

DEIMOS Space S.L.U.

Ronda de Poniente, 19, Edificio Fiteni VI, 2-2ª

28760 Tres Cantos (Madrid), SPAIN

Tel.: +34 91 806 34 50 / Fax: +34 91 806 34 51

E-mail: deimos@deimos-space.com

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Open Simulation Framework

openSF

SYSTEM USER’S MANUAL

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

 Name Function Signature

Prepared by

Carlos Pérez Sancha

João Malés

Javier Martín

Gonzalo Vicario

Rui Mestre

Enrique del Pozo

Project Engineer

Project Engineer

Project Engineer

Project Engineer

Project Engineer

Project Engineer

Reviewed by Federico Letterio Project Manager

Approved by Federico Letterio Project Manager

Signatures and approvals on original

mailto:deimos@space.com?subject=Deimos%20Space

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 2 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

This page intentionally left blank

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 3 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Document Information

Contract Data

Contract Number: 22852/09/NL/FF

Contract Issuer: ESA/ESTEC

Internal Distribution

Name Unit Copies

Antonio Gutierrez Head of the Ground Segment Business Unit 1

Internal Confidentiality Level (DMS-COV-POL05)

Unclassified  Restricted  Confidential 

External Distribution

Name Organization Copies

Michele Zundo ESA/ESTEC 1

Montserrat Piñol ESA/ESTEC 1

Archiving

Word Processor: MS Word 2016

File Name: OPENSF-DMS-SUM-315.doc

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 4 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Document Status Log

Issue Change description Date

1.0 First issue of this document 21/12/09

1.1 Version of this document after openSF AR1

❑ Installation details section completed

❑ New chapter describing the openSF web page.

❑ New chapter 5 tutorial for defining an E2E simulation in openSF

❑ Product tools section updated, now includes a list of popular product tools
(section 4.5.4)

15/03/10

1.2 New version in response to ESA assessment for openSF version 1.1

❑ Section 3.4.1.1 updated clarifying that the openSF installation mechanism for
Linux platforms is the same as the Windows one. Installation of JRE under
Linux completed.

❑ Updated section 3.4.1.4. Bin folder reference removed. OSFI folder added

❑ Section 4.5.4 updated. Tools for MacOS issue.

❑ Added Annex A detailing how to build openSF from sources files.

❑ Updated chapter 5 with latest changes for the web site.

❑ Updated chapter 6. Folder structure guidelines.

20/04/10

1.3 Minor corrections:

❑ Clarifications on section 5.2

❑ typos in Annex A

26/04/10

1.4 New version for the openSF v2 acceptance

❑ Section 4.5.2 added: Management of databases

22/09/10

1.5 Added Annex B detailing Parameter Editor functionality. 15/10/10

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 5 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Issue Change description Date

1.6 Update after openSF AR 2 meeting:

❑ Added IDL and Matlab windows for the Linux installation

❑ Updated functioning of databases in the multi-repository: Independence
between databases.

❑ Added IDL requirements for Linux installation: Problems with installation path
and different types of licenses

❑ Added Matlab requirements for Linux installation: licenses

❑ Updated introduction sentence in Annex A, section 6. Instructions to build the
framework.

❑ Removed import capabilities in Session creation

❑ Updated obsolete screenshots.

❑ Added new section for module developers.

12/11/10

2.0 New version including extended capabilities for openSF 2.2:

❑ Parameter Perturbation plug-in (from SEPSO)

❑ Parameter Editor integration

❑ Tool management extension

❑ Check output generation

❑ MATLAB errors inclusion

❑ Import/Export capability

❑ Extended log capabilities

❑ Keyboard shortcuts

❑ HMI Isolation

16/02/12

2.1 New version after version 2.2 acceptance meeting

❑ Added IDL version selection to openSF installer (section 3.4.1.1)

❑ Plot perturbation capabilities

2/3/12

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 6 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Issue Change description Date

3.0 New version including extended capabilities for openSF V3:

❑ Updated framework pre-requisites (section 3.3.3);

❑ Updated installation instructions, leaving only references to the supported
operating system – Linux (section 3.4.1.1);

❑ Added references to OSFEG libraries;

❑ Added section on migration from previous versions of openSF to openSF V3
(section 3.5);

❑ Updated framework figures throughout section 4;

❑ Added reference to new system configuration parameter to control module
parallelisation (section 4.5.1);

❑ Added section on importing an XML database definition (section 4.5.2.5);

❑ Added section on the CPU core usage view that supports module parallelisation
(section 4.5.6);

❑ Added copy capabilities for several openSF elements (from section 4.7 to
4.11);

❑ Updated the module chain management in a session according to the openSF
framework revision (section 4.11);

❑ Added capability for removal of intermediate output files (section 4.11.2.8.1);

❑ Added capabilities for simplified module management:

o Switching a module version (section 4.11.5.1);

o Bypass/Switch-off module execution (section 4.11.5.2);

o Run from a given point in the module chain (section 4.11.5.3);

❑ Added capabilities for parallelisation of module execution (section 4.6);

❑ Added capability for exporting/importing module of an executed sessions
(sections 4.11.9.3 and 4.11.9.4);

22/11/13

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 7 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Issue Change description Date

3.1 New version answering the comments generated by ESA on the openSF V3 AR
documentation package.

Implementation of the following RIDs:

❑ OSF-AR3-05: Update semantics of maximum number of threads parameter with
associated warning message (section 4.5.1);

❑ OSF-AR3-06: Updates database view related figures 4-14 and 4-20 (section
4.5.2);

❑ OSF-AR3-07: Added clarification on the log functionality in the case of module
parallelisation (section 4.11.6.1);

❑ OSF-AR3-10: Clarification on simplification of session directory name (section
4.13).

❑ OSF-AR3-11: Renamed section 4.19 to “Table of keyboard shortcuts”;

❑ OSF-AR3-RF-01: Updated change log to list sections changed for openSF v3;

❑ OSF-AR3-RF-02: Updated Applicable and Reference documents (section 2.1 and
2.2) including also document versions; added section 1.1.1 identifying the
changes from openSF V2.2 to V3;

❑ OSF-AR3-RF-03: Revised Tutorial (section 6) according to openSF V3 and added
a reference to the training material (course handouts);

❑ OSF-AR3-CE-01: Corrected the supported IDL versions (section 3.3.3.3);

❑ OSF-AR3-CE-02: updated pre-requisites section to appear chronologically
before framework installation (section 3.3.3).

❑ OSF-AR3-CE-03: Updated section to clarify typical definition of OPENSF_HOME;

❑ OSF-AR3-CE-04: Added a clarification regarding the installation an execution of
openSF in the appropriate machine architecture (section 3.4.1.1).

The implementation of these RIDs closes action ACT-AR3-03 from the AR3.

15/01/14

3.2 New version including the integration of Python modules in openSF. 04/04/14

3.3 Updated after review comments from ESA: implemented RIDS OPENSF_v3.2_RID_01
and OPENSF_v3.2_RID_07 by updating section 3.3.3.5.

30/04/14

3.4 New version with updated installation procedure including also the porting to OSX. 03/06/15

3.5 New version including extended capabilities for openSF V3.4: Time Based Scenario
Orchestration.

Included special conditions for installation in OSX.

02/12/15

3.6 OPENSF-AN-004: The “iterate parameters” functionality is able to import
parameter iteration definitions from file

OPENSF-AN-017: Updated SUM to use "modules" instead of "models".

Added section on execution of script modules and special conditions applicable to
OSX 10.11.

16/03/16

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 8 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Issue Change description Date

3.7 Updated with extended capabilities for openSF V3.5:

❑ OPENSF-AN-003: Remote orchestration;

❑ OPENSF-AN-019: Automatic openSF version checking;

❑ OPENSF-AN-030: Select subset of parameters to monitor;

❑ Miscellanea HMI corrections and simplifications.

❑ Descriptor syntax clarifications.

16/05/16

3.8 Overall review based on ESA comments 06/06/16

3.9 Updated installation requirements. 20/01/17

3.10 Updated with HMI revamping for Eclipse RCP. 09/06/17

3.11 Updated with COTS requirement (Table 3-1 and Sec 3.3.2) 28/08/17

3.12 Remove OSFI from framework pre-requisites

Update MySQL tools path configuration during installation

Database created during installation selected by the user

Update folder structure

Small updates on database connection, deletion and backup due to bug fixes

OpenSF log messages moved to session dedicated log files

Move ParameterEditor appendix to dedicated SUM

15/12/17

3.13 Update for openSF version 3.7.2

❑ §3: Removal of the V2 upgrade path.

❑ §3.1.1 and §3.3: Update of the supported platforms.

❑ Reorganization of §3.3.3, splitting off the module-specific requirements into
§3.3.4.

❑ §3.5: Update of the command line arguments section.

❑ §4.11.5: New dialog for missing configuration files.

❑ §4.11.10: Update session export/import files, dialog

❑ §4.5.1, §4.14, §4.20: add per-module log files.

❑ §6: Update of build instructions

15/06/18

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 9 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Issue Change description Date

3.14 Update for openSF version 3.7.3:

❑ §3 and §4: Added Windows as a supported platform.

❑ §3.4.2: Updated the folder structure of the OpenSF installation folder.

❑ §3.4.2, §4.11.5.4 and §4.13: Documented new feature for grouping timeline
and iteration/perturbation sessions.

❑ §3.3, §3.4, $4.5, §4.18: Updated the dependency from MySQL, since starting on
v3.7.3 the client tools are not necessary.

❑ §4.5.1: XSD Validation and other changes in Preferences dialog.

❑ §All sections: Updated several images to comply with the newly delivered
version.

❑ §3.4.3: updated licencing scheme

❑ Various minor changes

14/12/18

3.15 Update for openSF version 3.8.0:

❑ General revision and update of the document.

❑ §2: Update the description of the installation process.

❑ §4.11.2.11: New section on iterations on parameter sets.

❑ §4.15: Include the concept of the “User Roles” and explain them.

❑ §4.17 Addition of some guidelines on how to implement a Monte Carlo study in
openSF.

06/06/19

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 10 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Table of Contents

1. INTRODUCTION .. 21

1.1. Scope .. 21

1.2. Acronyms and Abbreviations .. 21

1.3. Definitions .. 22

2. RELATED DOCUMENTS .. 24

2.1. Applicable Documents .. 24

2.2. Reference Documents ... 24

2.3. Standards ... 24

3. GETTING STARTED ... 25

3.1. Introduction ... 25

3.1.1. Quick installation Recommended approach ... 25

3.2. Conventions used in this Manual ... 25

3.2.1. OPENSF_HOME ... 25

3.2.2. Data types ... 26

3.3. System Requirements ... 26

3.3.1. Hardware requirements .. 26

3.3.2. Operating system requirements .. 26

3.3.3. Framework pre-requisites ... 26

3.3.3.1. MySQL Installation Guide .. 27

3.3.3.1.1. Linux Installation .. 27

3.3.3.1.2. macOS Installation .. 27

3.3.3.1.3. Windows Installation .. 27

3.3.3.2. JRE Installation Guide ... 28

3.3.3.2.1. JRE OracleTM Linux Installation ... 28

3.3.3.2.2. JRE macOS Installation .. 28

3.3.3.2.3. JRE Windows Installation ... 28

3.3.3.3. Remote execution installation guide .. 28

3.3.3.3.1. Sshfs Linux installation ... 28

3.3.3.3.2. Sshfs macOS Installation .. 28

3.3.3.3.3. SSH access permission installation ... 29

3.3.4. Module pre-requisites ... 29

3.3.4.1. IDL... 29

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 11 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

3.3.4.2. Matlab .. 30

3.3.4.3. Python and other scripts... 30

3.3.4.3.1. Python scripts execution in Windows ... 30

3.4. How to Install the Framework ... 32

3.4.1. Installer Guide Setup .. 32

3.4.1.1. Linux Installation ... 33

3.4.1.2. macOS and Windows Installation ... 37

3.4.1.3. Uninstalling openSF .. 37

3.4.1.4. Folder structure .. 39

3.4.2. Licensing scheme ... 40

3.5. How to Start the Application ... 40

3.5.1. Database-related arguments ... 41

3.5.2. Environment variables .. 41

3.6. Developing modules for openSF .. 41

4. OPENSF – REFERENCE MANUAL .. 43

4.1. Main window ... 43

4.2. Generic Functions, dialogues and displays ... 45

4.3. Frame management .. 47

4.4. Side bar .. 47

4.5. System .. 48

4.5.1. Preferences ... 49

4.5.2. Databases .. 52

4.5.2.1. Connect to a database .. 52

4.5.2.2. Create a new database .. 53

4.5.2.3. Delete a database ... 54

4.5.2.4. Backup a database.. 55

4.5.2.5. Import a database ... 55

4.5.2.6. Refresh database list .. 56

4.5.3. Multinode simulation ... 56

4.5.3.1. Remote machine management ... 57

4.5.3.2. Connect to a remote machine .. 58

4.5.3.3. Disconnect from a remote machine ... 58

4.5.3.4. Declare a new remote machine .. 58

4.5.3.5. Delete a remote machine ... 59

4.5.3.6. Refresh remote machine list .. 59

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 12 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.5.4. Product Tools ... 60

4.5.4.1. New tool .. 60

4.5.4.2. Edit tool ... 61

4.5.4.3. Delete tool .. 61

4.5.4.4. Product Tool Execution ... 62

4.5.4.5. Popular Product tools ... 62

4.5.4.5.1. Image Processing Tools .. 62

4.5.4.5.2. Text Editors ... 62

4.5.4.5.3. Scientific Data Formats ... 62

4.5.4.5.4. Browsers.. 63

4.5.4.5.5. Other Tools ... 63

4.5.5. Check for updates ... 64

4.5.6. About openSF ... 64

4.5.7. Help View .. 64

4.5.8. CPU Usage ... 65

4.5.8.1. Linux .. 65

4.5.8.2. macOS ... 65

4.5.8.3. Windows .. 65

4.5.9. Exit the system ... 65

4.6. Repository .. 66

4.7. Descriptors ... 67

4.7.1. Descriptor list ... 68

4.7.2. Descriptor creation ... 68

4.7.3. Descriptor modification .. 70

4.7.4. Descriptor deletion ... 70

4.7.5. Descriptor copy .. 70

4.8. Stages .. 70

4.8.1. Stage list ... 71

4.8.2. Stage Creation .. 72

4.8.3. Stage Modification ... 72

4.8.4. Stage Deletion .. 72

4.9. Modules .. 72

4.9.1. Module developer’s guideline .. 73

4.9.2. Module list.. 74

4.9.3. Adding modules ... 75

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 13 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.9.3.1. General data ... 75

