
In particular, the dims, min and max properties, and also the value for numeric and
Boolean parameters, were parsed in this manner.

This implementation caused several Matlab-specific inputs to be allowed, like “1” and
“0” for Boolean parameters or “6+2” for a numeric parameter. However, it is also an
important security problem, since any Matlab code (possibly malicious) was also a

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

— Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

deimos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 109 of 111

valid input. Thus, it has been removed as part of a complete overhaul of parsing code in
the new OSFI-Matlab version, which is now a much closer match to [E2E-ICD]. This
means that, among other changes:

U Structured types no longer consider the “N/A” string as a missing element
placeholder. For string-like types, it is interpreted as a normal value, while for
other types it triggers an error.

U Boolean parameters only accept “TRUE” or “FALSE” as values.
U Integer parameters reject non-integer values like “3.7”, “Inf” or “NaN”.

While not a syntactic API break in the sense of changing the names or arguments of the
functions in the OSFI-Matlab interface; this is an important modification to the semantics
of the API and thus may cause modules that depended on some specific behavior of the
previous version to fail with an unchanged configuration file. In general, a file that was
able to be parsed by a non-Matlab OSFI in a previous release should still be parseable
with the new Matlab engine.

New Parameter parsing engine: types of values

Affected API: Parameter.getValue, Parameter.getArrayValue

In order to more closely match the specification in [E2E-ICD], the new parsing engine
returns values of Matlab type int32 instead of double if a parameter is of type INTEGER.
This change may be breaking in certain cases where arrays of values are compa

P = pr.getParameter('integerParam') ;

valueOk
valueOk

p.getvValue() - [1 2 3]; % Error: integer - double vector
p.getValue() - int32([1 2 3]); % New format

New API for ARRAY-typed variables
Affected API: Parameter.getArrayValue

Like in other languages, the parsing of structured types has been reimplemented in this
version. In 3-D arrays, the first dimension in the file is no longer permuted to the 3™
dimension in the parameter, so for any code that read such arrays, this change is breaking.

Given a configuration file with a parameter like:

<parameter name="arr" dims="2" type="ARRAY" elementType="INTEGER"..>
<parameter dims="3" type="ARRAY">
<parameter dims="4" type="ARRAY">1 2 3 4</parameter>
<parameter dims="4" type="ARRAY">5 6 7 8</parameter>
<parameter dims="4" type="ARRAY">9 10 11 12</parameter>
</parameter>
<parameter dims="2" type="ARRAY">
<parameter dims="4" type="ARRAY">-1 -2 -3 -4</parameter>
<parameter dims="4" type="ARRAY">-5 -6 -7 -8</parameter>
</parameter>
</parameter>

The indices used to address the sections of the array change so that the dimension that is
actually first in the file also becomes the first in the code, instead of being permuted. The

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

P | Code : OPENSF-DMS-OSFI-DM
OSFI Issue : 1.18

‘ . &
del mos Date : 17/07/2019

Developer’s Manual
grupo elecnor P Page : 110 of 111

combination of that behavior with the defaulting of the “third dimension” (actually first)
to 1 will cause different results, since the new API will, if insufficient indexes are given
to return a single vector or element, return a cell array with subtree of values.

P = pr.getParameter('arr');

% Previous syntax with “third dimension” for the outermost layer
disp(p.getArrayValue(l, 2)); % row, thirdDimension -> “[-1 -2 -3 -4]1"
disp(p.getArrayValue(2)); % row=2, thirdDimension=1 -> “[5 6 7 8]”

% Currently, the same slices must be addressed like:
disp(p.getArrayValue (2, 1)); % Now prints “[-1 -2 -3 -4]1"
disp(p.getArrayValue(l, 2)); % Now prints “[5 6 7 8]”

% The function also allows returning larger slices or single elements
disp (p.getArrayValue(2)); % Prints “{[-1 -2 -3 -4] [-5 -6 -7 -8]}"
disp(p.getArrayValue(l,3,4)); % Now prints “12”

© DEIMOS Space S.L.U.
DMS-DQS-QRE0609-SUM-10-E

_—~ ; }ilasyf
deimos

grupo elecnor

OSFI
Developer’s Manual

Code
Issue
Date

Page

OPENSF-DMS-OSFI-DM
1.18
17/07/2019

111 of 111

END OF DOCUMENT

© DEIMOS Space S.L.U.

DMS-DQS-QRE0609-SUM-10-E