4.9.3.2. Configuration ... 76

4.9.3.3. IO descriptors .. 76

4.9.4. Module upgrade - New version .. 77

4.9.5. Module modification .. 78

4.9.6. Module deletion.. 78

4.9.7. Module copy ... 78

4.10. Simulations .. 78

4.10.1. Simulation list .. 79

4.10.2. Simulation creation .. 79

4.10.2.1. General properties .. 80

4.10.2.2. Modules schema .. 81

4.10.3. Simulation creation example: creating a forward simulation ... 82

4.10.3.1. Step 1: Entering the module list tab ... 82

4.10.3.2. Step 2: Selecting the first module of the simulation .. 82

4.10.3.3. Step 3: Selecting the remaining modules of the simulation ... 83

4.10.3.4. Step 4: Finishing the simulation creation .. 84

4.10.4. Simulation modification ... 85

4.10.5. Simulation deletion .. 85

4.10.6. Simulation execution .. 85

4.10.7. Simulation copy.. 86

4.11. Sessions .. 87

4.11.1. Session list .. 87

4.11.2. Session creation .. 88

4.11.2.1. General properties .. 88

4.11.2.2. Altering the module set .. 89

4.11.2.2.1. Altering the modules set based on simulations ... 90

4.11.2.3. Breakpoint Scheduling ... 90

4.11.2.4. Provision of input data ... 91

4.11.2.5. Provision of configuration files ... 92

4.11.2.6. Provision of global configuration file .. 92

4.11.2.7. Parameters configuration ... 92

4.11.2.8. Specification of output files ... 94

4.11.2.8.1. Removal of intermediate output files .. 95

4.11.2.9. Specification of final product tools .. 95

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 14 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.11.2.10. Iterative sessions – iterating input/output files and parameter values 98

4.11.2.10.1. Parameter iteration definitions files .. 100

4.11.2.11. Batch session ... 100

4.11.2.12. Session Perturbation .. 101

4.11.3. Session Modification .. 101

4.11.4. Session deletion .. 101

4.11.5. Session execution – run .. 101

4.11.5.1. Switch module version .. 105

4.11.5.2. Bypass/Switch-off module execution .. 106

4.11.5.3. Run from a given point in the module chain ... 108

4.11.5.3.1. Run from a given module using previous data .. 109

4.11.5.4. Grouping sessions – Time-Driven or Iteration/Perturbation ... 111

4.11.6. Parallelisation of module execution ... 112

4.11.6.1. Parallel execution... 112

4.11.6.2. Precautions for module developers to ensure safe module parallelisation 113

4.11.7. Remote execution ... 115

4.11.8. Session script generation .. 115

4.11.9. Session Resuming .. 116

4.11.10. Import and Export session .. 116

4.11.10.1. Export session .. 116

4.11.10.2. Import session .. 117

4.11.10.3. Export module of a session .. 119

4.11.10.4. Import module of a session .. 120

4.11.11. Copy session ... 121

4.12. Executions .. 121

4.13. Results .. 121

4.13.1. Result view ... 124

4.13.2. Result re-run ... 125

4.13.3. Report generation ... 125

4.13.4. Delete result.. 125

4.13.5. Modules execution time ... 126

4.14. Logs .. 127

4.14.1. Log messages list ... 127

4.15. User Roles .. 128

4.16. Parameter Perturbations .. 130

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 15 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.16.1. Parameter Perturbation interface .. 130

4.16.2. Defining a new perturbation ... 131

4.16.2.1. Additional operations ... 134

4.16.3. Perturbed execution modes .. 140

4.16.3.1. Differences between execution modes .. 141

4.16.4. Error Functions ... 142

4.16.4.1. Deterministic Functions ... 142

4.16.4.2. Sampling Functions ... 143

4.16.4.3. Nondeterministic Functions ... 144

4.16.4.4. Binary and Composite Operations ... 145

4.17. Monte Carlo studies in openSF .. 146

4.17.1. Approach 1: One module MC with local parameter .. 146

4.17.2. Approach 2: Multiple modules MC with local parameter(s) .. 147

4.17.3. Approach 3: Multiple modules MC with global parameter .. 148

4.18. Time Based Scenario Orchestration .. 150

4.18.1. Time Based orchestration interface .. 150

4.19. File system ... 153

4.19.1. Tool execution .. 154

4.20. Persistent storage - Database and file system ... 155

4.20.1. Database maintenance .. 155

4.21. Table of keyboard shortcuts .. 156

4.22. Error messages .. 157

5. TUTORIAL: CREATING AN E2E SIMULATION .. 160

5.1. Scenario Description ... 160

5.1.1. Stages ... 161

5.1.2. Descriptors – Input and Output Files ... 161

5.1.3. Modules .. 162

5.2. Module Development Guidelines ... 163

5.3. Framework Structure Definition ... 163

5.3.1. Folder Structure Guidelines ... 163

5.4. Product Tools Specification ... 165

5.4.1. Simulation Products Exploitation ... 165

5.4.2. Closing the Loop in an E2E Simulation ... 165

6. ANNEX A: INSTRUCTIONS TO BUILD THE FRAMEWORK .. 167

6.1. Pre-requisites to Build the Framework ... 167

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 16 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

6.2. How to Build the openSF Platform ... 167

6.2.1. Simplified Procedure .. 168

6.2.2. Detailed Procedure ... 168

6.3. How to Build the Installer Packages ... 169

List of Figures

Figure 3-1: Windows interpreters chooser within OpenSF. .. 31

Figure 3-2: openSF Downloads Web .. 33

Figure 3-3: Installation confirmation screen ... 34

Figure 3-4: Installer folder selection window .. 34

Figure 3-5: Database Login screen .. 35

Figure 3-6: Database Installation Strategy .. 35

Figure 3-7: Database structure selection dialog... 36

Figure 3-8: Installation icon window ... 36

Figure 3-9: Installation successful screen .. 37

Figure 3-10: Uninstall confirmation screen under Linux .. 38

Figure 4-1: Main window appearance ... 43

Figure 4-2: Main window appearance showing internal frames and scroll bars ... 44

Figure 4-3: Detail of main menu bar ... 44

Figure 4-4: Detail of a menu, showing menu items ... 45

Figure 4-5: Detail of a contextual menu .. 45

Figure 4-6: File chooser dialog .. 46

Figure 4-7: Dialog example ... 46

Figure 4-8: Frame management menu ... 47

Figure 4-9: Internal frame header .. 47

Figure 4-10: System menu ... 48

Figure 4-11: Side bar ... 48

Figure 4-12: System preferences – Environment Variables .. 49

Figure 4-13: System preferences – Application Settings .. 50

Figure 4-14: System preferences – Application Folders ... 51

Figure 4-15: Database Management window .. 52

Figure 4-16: Connect to a database ... 53

Figure 4-17: Create new database ... 53

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 17 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-18: Database name is wrong ... 54

Figure 4-19: Delete a database .. 54

Figure 4-20: Confirm deletion operation ... 55

Figure 4-21: Database import .. 55

Figure 4-22: Database import file error ... 56

Figure 4-23: Database import XML definition error ... 56

Figure 4-24: Outline of a simulation scenario ... 57

Figure 4-25: Remote Machines Management window .. 57

Figure 4-26: Create new remote machine .. 58

Figure 4-27: Remote Machine is unreachable ... 59

Figure 4-28: Confirm deletion operation ... 59

Figure 4-29: Tools list view... 60

Figure 4-30: Tool. Creation ... 60

Figure 4-31: Tool Execution/Schedule from Session Edition View.. 61

Figure 4-32: Mozilla Firefox as openSF Product Tool .. 63

Figure 4-33: openSF About View ... 64

Figure 4-34: Help documents tree view .. 64

Figure 4-35: CPU Core Usage view .. 65

Figure 4-36: openSF logical flow .. 66

Figure 4-37: Repository view .. 66

Figure 4-38: Descriptor. Side bar .. 67

Figure 4-39: Descriptor list view ... 68

Figure 4-40: Descriptors. New descriptor ... 69

Figure 4-41: Descriptors. Copy Descriptor ... 70

Figure 4-42 Repository Side Panel. Stage View ... 71

Figure 4-43. Stage List View ... 71

Figure 4-44: Repository view: modules .. 73

Figure 4-45: Repository menu ... 73

Figure 4-46: Module. Pop-up menu .. 73

Figure 4-47: Module list view ... 74

Figure 4-48: Module. Configuration ... 76

Figure 4-49: Module. Input/Output specification .. 77

Figure 4-50: Modules. Copy Module .. 78

Figure 4-51: Simulation. Pop-up menu ... 78

Figure 4-52: Simulations list view... 79

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 18 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-53: Simulation. Creation ... 80

Figure 4-54: Defining a simulation - initial module window .. 82

Figure 4-55: Defining a simulation - selection of the first module ... 83

Figure 4-56: Defining a simulation – presentation of consistent modules .. 84

Figure 4-57: Defining a simulation – final window .. 85

Figure 4-58: Simulation. Execution... 86

Figure 4-59: Simulation. Copy Simulation .. 86

Figure 4-60: Session menu .. 87

Figure 4-61: Session pop-up menu .. 87

Figure 4-62: Session list view ... 88

Figure 4-63: Session creation – General properties ... 89

Figure 4-64: Session – Module specification .. 89

Figure 4-65: Session – Simulations specification .. 90

Figure 4-66: Breakpoint Scheduling Interface .. 90

Figure 4-67: Session – Inputs definition.. 91

Figure 4-68: Session – Configuration files definition ... 92

Figure 4-69: Session – Parameters definition .. 93

Figure 4-70: Session execution, warning message .. 94

Figure 4-71: Session – Output definition .. 95

Figure 4-72: Session – Product tools specification.. 96

Figure 4-73: File contextual menu... 96

Figure 4-74: Tool parameters specification ... 97

Figure 4-75: Session creation – Iterating parameters .. 98

Figure 4-76: Session - Creation - Editing numeric sequences ... 98

Figure 4-77: Session with iterated parameters .. 99

Figure 4-78: Successful batch configurated session message ... 100

Figure 4-79: Session with overridden parameters through the batch option ... 101

Figure 4-80: Session execution – Execution prevented due to missing configuration files 102

Figure 4-81: Session execution – Redundancy .. 103

Figure 4-82: Session – Execution progress ... 104

Figure 4-83 Execution Log showing Exception message .. 105

Figure 4-84 Module chain with different module versions ... 105

Figure 4-85: Switch module version ... 106

Figure 4-86: Bypass/Switch-off module .. 106

Figure 4-87: Bypass/Switch-off module missing files .. 107

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 19 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-88: Switch-on module ... 107

Figure 4-89 Run simulation from Module B ... 108

Figure 4-90: Run session from a given module ... 108

Figure 4-91: Reset IO descriptor option .. 109

Figure 4-92: Reset IO descriptor setup .. 110

Figure 4-93: Use previous setup IO descriptor options ... 110

Figure 4-94 Grouping of sessions for the Time-Driven execution .. 111

Figure 4-95 Grouping of sessions for the Iteration/Perturbation execution .. 112

Figure 4-96 Session execution showing Parallel module execution.. 113

Figure 4-97 Session execution showing Parallel module execution.. 113

Figure 4-98: Export from the Repository menu .. 116

Figure 4-99: Export from the Executions menu .. 117

Figure 4-100: Successful execution of the export ... 117

Figure 4-101: Inputs requested for the import ... 118

Figure 4-102: Successful execution of the import ... 118

Figure 4-103: Import results from the Repository menu ... 119

Figure 4-104: Export module from the Session Result view ... 120

Figure 4-105: Import module from the Session edition view .. 120

Figure 4-106: Session. Copy Session .. 121

Figure 4-107: (left) grouping of timeline sessions; (right) grouping of iteration/perturbation sessions. 122

Figure 4-108: Side bar. File system (including symbolic link to last session) .. 123

Figure 4-109: Results menu ... 123

Figure 4-110: Results pop-up menu .. 123

Figure 4-111: Execution results ... 124

Figure 4-112: Result. Re-run ... 125

Figure 4-113: Execution report.. 125

Figure 4-114 Bar graph showing Module times .. 126

Figure 4-115 Pie chart showing the percentage of time .. 126

Figure 4-116 Table showing Module times ... 126

Figure 4-117: Logs menu .. 127

Figure 4-118: Logs list view .. 127

Figure 4-119: User Role selection toolbar ... 128

Figure 4-120: Executions tab. Results colour code based on its replicability ... 129

Figure 4-121 openSF Perturbation system main window.. 130

Figure 4-122 No selected parameters .. 131

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 20 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-123 Selection of parameters for perturbation .. 131

Figure 4-124 Adding a perturbation function to a module parameter ... 132

Figure 4-125 Complex perturbation function .. 132

Figure 4-126 Random perturbation properties .. 133

Figure 4-127 Preview of Statistical Mode execution scheme ... 133

Figure 4-128 Complex perturbation for a parameter ... 134

Figure 4-129 Time series line for a parameter perturbation .. 134

Figure 4-130 Histogram chart for a random parameter perturbation... 135

Figure 4-131 Loading an external error file .. 135

Figure 4-132 Function with variable number of properties (points) ... 139

Figure 4-133 Editing a double value of the Perturbation Tree .. 139

Figure 4-134 Statistical mode execution scheme .. 140

Figure 4-135 Combined mode execution scheme ... 141

Figure 4-136 Execution mode selector .. 141

Figure 4-137 Statistical mode iterations log message ... 142

Figure 4-138 Monte Carlo chain in Statistical mode ... 146

Figure 4-139 Monte Carlo chain in Combined mode .. 148

Figure 4-140 MC with a global parameter .. 149

Figure 4-141 Example instrument operational mode scenario .. 150

Figure 4-142 Module parameters folder organization on a per-mode basis .. 150

Figure 4-143 Module categorization by Mode ... 151

Figure 4-144 Timeline management view ... 152

Figure 4-145 Timeline editing toolbar ... 153

Figure 4-146 - Timeline preferences ... 153

Figure 4-147: File system view ... 154

Figure 4-148: IO file pop-up menu .. 154

Figure 5-1: Outline of a test simulation scenario... 160

Figure 5-2: Product File Example ... 162

Figure 5-3: E2E Tutorial folder structure .. 165

Figure 6-1: External components .. 170

Figure 6-2: Generated installers (one release and one development build) ... 170

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 21 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

1. INTRODUCTION

This document has been produced by DEIMOS within the frame of the openSF project and represents

the Software User Manual for the openSF platform.

❑ Chapter 1, this present chapter, talks about the document, giving a description and settling the basis

to understand it.

❑ Chapter 2 links this document with information from other sources.

❑ Chapter 3 details the procedures for setting up the openSF system.

❑ Chapter 4 describes one by one all the different functionalities of the openSF system.

❑ Chapter 5 gives a detailed description of the openSF web site.

❑ Chapter 6 details the procedures for creating an E2E session from scratch.

Reading the chapters in this order will help users to fully understand the use of the system.

1.1. Scope

This document applies to openSF v3.8.0 and is aimed to support two different kinds of users:

❑ Users that want to take advantage of the application.

❑ Developers that want to implement new modules intended to be used within openSF.

1.2. Acronyms and Abbreviations

Acronym Description

AD Applicable Document

API Application Programming Interface

CFI Customer Furnished Item

COTS Commercial Off-The-Shelf

DBMS Database Management System

DMS DEIMOS Space

E2E End to end simulation

GUI Graphical User Interface

HMI Human-Machine Interface

HW Hardware

I/F Interface

I/O Input/Output

ICD Interface Control Document

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 22 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Acronym Description

IT Integration Test

L1PP Level 1 Processor Prototype

L2PP Level 2 Processor Prototype

LCF Local Configuration File

MC Monte Carlo

RD Reference Document

RDBMS Relational Data Base Management System

SEPSO Statistical End-To-End Performance Simulator for Optical Imaging Sensors

SUM System User Manual

TBC To Be Confirmed

TBD To Be Defined / Decided

TN Technical Note

UML Unified Modelling Language

1.3. Definitions

Definition Meaning

Framework Software infrastructures designed to support and control the simulation definition and

execution. It includes the GUI, domain and database capabilities that enable to perform

all the functionality of the simulator.

Simulation A simulation is understood as a list of modules (or even a module alone) that is run

sequentially and produces observable results.

Module Executable entity that can take part in a simulation. A module can be understood,

broadly speaking, also as an “algorithm”. Basically, it contains the recipe to produce

products function of inputs. A module contains also several rules to define the input,

output and associated formats. Furthermore, its behaviour is controlled by one

configuration file. Overall, the architecture of a module consists of:

❑ The source code and its binary compiled counterpart

❑ A configuration file with its parameters

❑ An input file that characterizes its inputs

❑ An output file that characterizes its outputs

Note: Although sometimes the word Model appears instead of Module, they have the

same meaning in this scope

Configuration

File

An XML file that contains parameters necessary to execute a module. A configuration

file instance must comply with the corresponding XML schema defined at module

creation time. A special case is the global configuration file that defines the

configuration parameters that are common to all modules.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 23 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Definition Meaning

Parameter A constant whose value characterizes a given particularity of a module. Parameters are

user-configurable, they are fixed before launching a module and, for practical reasons,

not all of them shall be accessible from the HMI.

Session A session is defined as an execution of a set of modules (possibly obtained from the

ordered set of modules of a simulation) or an iterative execution of a set of modules

with different parameter values. The restriction on how to concatenate these modules

is based on the logic imposed by the stage concept (as for the simulation).

Stage Entity that defines a phase in a simulation process. The stage order definition specifies

the logic of the simulation sequence so a module must have associated a stage and a

simulation will run the modules of a stages’ series.

Batch mode It is the capability of the simulator to perform consecutive runs without a continuous

interaction with the user. Batch mode checks the agreement or not between the output

of a given module and the input by the next one in the sequence of the simulation.

Several modes of executions can be performed:

❑ Iteratively, executing one or more simulations

❑ Iteratively, executing the same simulation several times depending on the

parameters’ configuration

❑ Same as above but by executing a batch script.

Time-Based

Execution

The Time-Based scenario execution implements the notion of time driven execution of

a simulation whereby each simulation module is invoked in a sequence of time

segments.

Tool A tool is an external executable file that performs a given action to a certain group of

files. Used in openSF platform and associated to a certain file extension these tools can

be called to perform off-line operations to products output in simulations.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 24 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

2. RELATED DOCUMENTS

This section details the list of applicable and reference documents used for the generation of this

document, as well as the standards that have been applied. Note that the latest issue and dates of the

documents can be found on the openSF website (http://opensf.esa.int).

2.1. Applicable Documents

The following table specifies the applicable documents that were compiled during the project

development.

Table 2-1: Applicable documents

Reference Code Title Issue

[AD-ICD] openSF-DMS-ICD-001 openSF Interface Control Document 3.0

[AD-ADD] openSF-DMS-ADD-001 openSF Architecture Design Document 2.2

[AD-E2E] PE-ID-ESA-GS-464 ESA generic E2E simulator Interface Control

Document

1.2.4

2.2. Reference Documents

The following table specifies the reference documents that shall be taken into account during the project

development.

Table 2-2: Reference documents

Reference Code Title Issue

[RD-OSFI-DM] OSFI-DMS-TEC-DM openSF Integration Libraries Developers Manual 1.15

[RD-OSFEG-DM] OSFEG-DMS-TEC-DM openSF Error Generation Libraries Developers Manual 1.2

[RD-TM] openSF-3.2-Training openSF Training Course 3.1

[RD-PE] OPENSF-DMS-PE-SUM ParameterEditor Software User’s Manual 1.1

2.3. Standards

The following table specifies the standards that were complied with during project development.

Table 2-3: Standards

Reference Code Title

[E40C] ECSS-E-40C Software development Standard

[XML] (www.w3.org/TR/xml11/) Extensible Markup Language (XML) 1.1

http://opensf.esa.int/

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 25 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

3. GETTING STARTED

3.1. Introduction

During the concept and feasibility studies for the ESA Earth Observation activities, the mission

performance up to the final data scientific products needs to be predicted by means of end-to-end (E2E)

simulators. The observing system characteristics that impact data quality need to be determined in order

to achieve the scientific goals. On subsequent implementation phases, these mission end-to-end

simulators become a coherent test bed for L1PP and L2PP and to support the verification of space

segment performance and associated sensitivity analysis.

A mission E2E simulator is able to reproduce all significant processes, design and steps that impact the

mission performance as well as output simulated data products.

Commonalities in the structure of these E2E simulators highlighted the need for a common modular

framework. openSF is an open software framework to support a standardised set of end-to-end mission

simulation capabilities allowing the assessment of the science goals and engineering requirements with

respect to the mission objectives.

Scientific models and product exploitation tools can be plugged in the system platform with ease using a

well-defined integration process.

3.1.1. Quick installation Recommended approach

Detailed System Requirements are presented in section 3.3. For a quick installation strategy, the

recommended approach is the following:

❑ Ubuntu 18.04 LTS (or higher), macOS 10.14 or higher, or Windows 10;

❑ Oracle Java 8;

❑ MySQL server 5.7.x1.

3.2. Conventions used in this Manual

This chapter lists all the conventions used throughout this Software User Manual.

3.2.1. OPENSF_HOME

All through the contents of this User Manual, a “variable” called OPENSF_HOME is exhaustively used

as a placeholder. This variable value points to the root folder that contains the openSF installation.

Typically, this folder could be similar to this (in a UNIX like operating system):

/home/<user>/openSF

This variable matches with one “environment variable” defined in the SW.

1 The latest available version can be found in https://dev.mysql.com/downloads/mysql/5.7.html#downloads and the

corresponding installations for the “compressed tar archive” Linux binary distributions in

http://dev.mysql.com/doc/refman/5.7/en/binary-installation.html

https://dev.mysql.com/downloads/mysql/5.7.html#downloads
http://dev.mysql.com/doc/refman/5.7/en/binary-installation.html

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 26 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

3.2.2. Data types

The data types supported by openSF configuration files are described in [AD-E2E].

3.3. System Requirements

The openSF framework is developed and runs on the Eclipse Rich Client Platform (RCP). The current

version (3.8.0) of openSF uses Eclipse Photon (4.11), for which the target platforms officially supported

by the Eclipse project can be found in the Eclipse project plan page.

3.3.1. Hardware requirements

Hardware must at least fulfil the following requirements:

❑ 64-bit 2GHz processor

❑ 4 GB of RAM memory installed

❑ 200MB of free space to install.

3.3.2. Operating system requirements

Not all the platforms targeted by the Eclipse platform are officially supported by openSF. Binary

distributions are currently provided for the following platforms:

❑ Linux x86-64: in particular, openSF has been tested with Ubuntu 18.04.

❑ macOS x86-64, version 10.14 or higher.

❑ Windows 10 x86-64

3.3.3. Framework pre-requisites

Pre-requisite Purpose Licensing Distribution site

Oracle Java(TM)

Runtime Environment,

Standard Edition 1.8

openSF runs within this

execution environment.

GNU GPL /

Java

Community

Process

http://www.java.com/en/download/

MySQL community

server 5.7.x 2

openSF stores

information in this

relational database

GPL or

Proprietary

License

http://dev.mysql.com/downloads/m

ysql

MySQL user with DB

creation/modification

privileges

openSF needs DB

creation/modification

privileges

GPL or

Proprietary

License

http://dev.mysql.com/downloads/m

ysql

mpstat (Linux only) openSF uses this library

to assess the CPU core

usage statistics

GNU GPL http://linuxcommand.org/man_pag

es/mpstat1.html

2 It’s not mandatory to have the MySQL server installed in computer, since it can be accessed over the network.

https://www.eclipse.org/projects/project-plan.php?planurl=http://www.eclipse.org/eclipse/development/plans/eclipse_project_plan_4_7.xml#target_environments
http://www.java.com/en/download/
http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/mysql/
http://linuxcommand.org/man_pages/mpstat1.html
http://linuxcommand.org/man_pages/mpstat1.html

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 27 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Pre-requisite Purpose Licensing Distribution site

sshfs openSF uses this library

for remote execution

GNU GPL https://osxfuse.github.io/ (OSX)

https://github.com/libfuse/sshfs

(Linux)

It is recommended to use a Java Runtime Environment from Oracle, although the corresponding IBM or

openJDK versions should work as well. All the openSF software pre-requisites are freely downloadable,

the links for them can be found in the openSF website.

3.3.3.1. MySQL Installation Guide

openSF currently requires MySQL server version 5.6.x or 5.7.x. openSF present version ensures full

compatibility with MySQL v5.6.x and v5.7.x.

Note that the framework relies on a default installation of MySQL in the same machine (e.g. the

expected port is 3306). In case the server is on a network machine or has a non-standard installation, it

needs to be specified when launching openSF through the command line:

~/openSF$./openSF –-dbadress server:3307

Refer to section 3.5.1 for further details on Database-related arguments.

3.3.3.1.1. Linux Installation

The most popular Linux distributions (SUSE, Ubuntu, RedHat, Debian) include an automatic system for

downloading and installing software. The MySQL installation method in case the Linux distribution

provides a software package manager may be as simple as using the particular package manager (Yast

in OpenSUSE case for example) and searching for the package for the MySQL server.

In case the Linux distribution does not provide an online package manager it is suggested to visit the

MySQL website and look for the download for the distribution in question, or as a last resort the

“Linux-Generic” packages, in particular the “compressed TAR archive for x86-64”.

3.3.3.1.2. macOS Installation

MySQL installation package for macOS can be obtained from MySQL official website. It is

recommended to download the DMG archive. MySQL installation is based on a GUI installer with

default configuration, for which detailed instructions can be found in the MySQL web documentation.

As with Linux, there is also a “compressed TAR archive” that can be used simply by uncompressing the

downloaded file and following the MySQL documentation. This may be useful if the system user does

not have administrative privileges, required for the DMG-based installation.

3.3.3.1.3. Windows Installation

MySQL installation package for Windows can be obtained from MySQL official website. It is

recommended to download the Windows installer package. MySQL installation is based on a GUI

installer with default configuration, for which detailed instructions can be found in the MySQL web

documentation.

https://osxfuse.github.io/
https://github.com/libfuse/sshfs

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 28 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

There is also a “compressed ZIP archive” that can be used simply by uncompressing the downloaded

file and following the MySQL documentation. This may be useful if the system user does not have

administrative privileges, required for the MSI-based installation.

3.3.3.2. JRE Installation Guide

3.3.3.2.1. JRE OracleTM Linux Installation

Most popular Linux distributions include a Java Runtime Environment as part of its default package.

Usually this JRE is the one included in the Open Java Development Kit (http://openjdk.java.net/). The

openSF framework is only officially supported with the OracleTM JRE, so it may be needed to install it

and set it as default JRE instead of the openJDK one.

OracleTM Java Runtime Environment is included in the software repositories of the most popular

distributions. Please check the distribution documentation about how to install new software from

official repositories. There is also a standalone JRE OracleTM version for Linux operating systems

available. It consists in a tarball file, generic for all distributions, whose installation method is as simple

as uncompressing it in the desired destination folder. It includes all the necessary files to run java

applications through the Java Virtual Machine. This package can be downloaded from the official Java

OracleTM web page.

Note that after the installation of the Oracle Java the JAVA_HOME environment variable must point to

the folder location of the JRE (e.g. export JAVA_HOME=/usr/java/jdk1.8.0_131).

3.3.3.2.2. JRE macOS Installation

Some old versions of Mac OSX include a Java 6 runtime provided by Apple. Use of a Java 8 Runtime

Environment from Oracle is required. For further details please refer to the official Java OracleTM web

page: https://www.java.com/ .

3.3.3.2.3. JRE Windows Installation

Windows 10 does not come with any Java Runtime Environment installation. Thus, the user shall

download and install Java from within the OracleTM web page: https://www.java.com/ .

3.3.3.3. Remote execution installation guide

Remote execution in openSF relies on mounting a remote file system thru sshfs. To enable this solution

some pre-requisite software needs to be installed before openSF remote execution orchestration.

3.3.3.3.1. Sshfs Linux installation

The sshfs installation method in case the Linux distribution provides a software package manager

consists of installing the following packages: sshfs, fuse-utils. In case the Linux distribution does not

provide an online package manager it is suggested to visit sshfs website

(https://github.com/libfuse/sshfs) and look for alternative installation methods.

3.3.3.3.2. Sshfs macOS Installation

Sshfs installation package for macOS can be obtained from OXS Fuse official website

(https://osxfuse.github.io/). It is recommended to download the DMG archive. The stable releases of

both OSXFuse and SSHFS should be installed. Installation is based on a GUI installer with default

configuration.

http://openjdk.java.net/
https://www.java.com/
https://www.java.com/
https://github.com/libfuse/sshfs
https://osxfuse.github.io/

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 29 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

3.3.3.3.3. SSH access permission installation

To ease the access to remote file system thru sshfs it is required to enable access by sharing ssh keys (so

it is not required writing the password every time the connection is established).

The following commands implement the sharing of ssh keys between the participating computers:

~/$> ssh-keygen -t dsa

followed by:

~/$> ssh-copy-id -i .ssh/id_rsa.pub <user>@<machine>

For the above configuration the following packages are required: ssh-keygen, ssh-copy-id. Note that

ssh-copy-id is not an officially OSX supported package so either an unofficial installer can be used (e.g.

brew) or the public key needs to be copied manually.

Note that the Windows OpenSF does not support remote execution.

3.3.4. Module pre-requisites

In most cases, openSF runs modules by invoking them as binaries from the sessions folder. This means

that it is the responsibility of the module developer/integrator to provide any dependencies (e.g.

libraries, interpreters, etc.) and to perform the setup needed for such modules to work correctly. The

means are varied and depend on the type of module (compiled binary, script, etc.).

For example, a module written in C++ may link statically against all its dependencies so that the

resulting executable does not depend on any dynamic libraries that would have to be found and loaded

on start, although this may not always be possible depending on the library and the system.

Alternatively, dependencies can be provided in a way that may be located by the module, so e.g. a

Python module that makes use of OSFI-Python or other libraries may access them by:

❑ Installing them in the site-packages directory of Python,

❑ Including them in the PYTHONPATH environment variable, or

❑ Distributing them alongside with the module, making the script itself look for them in a known

location relative to the module (e.g. ../libs/OSFI/Python).

For more information on the matter of module development and deployment, look at the documents

mentioned in §3.6.

3.3.4.1. IDL

Note: IDL module execution is deprecated and not under further development.

To execute modules in IDL with openSF it is necessary to have installed IDL software on the computer.

openSF has been tested with the following versions of this software: version 7.1, 8.0 and 8.1.

If the user has a previous version, the application may not work eventually. It is recommended to have

installed at least IDL 7.1, and whenever possible version 8.0 or later.

An important requirement for the correct functioning is that IDL is installed in the default path, because

if not some features of the OSFI library will not work properly. This problem is related with ConFM

module, which uses some internal classes of IDL that must be in the default path, because otherwise the

application does not find them. This is caused because IDL looks for these classes only in the default

directory, and if it does not find them generates an error.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 30 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

For IDL 7.1 the default path is ‘/usr/local/itt/idl’ and for IDL 8.x the default path is ‘/usr/local/itt/idl/idl’.

Furthermore, IDL provides three types of licenses according to the user needs, as can be seen below:

❑ IDL development: Full license for IDL that allows to the user to use all its functionalities. Users can

access to the IDL Development Environment, the IDL command line, and having the ability of

compiling and executing IDL .pro files and executing .sav files.

❑ IDL runtime: Allows executing IDL programs precompiled and saved as .SAV files, or .pro files

without any type of restriction.

❑ IDL virtual machine: It is a free license that allows to the user to execute IDL programs precompiled

and saved as .SAV files, or .pro files. This kind of license has a few restrictions, like displaying a

splash screen on start-up, callable IDL applications are not available.

To execute a .sav or a .pro file without any type of restriction it is necessary to have installed the

development license or the runtime license on the computer. If user wants to generate .sav files by

compiling .pro files, it is mandatory to have the development license. If the user only has the virtual

machine license, he can execute .pro and .sav files but with restrictions, as many functionalities are not

available for this type of license.

3.3.4.2. Matlab

To execute modules in Matlab with openSF, Matlab software must be installed on the computer. The

only requirement is that Matlab version must be R2009a or later, with the corresponding license.

3.3.4.3. Python and other scripts

The framework also executes script-based modules, such as Python or shell scripts. Currently, they are

invoked as normal programs, so they must be marked with execution permissions. The choice of

interpreter must be somehow recognizable for the system e.g. with the customary hash-bang line:

#!/bin/sh (POSIX shell scripts)

#!/bin/bash (BASH scripts)

#!/usr/bin/env python (Python, system default version)

#!/usr/bin/env python2/3 (Python, script choice of a version)

#!/opt/bin/PowerShellCore6/pwsh (Other, custom script interpreters)

Since .sh/.bat files are executed directly, Windows users cannot run POSIX shell modules and

Linux/Mac users cannot run CMD batch modules. However, the system is extensible and new

“interpreted file” types can be added in future versions.

3.3.4.3.1. Python scripts execution in Windows

Due to the Python2/Python3 ambiguity (some scripts are compatible between both versions and some

are not), a method to choose between the correct interpreter for each script is necessary. Giving the

version of the interpreter to be used via shebang lines in the beginning of the Python script solves the

issue.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 31 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Since Windows does not allow shebang lines to choose between which Python version to use, the

solution is to use a launcher3 for aiding in the location and execution of different Python versions,

allowing the scripts to indicate a preference for a specific Python version.

Thus, in Windows, the Python interpreter must be specified to run Python modules. If available, the user

shall use the aforementioned launcher/chooser “py.exe” instead of a specific interpreter version i.e.

“python.exe”.

This Python interpreter, as well as others interpreters from the compatible languages, can be chosen by

accessing Systems->Preferences->Application Settings, as depicted in Figure 3-1.

Figure 3-1: Windows interpreters chooser within OpenSF.

3 https://docs.python.org/3/using/windows.html#python-launcher-for-windows

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 32 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

3.4. How to Install the Framework

Provided that every pre-requisite is fulfilled, users can now proceed to install the application.

The openSF distribution package consists of an installer for each target platform. The installer will be in

charge of the system deployment and the pre-requisites checking.

The system deployment can be divided in the following steps:

❑ MySQL database start-up: the installer shall execute a SQL script in order to create the default

database. Additionally, an extra database will be installed if the user desires to install the test suite.

The system pre-requisites checking performed by installers are the followings:

❑ Oracle Java JRE 1.8: installers check the presence of the Java Runtime Environment 1.8 or later.

❑ MySQL server 5.7.X.

3.4.1. Installer Guide Setup

Installers are built with the Install4J software. Install4J is a multi-platform GUI installer designed to be

completely cross-platform.

To download the openSF software and documentation perform the following steps:

1. If not already done, register as a user on http://eop-cfi.esa.int/ (see “Create an account” link in right

pane). The registration is free;

2. If not already done, register as openSF user at http://eop-cfi.esa.int/index.php/opensf/opensf-

registration;

3. Download the Software at http://eop-cfi.esa.int/index.php/opensf/download-installation-packages

http://eop-cfi.esa.int/
http://eop-cfi.esa.int/index.php/opensf/opensf-registration
http://eop-cfi.esa.int/index.php/opensf/opensf-registration
http://eop-cfi.esa.int/index.php/opensf/download-installation-packages

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 33 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 3-2: openSF Downloads Web

3.4.1.1. Linux Installation

openSF software is available for all the Linux distributions. After downloading the installer

corresponding to the machine architecture users will execute it (either by double clicking on it or by

opening a terminal window and executing it) and follow the instructions that appear on the screen.

When the user has double-clicked on the installer executable the initial window will appear. If the

system pre-requisite Java is not met an error message will be shown.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 34 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 3-3: Installation confirmation screen

Once the installer has checked the system pre-requisites the user shall select the destination folder to

hold the openSF software. The default installation folder is the user home one (/home/<user>/openSF).

Figure 3-4: Installer folder selection window

After that, the installer needs the connection settings to access the MySQL server. The MySQL user

needs to have database-creation privileges and use the MySQL native authentication protocol (use

“mysql_native_password” as authentication plugin). It shall be noted that MySQL must be also active

during the installation and the future use of the tool.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 35 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 3-5: Database Login screen

Once the MySQL username and password are checked the user shall input a database name. If the

database already exists, the user shall select the installation strategy:

1. Create new installation: this option creates the database structure (tables, columns etc…) from

scratch cleaning any existing database contents. It is recommended to back up the database content.

2. Upgrade existing installation: this option preserves the existing database contents. This is the

preferred option when upgrading an existing installation of openSF.

Figure 3-6: Database Installation Strategy

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 36 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Once the database creation strategy is defined, in case a new database installation is to be created or if

the selected database does not exist, the user shall select the initial database structure:

1. Empty database structure: this option creates the database structure (tables, columns etc…) with no

content. This is the preferred option if the user is ready to create his first simulation scenario.

2. Validation data set: this option creates the database structure filling the database with a dummy

simulation scenario for testing or learning purposes.

Figure 3-7: Database structure selection dialog

In the next window users shall check that the information is correct and click next to proceed with the

software installation.

Figure 3-8: Installation icon window

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 37 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

If the installation process has been successful an “Install Complete” dialog shall appear allowing to

automatically launch the openSF software.

Figure 3-9: Installation successful screen

To launch openSF users can either: (a) double-click on the openSF desktop icon4 or (b) open a terminal

window, go to the openSF installation folder and run openSF manually (for further details on launching

openSF refer to section 3.5.

3.4.1.2. macOS and Windows Installation

OpenSF installation package for macOS and Windows is provided as a DMG archive and an EXE

installer respectively. After opening the respective installer file, openSF installation is based on a GUI

installer that guides the user in installing the software. The steps to follow in the installation are the

same as for Linux installation (described in section 3.4.1.1 just above).

3.4.1.3. Uninstalling openSF

The installation process places an uninstaller application in the Applications start-up menu.

Note that the uninstall mechanism only removes the application files, the database and user session

folders are not removed.

4 The openSF desktop icon is only available if the user so chooses during the installation process

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 38 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 3-10: Uninstall confirmation screen under Linux

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 39 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

3.4.1.4. Folder structure

This section provides a general description of the openSF folder structure and its contents.

Folder name (indented) Contents

❑ . openSF home root

❑ “openSF”. Starting-up script.

❑ “openSF_updater”. Script that updates openSF

❑ “uninstall”. Uninstaller

❑ “openSF.properties”. The configuration file.

❑ LICENCE file.

❑ Only in Windows distribution: eclipsec.exe, openSF.ini,

artifacts.xml.

❑ configuration Folder that contains Eclipse related files

❑ data Folder with a global configuration file template as well as a

database template. Inside xml/import folder there are xsl files

intended to transform old formatted XML files into OpenSF

databases.

❑ features Folder that contains Eclipse related files

❑ p2 Folder that contains Eclipse related files

❑ ParameterEditor Folder that contains the ParameterEditor executable

❑ plugins Folder that contains the plugins used by openSF

❑ readme Folder that contains Eclipse related files

❑ workspace Eclipse related empty folder

❑ sessions openSF sessions root folder

❑ <session_name> Session folder. Every session, once executed, has one

directory structured as this one. However, if the execution is

of type Timeline, Iteration or Batch, there will be a parent

folder with several sub-session executions located under it.

Each normal session folder (or timeline/iteration subfolder)

will have the session script and, if generated, the session

report. This folder will also have the input and configuration

files used by the modules and their outputs.

❑ resources/documentation Default folder for framework documentation.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 40 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Folder name (indented) Contents

❑ test Test folder for openSF validation scenario. This folder

contains the modules binaries for running the test simulation.

❑ lib: shared libraries

❑ bin: modules binaries

❑ data: files used in the validation scenario.

o conf: example configuration files. This includes

GlobalConfiguration.xml, a template for the

global configuration file the user needs to

mandatorily supply manually.

o input: sample input product files.

o database: validation database in SQL and XML

formats.

o timeline: example timeline scenario file.

o batch: example of configuration file for batch

sessions.

Note that on macOS, all Eclipse related files are not deployed in the root directory; they are in the app's

contents package.

Users can also find useful the guidelines about how to organize the folder structure of a simulation

project integrated in openSF. These guidelines are described in section 5.3.

3.4.2. Licensing scheme

openSF uses a licensing scheme that allows integrating it in any kind of third-party developments.

Core library is distributed under the terms of the ‘ESA Software Community License - Type 3’ as

published by the European Space Agency; either version 1.1 of the License, or (at your option) any later

version.

A copy of the ‘ESA Software Community License - Type 3’ is distributed with openSF, or can be found

at http://eop-cfi.esa.int/index.php/docs-and-mission-data/licensing-documents.

3.5. How to Start the Application

The openSF system can be launched (under Windows, macOS and Linux) by: (a) double clicking on the

openSF desktop icon5 or (b) using a command line interface and executing the following command.

$ $OPENSF_HOME/openSF (Linux)

$ open -a $OPENSF_HOME/openSF.app (Mac OS)

$ $OPENSF_HOME\openSF.exe (Windows)

5 The openSF desktop icon is only available if the user so chooses during the installation process

http://eop-cfi.esa.int/index.php/docs-and-mission-data/licensing-documents

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 41 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

If openSF is launched with no parameters, the GUI will show up normally. This behaviour can be

modified providing the following parameters:

❑ --execute <session_identifier>. The framework will launch the execution of a previously defined

session with the defined parameter values. The session identifier shall correspond to the one stored

into the openSF database .

An example to illustrate the execution in batch mode of a “Radar” simulation is as follows:

$ $OPENSF_HOME/openSF --execute Radar (Linux)

$ open –a $OPENSF_HOME/openSF.app --args --execute Radar (Mac OS)

$ $OPENSF_HOME\openSF.exe -execute Radar (Windows)

This form will execute the openSF in text mode and find a session named “Radar”. Then it will execute

it, intercepting all the events and storing the results in the database. Then, the system will stop.

3.5.1. Database-related arguments

If the openSF is launched with no parameters it will use the default configuration of openSF connection

to MySQL, which is the one that was last used successfully.

The following command line arguments can be used to alter this configuration:

❑ --database. The MySQL database supporting openSF;

❑ --user. The MySQL server user name for accessing openSF supporting data;

❑ --password. The MySQL server password for accessing openSF supporting data;

❑ --dbaddress. The MySQL server location in the network (e.g. localhost or 100.100.0.23:3307).

Note that command-line options must use double dashes. Since openSF is built on the Eclipse RCP

technology, options with a single dash may be intercepted by the Eclipse launcher code, not reaching the

openSF application code at all. This is the case for e.g. the “user” option.

3.5.2. Environment variables

After the openSF installation has been successfully performed, at the first openSF execution the user

may optionally be required to access the “System Configuration” module and adapt the default

environment variables to match the distribution.

3.6. Developing modules for openSF

This section is aimed to module developers that are looking for further information about openSF

module integration.

Below these lines the list of openSF documents with relevant information about module developing and

the topics covered by each one.

❑ openSF Interface Control Document [AD-ICD]

➢ openSF interface issues

➢ Module development guidelines

➢ Module development process

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 42 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

❑ OSFI Developer’s Manual [RD-OSFI-DM]

➢ Integration libraries reference manual for each programming language.

❑ OSFEG Developer’s Manual [RD-OSFEG-DM]

➢ Error Generation Libraries reference manual.

❑ openSF Architecture Design Document [AD-ADD]

➢ OSFI architecture

➢ Interaction between modules and openSF

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 43 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4. OPENSF – REFERENCE MANUAL

This section provides a detailed description of all the elements that conforms the openSF graphical user-

interaction. Note that all the screenshots are shown only for the Linux platform.

4.1. Main window

In this section the look-and-feel, operational behaviour and design features common to the openSF HMI

are presented.

The HMI accepts input via devices such as the computer keyboard and mouse and provides articulated

graphical output on the display. The openSF HMI approach has been chosen because of its flexibility, as

it lets users organize the layout of the information as desired, showing only relevant windows and in the

way users want. The layout consists of a “parent” container that can host inside several “internal

frames”. These internal frames are intended to present independent modules of the simulator. For

example, each time the user wishes to perform operations with the list of modules of the system, a

“module manager” frame will pop-up inside the bounds of the main window listing the list of modules

currently available within openSF.

Figure 4-1: Main window appearance

All the windows have common operations to help their usability: main window, internal frames or

dialogues can be closed, resized, maximized or minimized to fit the user’s needs.

This main window shown in Figure 4-1 includes a menu bar to provide keyboard and mouse access to

the simulator main functions as well as functions regarding frames management and application basis.

Menu bar

Working area

Auxiliary panel

Side bar

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 44 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Occupying the central and main region there is a working area. This area is where all internal frames are

going to be created and main interaction is held. Besides that, this working area implements a

“scrollable” panel in order to easily navigate through frames surpassing its bounds.

At the left side of the working area there is a system objects navigator, a “side bar” aiming to provide a

quick access method to every item known by the system: repository of descriptors, modules, simulations

and sessions; the list of simulation execution results; a view to the sessions folder and also a file system

browser to navigate through the contents of the application’s directory.

The main window’s footer area shows application status information.

Figure 4-2: Main window appearance showing internal frames and scroll bars

The HMI provides a menu bar (Figure 4-3) at the upper side of the main frame to show some

capabilities of the system. Below is also a toolbar for quick access to critical actions.

Figure 4-3: Detail of main menu bar

Available frames
toolbar

Internal frame

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 45 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-4: Detail of a menu, showing menu items

It is shown in Figure 4-4 that a menu item is composed of an icon which graphically describes the

function, the name of the function and a “quick access” key combination. Users can quickly access this

functionality pressing this key combination or the letter underscored in the function name while the

menu is rolled down.

There are also some contextual or “pop-up” menus that users can access by clicking the right button of

the mouse while over certain controls6. These “pop-up” menus have the same appearance as menus

rolling down the menu bar.

Figure 4-5: Detail of a contextual menu

It can be seen in Figure 4-5 that a pop-up menu acts exactly like a menu at the main frame. They also

provide mouse and keyboard access to certain capabilities.

4.2. Generic Functions, dialogues and displays

This section is meant to describe the design of generic functions, dialogs and displays used by the HMI.

There are some functionalities of the HMI that show a “file chooser” dialog as shown in Figure 4-6.

6 In macOS the contextual menu behaviour may depend on setting the correct gesture for Bluetooth mouse and track

pad: the "Secondary click" gesture (e.g. "Click with two fingers" in track pad or 'Click on right side" in Bluetooth

mouse) should be applied to allow using the options in the contextual menus.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 46 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-6: File chooser dialog

This dialog allows the user to browse the system directory to select a certain file or list of files. It

provides sorting, filtering and file operations.

Throughout the openSF HMI some functionality may show information to the user and might ask for

some input in response to an answer. The HMI will present some “modal” dialogs that will get the

system focus until the user provides an answer. These modal dialogs will block the input to other areas

of the application until a response is given.

Figure 4-7: Dialog example

These dialogs will typically provide a message with an “OK” button or give a yes-or-no question or

another question with different options. The dialogs will provide information with a clear description of

the event.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 47 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.3. Frame management

Accessing to the “Window” menu of the main menu bar the user can find all the functionality provided

for the frame management. Option ‘Reset Views’ allows restoring the original window properties (as

defined when installing openSF)

Figure 4-8: Frame management menu

Other frame management functionalities can be found in the header of every main frame (not in

dialogues).

Figure 4-9: Internal frame header

Note in Figure 4-9 two little icons at the right border of the header. Those are the “minimize” and

“maximize” operations.

If the user minimizes a frame it disappears from the working area but it can be restored from the

“available frames toolbar”.

4.4. Side bar

On the left side of the main frame there is side bar, grouping different views of the openSF areas:

Repository, Executions, and File system.

As can be seen at the right-upper corner of Figure 4-11, the usual buttons are available to minimize or

maximize the side bar. The dotted bar can also be dragged to dynamically change its width.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 48 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.5. System

Selecting the “System” menu the users can

access to the following functionalities:

Figure 4-10: System menu

These functionalities are given to control the

general characteristics of the whole openSF

system.

Figure 4-11: Side bar

Elements are structured into the repository
first by element type (descriptors, modules,
simulations and sessions) and then by family.

The repository will show only the elements
containing a given substring of characters
written in this text box.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 49 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.5.1. Preferences

Selecting this menu option, the dialog shown in Figure 4-12 will show up.

Figure 4-12: System preferences – Environment Variables

In this dialog users can modify the following characteristics of the system:

❑ Environment variables (Figure 4-12). A list of environment variables and associated values are

shown in this table. Once a module or a product tool is being executed, they can access these

variables if they need them because the system makes them available to the execution process. Users

can “add” or “remove” an environment variable using the given buttons. Double-clicking on an

already existing variable the user can edit its name and value.

macOS users must be aware of the limitations in using Environment Variables in script execution

(please refer to section 0).

One mandatory variable is OPENSF_HOME (as explained previously). This variable points to the

openSF base folder location.

There is an environment variable recognized by OSFI called “DEBUG_MODE” that controls the

verbosity of some module executions. Setting to “On” or “Off” can enable or disable this output.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 50 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-13: System preferences – Application Settings

❑ Application settings (Figure 4-13). Users can change the default configuration of system

parameters:

❑ Maximum Execution Threads. Sets the maximum number of modules that can be executed in

parallel during a session execution. The recommended value corresponds to the number of cores

of the machine were openSF is installed. Possible values are: 0 (number of cores of the

machine), 1 (no parallelisation enable) or N (the number of modules that may be executed in

parallel). Keep in mind that it is allowed to insert a maximum number of execution threads

higher than the number of cores of the machine and the impact is that a core may have to deal

with more than one thread. Nevertheless, a warning message will be shown to the user whenever

entering a value higher than the machine’s number of cores.

❑ Maximum Directory Copy Depth: Defines the maximum depth of the directory tree used when

copying files and folders before a session is executed. This copy operation typically includes

copying input and configuration files/directories into the session folder. The use of this value is

widespread and is designed to avoid possible infinite loops caused by symbolic links.

❑ Timeline Segment definition.

❑ Default execution strategy.

❑ Check for Updates URL. The configurable URL where openSF looks for software updates.

❑ Store raw logs for each module executed: if disabled, a single log file will be generated for each

executed session. The file contains general status messages, plus all OSFI-formatted messages

from all modules. However, if this option is enabled, a log file will be created in the same folder

containing the “raw” output (both OSFI and non-OSFI formatted) for each module in the

session. This may be useful for debugging some modules.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 51 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

❑ Validate LCFs against schema on writing: The user can validate the Local Configuration Files

(LCFs) against a schema file. “Skip validation” is selected by default, but the user can select

“Validate but only generate warnings” or “Validate and fail the session on errors”. As the

description indicates, if the user chooses “Validate but only generate warnings”, the LCFs will

be validated against the XSD schema file chosen in the Module menu (section 4.9) and warnings

will be generated in the session log. If instead the user selects “Validate and fail the session on

errors”, the validation against the XSD schema file will raise errors which will force immediate

termination the session’s execution.

❑ Executables for the several compatible languages: In order to run possible Java, Matlab, etc,

executables within the available sessions, the user needs to specify the system path for each of

the language’s executable for OpenSF to find.

❑ Enable user role selection: When enabled, a custom menu is shown in the toolbar to allow

switching between “Normal” user mode and “Developer” user mode (see section 4.15).

❑ Application folders. Users can change the default locations for these directories:

❑ Sessions. This is the place where all the files associated to session executions can be found.

Execution scripts, report files and, by default, configuration and output files generated are going

to be stored here.

❑ Temporal. Some intermediate files are going to be stored temporarily in this directory.

All around this configuration dialog and the rest of the openSF system (except those places where

something else is specified), the user can choose to input the absolute path of a certain file or folder or

the path relative to $OPENSF_HOME.

Figure 4-14: System preferences – Application Folders

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 52 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.5.2. Databases

openSF has the ability of working with a multi-repository. This implies that users can create different

databases in the database server, so that all of them are independent and do not share any table. Users

can work with different input data by selecting only the corresponding database in the repository. If the

user changes input data, only the database that is load in that moment is modified, as all databases are

independent. Thus, openSF can hold more than one database in one single instance.

When the user selects the “Databases” option from the menu ‘System’, the window shown in the Figure

4-15 will show up.

Figure 4-15: Database Management window

In the top of the window there are eight buttons, which allow users to perform different actions over the

MySQL server. Users can connect to a database that exists in the MySQL server, create a new database,

delete an existing database, backup an existing database, import database definitions specified in XML

format or refresh the available database list.

The central area of the window shows a list with the databases stored in the MySQL server. Users can

obtain information about the database name, the user who created the database, and the location of the

server where the database is stored.

The bottom of the window shows a label with the database currently connected to the MySQL server. In

this case, the application is connected to the ‘openSF’ database, so all configuration associated with its

descriptors, modules, simulations and sessions is loaded by the system.

Finally, there is an ‘Close’ button to return to the main window of the application.

4.5.2.1. Connect to a database

Users can switch between the different databases allocated in the repository of the application. For this,

the user has to select a database from the list, and click on the “Connect” button.

Automatically the system is connected to it, and then, the name of the selected database is shown beside

the label “Connected to”.

An example of this procedure is shown below:

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 53 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-16: Connect to a database

The window shows that the system is connected to the ‘debug database. If the user selects the ‘openSF’

database from the list, and clicks on the ‘Connect’ button, the system automatically connects to this

database, as it is shown in the corresponding label. If an error occurs during the procedure and the

connection cannot be performed, openSF shall show a message reporting the error.

4.5.2.2. Create a new database

If the user wants to create a new database in the MySQL server, only has to click on the new button, and

a dialog will be shown by the application, as it is can see in the Figure 4-17.

Figure 4-17: Create new database

A database has five characteristics fields:

1. Database name: Is the name of the database;

2. User: Is the user who connects to the databases server (requires privileges to create a database);

3. Password: Is the password of the user;

4. Address: Is the hostname where the databases server is located;

5. Script: Is the file used to create the database, a sequence of MySQL commands (.sql file). Besides

the possibility to use a custom SQL script generated by the user, the scripts suggested during the

initial openSF installation, see Figure 3-7, which allow the creation of an empty database or a

validation database with examples, can be selected through the available radio buttons.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 54 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

All the fields have a default value, except the database name. Users can use these default values, or set

others.

The default values are:

❑ User: ‘openSF’ (created during the installation of the application)

❑ Password: ‘openSF’ (password for the user ‘openSF’)

❑ Address: ‘localhost’

❑ Script: ‘openSFdb.sql’ (default script provided with the application)

It is mandatory that all fields have a correct value, except the password, that can be empty if the user

wants.

When the user enters all the information correctly and clicks on the ‘OK’ button, the new database is

created in the MySQL server, and automatically openSF is connected to it.

In case some field has been entered incorrectly (as for example an already existing database name, or

the user or password to connect with the server are incorrect) openSF shall shows a message reporting

the error as shown in Figure 4-18, and forces the user to enter the correct information.

Figure 4-18: Database name is wrong

If the user clicks on the ‘Cancel’ button on the databases window, no action is performed.

4.5.2.3. Delete a database

To remove a database from the databases server, the user has to select the database to remove from the

list, and click on the ‘Delete’ button, as shown in the Figure 4-19.

Figure 4-19: Delete a database

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 55 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

A new dialog is shown to confirm the action. If the user clicks on ‘Yes, delete’, the database is deleted.

Figure 4-20: Confirm deletion operation

openSF needs to be always connected to an existing database. Thus, the user cannot delete the

connected database, and the system shall provide an error message. Therefore, the user must connect to

another database to delete the current one.

4.5.2.4. Backup a database

The capability to perform a database backup is accessible from the Database Management window,

presented in section 4.5.2. Once the database to backup has been selected the user only needs to click on

the “Backup” button appearing at the bottom of the window.

The outcome of the operation is an SQL file containing all SQL statements that reproduce the status of

the selected openSF database. This SQL script is the file used for the Database creation task, described

in section 4.5.2.2.

4.5.2.5. Import a database

The capability to import elements definition specified using XML (refer to [AD-ICD] for the definition of

the expected XML format) is accessible from the Database Management window, presented in section

4.5.2. The user only needs to click on the “Import” button appearing at the bottom of the window and

select the XML file containing the database definitions.

Figure 4-21: Database import

In the case the specified file is invalid a warning message is given and the import is cancelled.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 56 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-22: Database import file error

If the file is valid but contains invalid definitions (e.g. non unique entities) a warning message is given

and the import is cancelled.

Figure 4-23: Database import XML definition error

The outcome of the operation is the elements included in the XML file have been created and are part of

the openSF repository.

4.5.2.6. Refresh database list

The database management dialog provides the capability to refresh the list of openSF databases

available in the MySQL server to which openSF is connected to. This functionality identifies among the

available databases the ones that are compatible with openSF. This capability is applicable in situations

as manual migration of openSF database or automatic database upgrade, both occurring typically when

upgrading to a more recent version of openSF.

4.5.3. Multinode simulation

openSF has the ability of orchestrating the remote execution of one (or several) module in a session run.

For the sample test simulation scenario shown in Figure 4-24 the user can choose which machine to use

for each module to execute. Note that the remote execution in openSF relies on mounting a remote file

system shared by all instances of openSF executing modules of a same session.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 57 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-24: Outline of a simulation scenario

4.5.3.1. Remote machine management

For this purpose, a set of remote machines can be configured and managed in the system configuration.

When the user selects the “Remote” option from the menu ‘System’, the window shown in the Figure

4-25 will show up.

Figure 4-25: Remote Machines Management window

In the bottom of the window there are five buttons, which allow users to perform different actions over

the remote machine configuration. Users can connect or disconnect from a remote machine, create a

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 58 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

remote machine reference, delete a remote machine configuration or refresh the list of available remote

machines.

The central area of the window shows a list with the remote machine configured in openSF. Users can

obtain information about the remote machine address, the user that connects to the machine and the

remote path where openSF instance is installed.

The bottom of the window shows a label with the remote machine currently connected. In this case, the

application is not connected to any remote machine so the local installation of openSF is used for

storing the execution products (identified by <localhost> label).

Finally, there is an ‘Close’ button to return to the main window of the application.

4.5.3.2. Connect to a remote machine

Users can configure openSF to produce the session execution products in the file system of a remote

machine. For this, the user has to select a remote machine from the list, and click on the “Connect”

button. Automatically the file system is connected to it, and then, the name of the selected machine is

shown beside the label “Connected to”.

Connecting to a remote machine file system means that the Session system folder used by openSF is

located in a remote machine instead of in the local one.

4.5.3.3. Disconnect from a remote machine

Users can disconnect from a remote machine a rely on the local machine file system for session

execution. For this, the user has to click on the “Disconnect” button. In case openSF is already

connected to a remote machine automatically the file system is disconnected from it, and then, the label

<localhost> is shown beside the label “Connected to”.

Disconnecting from a remote machine file system means that the Session system folder used by openSF

is the one in the local machine.

4.5.3.4. Declare a new remote machine

If the user wants to create a new remote machine reference, only has to click on the new button, and a

dialog will be shown by the application, as it is can see in the Figure 4-26.

Figure 4-26: Create new remote machine

A remote machine has four characteristics fields:

1. Machine Address: Is the address (IP or verbose) of the remote machine

2. User: Is the user who connects to the remote machine

3. Password (optional): Is the password of the user. In case the ssh key has been setup this field is not

required.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 59 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4. Home: Is the location in the remote machine where openSF instance is installed

Fields User and Home have a default value. Users can use these default values, or set others.

The default values are:

❑ User: ‘openSF’ (created during the installation of the application)

❑ Home: ‘/home/openSF/openSF’ (created during the installation of the application)

It is mandatory that all fields have a correct value, except the password, that can be empty if the user

wants.

When the user enters all the information correctly and clicks on the ‘OK’ button, openSF attempts to

connect to the remote machine using the configuration supplied.

In case some field has been entered incorrectly (as for example the user or password to connect with the

server are incorrect) openSF shall shows a message reporting the error as shown in Figure 4-27, and

forces the user to enter the correct information or cancel the creation.

Figure 4-27: Remote Machine is unreachable

If the user clicks on the ‘Cancel’ button on the databases window, no action is performed.

4.5.3.5. Delete a remote machine

To remove a remote machine configuration, the user has to select the remote machine to remove from

the list, and click on the ‘Delete’ button, as shown in the Figure 4-28. A new dialog is shown to confirm

the action. If the user clicks on ‘Yes, delete’, the entry is deleted.

Figure 4-28: Confirm deletion operation

4.5.3.6. Refresh remote machine list

The remote machine management dialog provides the capability to refresh the list of remote machines to

which openSF can be connected to. This capability is applicable in situations when recovering existing

configuration upon upgrading to a new version of openSF software.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 60 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.5.4. Product Tools

As explained in section 1.3, a tool is an external executable file that performs a given action to a certain

group of files. Used as part of the openSF framework and associated to a certain file extension, these

tools can be called to perform off-line operations to products involved in simulations.

Tools are classified as “internal”, if they are part of the openSF distribution and are located in the tools’

directory, or “external” in other cases. Currently openSF distribution package does not include any tool

so all the product tools considered within this document are external and consequently there is no tools

directory in openSF installation directory. Accessing to this functionality, the user is able to manage the

openSF product tools.

Figure 4-29: Tools list view

A list of tools, showing its identifier, action, executable and parameters is given. Tools are definable by

the user. Thus, new tools can be added by clicking the “New tool” button.

4.5.4.1. New tool

Accessing to this functionality, a new window appears to let the user create a new tool.

Figure 4-30: Tool. Creation

Users can define the following attributes:

Attribute name Format Purpose Sample

Identifier Medium string This is a unique identifier of the tool. “XML editor”

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 61 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Attribute name Format Purpose Sample

Description Long string A brief description of what this tool

will do and need.

“This tool will

open an XML file

for editing”

Action Medium string What the tool is going to do. “edit”

Extension Short string. The type of files that this tool is going

to be applied to.

“xml”

Executable Long string Location of the binary file that is going

to be called to execute the product.

“gedit”

Parameters Long string The list of parameters that will follow

the executable. No variables can be

passed from the HMI.

“-f $file1”

4.5.4.2. Edit tool

Selecting this functionality, the user can access and edit all the attributes of the selected tool.

4.5.4.3. Delete tool

Selecting this functionality, the user can delete the selected tool.

Figure 4-31: Tool Execution/Schedule from Session Edition View

Instant tool execution

Schedule tool execution

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 62 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.5.4.4. Product Tool Execution

The process to execute an external data exploitation application is described in other sections:

❑ Tool execution from the file system view, section 4.19.1.

❑ Tool execution from the session edition view and execution results view (see Figure 4-31). The

execution view is the same as the session view with two particularities, Log Tab is enabled and the

status is completed (successfully or not). Note that in the execution view the status of the output files

is shown as available if the simulation chain has been successfully executed while in the session

editing the status is shown as pending (see section 4.11.2.4).

❑ Scheduled execution over simulation data products, section 4.11.2.9.

For a real example of product tool execution there is more information in chapter 5.4.

4.5.4.5. Popular Product tools

During the integration of openSF in E2E simulation projects the development team has identified a set

of product tools widely used and that are freely available on the web. For every listed tool the operating

system compatibility is also specified (Linux, Multi-platform…).

4.5.4.5.1. Image Processing Tools

Below these lines are listed a set of tools for viewing and editing image files. The applications listed

support a large number of image formats.

Image Viewers

❑ IrfanView - Multiformat Image Viewer - Microsoft Windows

❑ Eye of Gnome - Gnome Image Viewer - Linux (GNOME)

❑ Gwenview - KDE Image Viewer - Linux (KDE)

❑ Okular - KDE Document and Image Viewer - Linux (KDE)

Image Editors

❑ GIMP - The free Adobe Photoshop alternative - Multi-platform

❑ Inkscape - Image editor with vector graphics support - Multi-platform

4.5.4.5.2. Text Editors

❑ Notepad

❑ Emacs - GNU Editor - Multi-platform

❑ Notepad++ - Full-featured - Microsoft Windows

4.5.4.5.3. Scientific Data Formats

NetCDF

Network Common Data Form is a set of interfaces for array-oriented data access and a freely-distributed

collection of data access libraries for C, Fortran, C++, Java, and other languages.

❑ Panoply - NetCDF data plotting - Multi-platform

❑ ncBrowse - NetCDF file browser - Multi-platform

HDF

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 63 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Hierarchical Data Format, commonly abbreviated HDF, HDF4, or HDF5 is the name of a set of file

formats and libraries designed to store and organize large amounts of numerical data.

❑ HDFView - HDF File viewer (images,tables...) - Multi-platform

4.5.4.5.4. Browsers

A web browser is a software application for retrieving, presenting, and traversing information resources

on the World Wide Web. This kind of applications has a lot of possible functionalities as openSF

product tools.

Example: Figure 4-32 shows the use of an Internet Browser (Mozilla Firefox) for graphing the results of

testing a random number generator. It uses Octave graphing capabilities and Google Charts API. For

further information visit http://code.google.com/intl/en/apis/charttools/

❑ Mozilla Firefox – Multi-platform

❑ Google Chrome – Multi-platform

❑ Opera – Multi-platform

Figure 4-32: Mozilla Firefox as openSF Product Tool

4.5.4.5.5. Other Tools

❑ GNU Octave - If GIMP is the free photoshop-like choice, this is the equivalent for Matlab - Multi-

platform

❑ GNU Plot - GNU software that gives plotting capabilities through a command line interface - Multi-

platform

http://code.google.com/intl/en/apis/charttools/

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 64 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.5.5. Check for updates

openSF performs automatic check for new versions by connecting to a remote server. In case a new

version is identified the user is given the choice of downloading the software. Afterwards the user can

upgrade the software version following the standard installation procedure for openSF software.

4.5.6. About openSF

Accessing this functionality from the menu, the system will show a dialog with the copyright and

license scheme for the openSF platform.

Figure 4-33: openSF About View

4.5.7. Help View

The Help View is accessible from the openSF main menu bar, system tab.

Additionally, users are able to view these documents launching the proper software application. The

applications for viewing the supported file types are the ones defined as default applications for current

Desktop. Depending on the desktop environment these default applications can be different even

running under the same operating system.

The supported file types and the typical viewers are the following:

❑ PDF: “Portable Data Format”; Acrobat Reader

❑ HTML: “Hypertext Markup Language”; Web Browser

❑ Plain Text: Notepad, Vim, Emacs ...

Figure 4-34: Help documents tree view

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 65 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.5.8. CPU Usage

This dialog is helpful in analysing the CPU core use when parallelising module execution in openSF

platform.

4.5.8.1. Linux

Accessing this functionality, the system will show a custom dialog with occupation of CPU cores by

machine processes.

Figure 4-35: CPU Core Usage view

4.5.8.2. macOS

The macOS Operating System already provides a default application to convey information about CPU

usage, the ‘Activity Monitor’. Accessing the CPU Usage functionality in openSF shall therefore launch

the ‘Activity Monitor’ external application.

4.5.8.3. Windows

In Windows this CPU usage tool is not available and hence the user shall use the Windows task

Manager instead.

4.5.9. Exit the system

Upon the selection of this function, openSF will inform the user whenever a session is executing. Upon

user confirmation, openSF will stop every internal process (including ongoing external modules) and

will end its execution. This is the recommended way of ending the application.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 66 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.6. Repository

The openSF system can be divided in three logical parts: repository, products and executions.

Product Repository Executions Ingests

Combines

Produces

Figure 4-36: openSF logical flow

The first of these parts, repository, is involved in defining the “static” view of the system, the definition

of the openSF tool. This is the place to access and define all the elements that, later on, will serve as

bricks for the session executions:

❑ Modules – executable entities that will perform the scientific or engineer calculations;

❑ Descriptor – to define the set of input and output files used to connect modules in simulation runs;

❑ Simulations – sequences of modules linked by the descriptors;

❑ Sessions – complex set of simulations with added input/output/configuration files and product tools.

Into the repository tab of the side bar users can find a tree-like structure containing the definitions for all

known modules, descriptors, simulations and sessions.

This tree-like structure can be collapsed or expanded double-clicking in the group name or clicking in

the “anchor” icon.

Figure 4-37: Repository view

Stage

Element

Anchor

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 67 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Every row marked with an anchor icon represents a group of elements. Thus, into the “modules” group,

the module families, stages, can be found, i.e. SceneGeneratorStage, Level1 etc...

Every row without icon represents an element definition of the repository. Right-clicking over them, a

menu pops up containing some associated commands. These menus are context-sensitive, meaning that

different types of elements have their own associated commands. These commands are going to be

explained in detail in each element’s section.

A double click over the elements will activate the first associated command of the menu (typically,

editing).

4.7. Descriptors

openSF has the possibility to define the set of input and output files (called descriptors) used to connect

different modules in simulation runs.

Users can access the list of nominal descriptors (those provided in the default distribution) inside the

repository view of the side bar, as seen in Figure 4-38.

Accessing the corresponding menu of the main menu bar or the context-menu of the side bar, users can

activate the following functionalities:

❑ List – presents the list of existing descriptors;

❑ Creation – creates a new descriptor into the system;

❑ View – displays the contents of an existing descriptor

❑ Modification – edits an existing descriptor to enter changes;

❑ Deletion – deletes a descriptor from the system;

❑ Copy – creates a copy of an existing descriptor.

The options available at each time will depend on the active user role as explained in the section 4.15

Figure 4-38: Descriptor. Side bar

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 68 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.7.1. Descriptor list

Users can access to a window that provides a tree-like structure with the list of descriptors known by the

system, just as in the side bar but with the additional information of its identifier and its description.

Figure 4-39: Descriptor list view

4.7.2. Descriptor creation

Users can define new descriptors in case they want to accommodate third-party modules that cannot

make use of any of the nominal descriptors.

The frame shown in Figure 4-40 is responsible to define the descriptor’s characteristics:

Attribute name Format Purpose Sample

Identifier Medium

string

Descriptor’s unique name. “LIDAR In”

Description Long

string

A brief description of its composition or

the purpose of the set of files.

“Orbit information and

radiative transfer

information”

It is possible to alter the set of files that integrates the descriptor. Users can edit, add or remove files. An

individual file must be described by these two parameters:

Attribute name Format Purpose Sample

Default file Medium

string

The default location and name of the file.

This is the file that is going to be

suggested during the session definition

(see section 4.11. Sessions).

“orbit.xml”

Description Long

string

Brief description of the file’s

composition, its purpose or its type

(XML, TIFF, NETCDF, etc.).

“XML file with Orbital

information”

It is important to note that the default file name is the way to know if two modules are compatible

and to connect them in the simulation definition. More information can be found in section 4.10.2.2.

Every descriptor defines a
set of files

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 69 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

The order that those files occupy in the list is important. This order must fulfil the directives of the

command line specification of the third-party module because how the files are sorted will define the

order of the input and output files in the command line of the module execution (see [AD ICD]). This

order can be altered with the “up” and “down” buttons that move the selected file through the list.

Figure 4-40: Descriptors. New descriptor

Upon creating a descriptor its default file field is considered as a template name, i.e., this definition may

be used as-is during session execution or it can be changed in the session edition window. When in

changing the actual file descriptor in session edition the file location can be set to any path, either an

absolute one (in the local machine) or a relative one. By default, the descriptor is considered as a

relative path. It may be relative to (a) the openSF installation folder (as per $OPENSF_HOME), or (b)

the session execution folder:

(a) It will be relative to the openSF folder when the descriptor is used for input only (e.g. the input

descriptor of the first module of a processing chain).

(b) It will be relative to the session folder when the descriptor is used both as input descriptor and

output descriptor (e.g. a folder generated during processing and later on used as input to a next

module).

right-clicking here, a
file browser dialog will
appear. Users can
now select the default
file name.

“Up” and “down”
buttons. Users can
alter the order of
the files as they
wish.

“Add” and “remove”
buttons. A descriptor must
have a minimum of one file.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 70 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.7.3. Descriptor modification

Users can select a certain descriptor and choose the option to edit it. Note that for consistency reasons7

only the description can be changed.

4.7.4. Descriptor deletion

Users can also select a descriptor to delete it. Once users confirm the operation the descriptor is erased

from the repository. Note that for consistency purposes5, every module, simulation, session (and its

results) that makes use of this descriptor will also be deleted from the system.

4.7.5. Descriptor copy

Users can select a certain descriptor and choose the option to copy it. The user needs to specify a new

name for the descriptor, unique with respect to the existing descriptors.

Figure 4-41: Descriptors. Copy Descriptor

4.8. Stages

As defined in section 1.3 a stage is a logical identifier that can be considered as a simulation phase with

different modules associated to it.

Stages do not imply/force the order of execution. Stages are a mechanism to group Modules. The order

of execution can be customized in the via the mechanism "Modules Set/List of Modules" under a

Session (4.11.2.2).

Users are able to access stage list through the repository menu. Stages are also shown in the repository

side panel as parents of its correspondent modules, as seen in the following figure.

7 The reason why some items cannot be modified is due to database constraints.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 71 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-42 Repository Side Panel. Stage View

Accessing the corresponding menu of the main menu bar, users can activate the following

functionalities:

❑ List – presents the list of existing stages;

❑ Creation – creates a new stage into the system;

❑ Modification – edits an existing stage to enter changes;

❑ Deletion – deletes a stage from the system.

4.8.1. Stage list

Users can access to stages list through the Repository menu bar. The stages list view also includes stage

modification options that will be explained in section 4.8.3.

Figure 4-43. Stage List View

“New Stage”
and “Delete”
buttons. Users
can add and
remove
stages from
the system.

“Up” and “down” buttons.
Users can alter the order of
the stages.

.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 72 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.8.2. Stage Creation

Users can define new stages through the repository menu. The position of the new stage is, by default,

the last in the stage order. Users are able to edit the position of the stage as explained in section 4.8.3.

After creating a stage, users will find it in the repository side panel and in stages list view, also it can be

selected in the module creation process and in the simulation definition.

4.8.3. Stage Modification

Users can edit the description and the position order through the stage list view.

4.8.4. Stage Deletion

Users can also select a stage and remove it from the system through the stage list view. Note that

deleting and stage will erase also the modules associated to that stage and consequently simulations and

sessions related to those modules.

4.9. Modules

According to the definition given in section 1.3, a module is an executable entity that can take part in a

simulation. Users are able to manage all modules that can take part in openSF simulations. The

operations upon modules, which vary depending on the active user role (see section 4.15), are:

❑ List – present the list of existing modules;

❑ Creation – capability to create a new module into the system;

❑ View – displays the contents of an existing descriptor

❑ New version – create a new version of an existing module;

❑ Modification – edit an existing module to enter changes;

❑ Deletion – delete a module from the system;

❑ Copy – creates a copy of an existing module.

Attribute name Format Purpose Sample

Identifier Medium

string

Stage’s unique name. “Foo Start Stage”

Description Long

string

A brief description of its purpose. “Start Stage in the

simulation”

Users shall notice that changes made in the stage order can invalidate previously defined

simulation sequences so be extremely careful with this option since a change in the stage order

will alter simulations and sessions already defined.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 73 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-44: Repository view: modules

Figure 4-45: Repository menu

Users can access to some of these operations at the modules’ menu in the menu bar of the main window

or in the correspondent context-menu of the repository view.

Figure 4-46: Module. Pop-up menu

4.9.1. Module developer’s guideline

openSF can integrate as a module almost every executable piece of code that follows the requirements

described in [AD-ICD] and compliant modules can be integrated and executed into the system.

Nevertheless, module developers must have in mind the following points:

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 74 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

❑ Memory handling is responsibility of the module. openSF does not manage memory assignments

and does not destroy any data structure created by the module;

❑ A module can create child processes, but their management is still on the module developer’s side;

❑ openSF does not detect when a module execution is “halted” or in an infinite loop. Please send some

logging information to the openSF every two seconds (at most) to let the user know there is no

problem;

❑ Execution performance of the module could be slightly slowed because of the messaging

interception;

❑ Module developer is responsible of the error and exception handling as explained in [AD-ICD].

(Error Handling section).

4.9.2. Module list

Accessing to this functionality from the main menu or from the repository, the system will show a list of

modules known by the system. Figure 4-47 shows an example of the window that appears upon its

selection.

As modules and their versions follow a hierarchical structure, i.e. a single module belongs to a family of

modules, the information is organized as a tree-table, which put hierarchical data in columns, like a

table, but uses an indented outline structure in the first column to illustrate the tree structure.

Users can select a certain version of a module and perform the operations shown in the toolbar.

Data attributes shown in this tree-table are module ID, version number, type, description and the name

of the author.

At the “module identifier” column, it is presented the indented outline structure with folder icons as

nodes and document icons as leaves. Double-click over each folder will expand or collapse its content.

Figure 4-47: Module list view

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 75 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.9.3. Adding modules

Users can add a new module accessing this functionality from the main menu or alternatively clicking

over the “New” button in the module manager.

This frame contains the components needed to introduce all data to define a new module in the system.

These data (module attributes) are grouped with the following structure:

❑ General

❑ Configuration

❑ Input / Output

Each category is analysed in the following sub-sections.

4.9.3.1. General data

In this group users must define general information about the module to create:

Attribute Name Format Purpose Sample

Module ID Medium string Unique module identification. “LIDAR”

Module version Float In a new module this field will be

filled with a default value. Users

cannot edit this unless they use the

“new version” functionality.

1.0

Description Long string Free writing area where to briefly

describe the module.

“State-of-the-art”

LIDAR instrument

module

Author Medium string Text field where to write the author’s

name.

“DMS”

Stage Several options

defined as

stages in the

repository

Module type or “family”. “Instruments”

Source code file File There is a text area to write the file

name8 and a button that will show a

dialog to locate and choose the

intended source code file.

“modules/LIDAR/src/

lidar.f90”

Binary code file. File Same as above but referred to the

corresponding binary9 file.

“module/LIDAR/src/

lidar”

8 Codes in general will have several routines. However, there will be always a “main”. This function is interesting to

pinpoint, as it is a sort of manager for the rest of routines.

9 The compiling process is an external procedure to openSF.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 76 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.9.3.2. Configuration

Selecting the “Configuration” tab (Figure 4-48), users can select the XML configuration file and its

correspondent XSD schema file using file-browser dialogues. Text areas are also provided to preview

the XML code.

Figure 4-48: Module. Configuration

The XSD schema file will validate the respective configuration file and report any found

inconsistencies. By default, as indicated in section 4.5.1, OpenSF is set to skip said validation. However,

the user can select within the Preferences window to allow the validation and generate either warnings

or errors.

4.9.3.3. IO descriptors

The “Input” and “Output” tabs (Figure 4-49) from the Module properties window enable users to

specify, respectively, the contents of the input files expected for the module, and the output files the

module produces as output. Thus, users can select “Input” and “Output” tabs in order to define to the IO

descriptors for this module. IO descriptors are intended to allow the module connection when defining

simulations.

These areas
are only
meant to
preview the
XML code.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 77 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Each IO descriptor has an identifier that uniquely identifies the descriptor among the system. It may

happen that an IO descriptor for a new module may exist already in the system, that is, this module uses

the same type of files and file contents as another module. Therefore, a combo-box component is

presented with the list of known IO descriptors in case the user desires to select an existing one.

Figure 4-49: Module. Input/Output specification

4.9.4. Module upgrade - New version

A new version of a module represents an upgrade of the implementation of a given module. This means

that users can alter the binary code of the module but not the configuration, input and output files

originally involved in the module definition.

Users can create a new module version selecting the correspondent action from the context-menu of the

repository view or alternatively clicking over the “new version” button in the module list.

The system will automatically perform a “minor version upgrade” (for example, from 1.0 to 1.1).

Users now can edit more attributes than with the “module modification” feature. Changeable attributes

are the following:

❑ Module version

❑ Description

❑ Author

❑ Source code

❑ Binary code

Users can
consult the
files that this
module will
request and
generate.

It is a good idea
to have every
descriptor
already defined
when creating a
module.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 78 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.9.5. Module modification

Editing a module from the repository view or from the modules list, openSF will present the same

window as in the previous chapter with all known data already filled. The window shall present fields in

write-mode only the data that is susceptible to be modified (only description and author). If users want

to change more attributes of a certain module, other operations must be used (“module creation” or

“new module version”).

This frame is intended to let users modify data of a certain module. Once they have finished with the

editing, they can accept or cancel the changes made with the buttons at the bottom-side toolbar.

4.9.6. Module deletion

Users can select a certain module and choose the option to delete it. Once users confirm the operation

the module is erased from the repository and the file system. Note that also every simulation, session

(and its results) that uses this module will also be erased from the system for consistency purposes.

4.9.7. Module copy

Users can select a certain module and choose the option to copy it. The user needs to specify a new

name for the module, unique with respect to the existing modules. All module definitions shall be

copied.

Figure 4-50: Modules. Copy Module

4.10. Simulations

As defined in section 1.3, a simulation is understood as a list of modules (or even a module alone) that is

run sequentially and produces observable results.

Users can access to the list of simulation known by the system in the repository view of the side bar or

via the “Simulations” menu from the main menu

Figure 4-51: Simulation. Pop-up menu

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 79 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Operations involving simulations include the following:

❑ List – present the list of existing simulations;

❑ Creation – capability to create a new simulation into the system;

❑ Modification – edit an existing simulation to enter changes;

❑ Deletion – delete a simulation from the system;

❑ Execution – Starts a new session definition including this simulation;

❑ Copy – creates a copy of an existing simulation.

4.10.1. Simulation list

Users can access to the simulation list selecting the “List simulations” option from the “Simulations”

menu.

Figure 4-52 shows an example of the simulation list window that is presented upon selection. Below the

table including the simulations existing in the system, there is a tool-bar with buttons to access to the

different functions listed previously. Users can thus select a certain simulation and perform the

operations shown in the toolbar.

Data attributes shown in the simulation list table are simulation ID, description, the name of the author

that created the simulation, and both limits (start and end) of the simulation stages.

Figure 4-52: Simulations list view

4.10.2. Simulation creation

By selecting the “New simulation” option from the “Repository” menu the system will present a new

frame (Figure 4-53) with components to introduce all necessary data to define a simulation.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 80 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-53: Simulation. Creation

The information needed to create a new simulation is organised in two areas separated in the window:

❑ General properties, containing general information about the simulation, and

❑ Modules schema that allows defining the module constituents of the simulation. The series of

modules are listed in the “current simulation definition” tree.

Both spaces for the simulation creation are further detailed below.

4.10.2.1. General properties

The general data is constituted by the following attributes:

Attribute name Format Purpose Sample

Identifier Short

string

Identifies a simulation within the system. “Lidar”

Author Medium

string

Denotes who created the simulation. “DMS”

Description Long string Users can briefly describe a simulation in

this text area.

“End-to-end

simulation of a single

instrument”

Every simulation stage will
show “compatible” modules
according to the simulated
instruments and the output
files of the previous modules.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 81 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Attribute name Format Purpose Sample

Starting and

ending stages

Options:

stages of

the

simulation

Two combo-box components allow users

to specify the first and last stage of this

simulation. Stages coincide with module

families. Starting stage shall not be

posterior to the ending stage and,

reciprocally, ending stage cannot be

anterior to the starting one. Updates shall

be performed to the current simulation

definition (sequence of modules to be

included) according with the changes of

the limits.

“Scene” to

“Retrieval”

4.10.2.2. Modules schema

Users can now form the sequence of modules that comprise the simulation, the module schema. Users

have three different panels:

❑ Simulation stages. The list of simulation stages (module families) that the module schema must fill

in according with the limits defined before. The current stage is also indicated in this panel. If no

stage is indicated then the simulation is completely defined.

❑ Stage available modules. A list of available modules from which the user selects one in order to

start defining the simulation chain. Notice that the list of modules that appears in the panel must

conform to the modules corresponding to the previous processing step derived from the simulation

type.

It is important to note that the compatibility of a certain module is given by the fact that, at least, one

file of its input is provided (i.e. have the same default file name) by the output of the previous

modules (not necessarily the preceding one).

 
−

= j

j

i i InputOutput
1

0

“Outputi” is the set of files generated by a module; “Inputj” is the set of files needed by a module.

❑ Current simulation definition. A tree showing the current structure of the modules that will

perform the simulation. Modules are shown ordered following the sequence that will be used later in

the session execution. Modules are ordered by its family and, internally into a family, by the IO

descriptors. For example: combined retrieval algorithms will be executed after single-instrument

retrievals.

Users can select an individual module, a range of modules or a list of ranges (using the left mouse

button in combination with the shift and control buttons) from the list of valid modules.

Eventually, the “Previous stage” and “Next stage” buttons are used to navigate through the modules

(e.g., scenes, instruments, etc.) that define the simulation. Upon selecting the “next stage” action,

selected modules from the list of valid modules will be included in the “current simulation definition”.

Pressing the “previous stage” button, the simulation will be positioned in the previous stage and remark

the previous selection of modules.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 82 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.10.3. Simulation creation example: creating a forward simulation

This is an example that illustrates “step-by-step” the definition of the forward branch of a simulation.

The example assumes that the mentioned descriptors, stages and modules have been already created

(refer to section 4.7 for descriptor creation, section 4.8 for stage creation and section 4.9 for module

creation creating).

4.10.3.1. Step 1: Entering the module list tab

The user has chosen in the “General” tab to indicate the forward branch of the simulation process (from

GeoStage to SceneStage) as appearing in Figure 4-54. The modules tab panel shows a list of available

modules to create a GeoStage, as the first processing step (stage) of the simulation consists of the

GeoStage generation.

Figure 4-54: Defining a simulation - initial module window

4.10.3.2. Step 2: Selecting the first module of the simulation

The user can now select one of the GeoStage modules from the list (in the example there are two

available) by means of the “Next stage” button to add it to the simulation’s structure. The result of this

operation is illustrated in Figure 4-55.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 83 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-55: Defining a simulation - selection of the first module

4.10.3.3. Step 3: Selecting the remaining modules of the simulation

The next step refers to the selection of the remaining modules up to the completion of the simulation.

In the example, once the GeoStage module has been chosen, the forward modelling must be defined. By

pressing the “Next stage” button (Figure 4-56), the system will show the list of available forward

modules to join the simulation. It is important to mention that only those modules that are compatible

with the IO descriptors of the previous module are presented here. This means that during the simulation

definition, the consistency of its constituents is granted.

Users can now select multiple modules to add to the tree structure at the right side.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 84 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-56: Defining a simulation – presentation of consistent modules

Once all the desired forward modules have been added to the structure, users can press the “Next stage”

button and continue defining the modules.

It is important again to recall that each time a module is selected, the list of modules presented in the

next processing stage is limited to those that are compatible in terms of the IO descriptors.

4.10.3.4. Step 4: Finishing the simulation creation

Once all modules for the simulation have been defined, the user may save10 it into the database by

clicking on the “Accept” button (Figure 4-57).

10 Each type of simulation has to reach an ending point defined by its type. If with the available models this is not

possible, then the simulation cannot be defined, and therefore it is not saved.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 85 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-57: Defining a simulation – final window

4.10.4. Simulation modification

The edition of a simulation is accessed by either clicking on the “Edit” option from the main menu bar

or selecting it from the context-menu at the repository view, or selecting the option from the actions

tools bar of the simulation list frame.

The HMI will show the same frame as for “simulation creation” with all data corresponding to selected

simulation already filled in. In this occasion only the description can be changed.

Once the user has finished with the simulation modification, the changes can be either accepted or

cancelled making use of the corresponding buttons at the bottom-side toolbar.

4.10.5. Simulation deletion

Users can select a certain simulation and choose the option to delete it. The user needs to confirm the

operation to completely delete the simulation from the repository. Note that for consistency purposes,

the deletion of a simulation implies also the removal of every session (and its results) that uses this

simulation from the system.

4.10.6. Simulation execution

Either selecting “Execute” from the context-menu at the repository view, or selecting the option from

the actions tools bar of the simulation list frame accesses the execution of a simulation.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 86 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

This functionality is meant to rapidly create a session from a given simulation. Thus, the system will

show a window like the example presented in Figure 4-58. This window corresponds to a session

creation, but the modules from the selected simulation are already included in the modules set and the

description and author fields are filled with information extracted from the simulation. The “Run”

button at the bottom of the window launches the execution of the session.

Figure 4-58: Simulation. Execution

4.10.7. Simulation copy

Users can select a certain simulation and choose the option to copy it. The user needs to specify a new

name for the simulation, unique with respect to the existing simulations. All simulation definitions shall

be copied to the new simulation instance.

Figure 4-59: Simulation. Copy Simulation

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 87 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.11. Sessions

According to section 1.3, a session is defined as an execution of either an execution of a set of modules

(possibly obtained from the ordered set of modules of a simulation) or an iterative execution of a set of

modules with different parameter values.

Users can access to the list of sessions existing in the system in the repository view of the side bar or via

the “Sessions” menu (Figure 4-60) from the main menu.

Figure 4-60: Session menu

Figure 4-61: Session pop-up menu

Operations involving sessions include the following:

❑ List – present the list of existing sessions;

❑ Creation – capability to create a new session into the system;

❑ Modification – edit an existing session to enter changes;

❑ Deletion – delete a session from the system;

❑ Run – Starts a new session execution;

❑ Script generation – creates and stores a script describing the session;

❑ Exportation – Exports the entire session definition;

❑ Copy – Creates a copy of an existing session.

4.11.1. Session list

Users can access to the session list selecting via the menu bar “Edit”→“Elements”→“Sessions”.

Figure 4-62 shows an example of the session list window that is presented upon selection. Below the

table including the sessions existing in the system, there is a tool-bar with buttons to access to the

different functions listed previously. Users can thus select a certain session and perform the operations

shown in the toolbar.

Data attributes shown in the session list table are session ID, description and the name of the author that

created the session.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 88 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-62: Session list view

4.11.2. Session creation

Users can create a new session definition by clicking on the corresponding action from the Session

menu.

4.11.2.1. General properties

Figure 4-63 shows a blank session creation window. First thing the user must fill shall be the following

general properties:

Attribute name Format Purpose Sample

Identifier Medium string. No

blank spaces allowed.

Uniquely identifies this

session definition into the

system.

“E2E”

Description Long string Brief remarks about the goals

and characteristics of the

simulation

“This is a full end-to-

end simulation for

the EarthCARE

mission”

Author Medium string Name of person or group

responsible of the session

definition

“DMS”

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 89 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-63: Session creation – General properties

4.11.2.2. Altering the module set

First, modules to be executed need to be included by selecting them from a list of available modules.

Users just need to click on the desired row at the simulation list (Figure 4-65) and press the “Ok” button.

Figure 4-64: Session – Module specification

These are the “Models set”
buttons to “add”, “remove”
and alter their execution
order

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 90 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Users can also remove a desired module from the session’s modules set by just selecting it and clicking

the “remove” button.

It is also possible to alter the modules execution order. Users can move up and down a selected

module from the list.

4.11.2.2.1. Altering the modules set based on simulations

Modules to be executed can also be included by selecting a simulation from a list of available

simulations. Users just need to click on the desired row at the simulation list (Figure 4-65) and press the

“Ok” button.

Figure 4-65: Session – Simulations specification

With this action the set of modules that define the simulation are added at once to the session’s module

set.

4.11.2.3. Breakpoint Scheduling

Users are able to schedule breakpoints during the session execution. A breakpoint is a point where the

session execution shall stop in a controlled manner, due to system architecture constraints only is

possible to interrupt the execution when a determined module has finished the computation and has

written the corresponding output.

The user interface for breakpoints addition can be found in the “Execution” tab.

Figure 4-66: Breakpoint Scheduling Interface

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 91 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

In order to schedule a breakpoint in a module, users shall select its identifier in the “Select Breakpoint”

drop-down list box. To remove previously defined breakpoints the user shall select the option “-Remove

Breakpoint-” from the same widget.

4.11.2.4. Provision of input data

Selecting the first tab of the session setup, (Figure 4-67) the system will ask for the location of the input

file list needed to start the simulation.

Figure 4-67: Session – Inputs definition

Double-clicking on the “file instance” column gives you the possibility of writing the file path. Note

that at the time of defining the modules, input files are defined from a general point of view (e.g., a file

with ground altitude). It is in this step where a user can physically locate each file with the required

data.

The “Status” column will show one of three different options for each file:

❑ Available (green) – the file instance is present, so the file is ready to be used for the module

executions;

❑ Pending (blue) – the file is not present but it will be generated for the module executions before

needed;

❑ Missing (red) – the file is not present and is not scheduled to be generated before needed. Edit the

file instance and change it so that it appears as an existing file.

File instance locations can be specified using absolute paths or $OPENSF_HOME relative paths.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 92 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.11.2.5. Provision of configuration files

As it is done at the “input data” step, the session needs to be provided with the location of configuration

files needed by all the modules involved in the simulation (Figure 4-68).

Figure 4-68: Session – Configuration files definition

This window will present the list of modules present in the session and will ask for the location of each

needed configuration file. At this stage the modules cannot be changed nor deleted.

Double-clicking on a file row, the system will show a file browser to locate a specific configuration file.

Providing an existing file will update the status to “Available”.

The configuration file panel has two buttons providing the following capabilities:

❑ ParameterEditor button - located at the top of the configuration files list launches the

ParameterEditor application with the selected configuration files already loaded. See [RD-PE].

❑ Refresh button - reloads all configuration files, reading them from the file system and updating the

session parameters. It is recommended to do this after editing configuration files with another tool.

Caution: All changes in parameter values made from openSF interface will be lost.

Note that the configuration files for all active modules, plus the global configuration file for the session,

must be available in order for a session to run.

4.11.2.6. Provision of global configuration file

As it has been seen in the previous section, is possible to provide the location of configuration files. The

same action is possible to specify where the global configuration file is located. Global configuration

file location can be edited every time the user creates a new session and can be found in the

“Configuration” tab of the “Session Setup” panel.

4.11.2.7. Parameters configuration

In this tab, the user is able to alter the contents of the configuration files to change the behaviour of the

module. Assuming that the module has been correctly integrated into the system and a valid

ParameterEditor
start button

Refresh
configuration files

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 93 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

configuration file is reported, this tab shown in Figure 4-69 will present the list of module parameter

(and values) grouped by module and simulation (sorted in execution order).

Figure 4-69: Session – Parameters definition

Users can consult the following list of attributes:

Attribute name Format Purpose Sample

Parameter

identifier

Long string Complete name of the parameter. A

parameter identifier is formed by its path

into the file structure (dot separated) and its

parameter name.

“parameters.

execution_mode”

Description Long string Brief description of the parameter purposes

and values

“USER of CFI

orbit”

Type Options:

INTEGER,

FLOAT,

STRING,

BOOLEAN,

FILE, TIME

and FOLDER

Parameter values type. Used to present

different editor when editing the parameter

value. See AD-E2E.

“STRING”

Values (Different

types)

Parameter value. A unique value for each

parameter is needed

“CFI”

Complex Type Options:

SCALAR,

ARRAY,

MATRIX

Parameter structured type. Used to indicate

the multidimensional type of the parameter.

See AD-E2E.

ARRAY

Parameter
operations buttons

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 94 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Attribute name Format Purpose Sample

Dimensions [cols x rows x

layers]

Size of the dimensions. Layers are only

displayed if applicable.

[3x2x3]

Units String Physical units of measurements if

applicable.

“m/s”

Validity Options:

OK,

TypeMismatch,

OutOfRange,

Unknown

Status of the parameter value integrity.

openSF checks the parameter validity

anytime its value is updated.

“OK”

Only the “values” column is editable to the user, the others just present useful information describing

each parameter. openSF checks the parameter validity anytime a run session is initiated, if any

parameter is not valid the system shows a warning message.

Figure 4-70: Session execution, warning message

Note that changing the value of these variables will not affect to the “template” configuration files

specified in the “Configuration” tab. The variables involved in a session definition are stored in database

with the chosen values, meaning that the session will use them during the execution.

The user can filter the parameters that are displayed in the HMI and which can be altered and/or

monitored in session execution. The ‘Parameter Visibility’ allows marking each parameter as visible or

not. This setting can be done at parameter level, at module level or at the whole simulation level. To do

so, the user can open the Visibility view through the dedicated button and new, toggle the visibility of

each parameter with a double left-click over it, or by selecting the desired option from the context menu

that can be opened with right-click.

Once the parameter visibility has been set it can be switched on/off thru the ‘eye’ icon in the session

setup parameter configuration tab.

4.11.2.8. Specification of output files

Users can change the name and location of the output files that will be generated by execution of

modules. Selecting the “output” tab as shown in Figure 4-71, the system will show a list of output files

grouped by modules, and following the execution order.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 95 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-71: Session – Output definition

By default, these files will have a “Pending” status, meaning that they will be produced by the action of

the module’s execution. Once a session has been executed and output files generated, file instance

column will show the absolute path of the generated file and the status will be “Available”.

4.11.2.8.1. Removal of intermediate output files

As shown in Figure 4-66 the user now was an option for removing intermediate output files. By

activating this option, a session executing will remove from the sessions directory any output files not

generated by the last module of a session execution and that correspond to intermediate data of a step in

the module chain.

4.11.2.9. Specification of final product tools

It is possible to add a list of product tools as post-processing operations, that is, a series of executables

to be called upon the execution completion (Figure 4-72).

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 96 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-72: Session – Product tools specification

There are two ways to add tools to this list:

❑ Selecting a file from the input, configuration or output files list. Users can right-click on a file

marked as “available” or “pending” and a pop-up menu will appear. This menu will show a list of

tools that can be applied to that certain file11. These tools can be executed instantly (if the file is

already “available” or be scheduled to end of the execution process). Users can change the default

parameters for the tool execution. Figure 4-73 shows the contextual menu that pops up when the

user right-clicks on a file from the Session Creation/Edition view.

Figure 4-73: File contextual menu.

When scheduling actions to certain files, openSF uses, instead of the actual file name and location, a

reference to the file’s foreseen location as an environment variable. These variables are named

starting with the dollar symbol, then “IO”, the simulation number and its identifier with no blanks,

underscores or dots. For example, $IO0orbitxml denotes the orbital file to be generated in the proper

folder by the execution process and $IO1radaroutputnc, the NetCDF file generated by the radar

module in the second simulation of a given session.

In case the selected tool is an “external” tool (as described in section 4.5.4) the HMI will prefix the

$OPENSF_HOME variable to form the absolute path of the file. Following the previous example, if

users want to view the contents of the orbit XML file with an external viewer, HMI will present

$OPENSF_HOME/$IO0orbitxml. If users want to plot the radar output (using an internal tool) HMI

will present only $IO1radaroutputnc.

11 Tools defined in the system have an action associated to a file extension.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 97 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

It is also possible to use two other session-related variables: $SESSION_FOLDER to point the

foreseen location of the session execution and $SIM_FOLDER_# (with “#” denoting the simulation

number) pointing the foreseen location of a certain simulation in current session.

In the same way, users can include references to the rest of openSF environment variables like

$OPENSF_HOME.

❑ Clicking on the “add tool to session” button. Upon a selection of this action, users can choose one

tool from the appearing list of defined tools. Users can change the default parameters for the tool

execution.

Users can also select a certain tool and remove it from the list and, alternatively, change the order of

execution of the tools with the arrow buttons besides. In any case product tools are always executed at

the end of the executed session.

Use Example:

A simple session with only one simulation involving one module execution. The scenario is composed

by the following elements:

❑ Session name: sessionTest

❑ Simulation name: simTest

❑ Module name: moduleTest

❑ Input for the module: inputTest.txt located in OPENSF_HOME folder

❑ Output generated: outputTest.txt

❑ Module configuration: globalConfig.xml and localConfig.xml

❑ OPENSF_HOME variable points to /home/tester/openSF/

❑ The session folder is /home/tester/openSF/sessions/

❑ Tool defined associated to txt extension: meld

It is desired to compare the input and output files with a visual diff like application named meld

(http://meld.sourceforge.net/). In this case the syntax for the tool would be:

❑ For input file user can use the original location or the foreseen location where openSF copies that

file: /home/tester/openSF/inputTest.txt or $IO0inputTesttxt

❑ Foreseen location for output file: $IO0outputTesttxt

❑ As explained before there are different mechanism to schedule the execution of the tool. The one

recommended in this case is to right click on the output file whose status is pending and click on the

“meld” tool under the schedule title. A pop-up window shall appear with a text field presenting the

variable for the output file location $IO0outputTesttxt. User shall complete the syntax for the tool

appending the location of the input file (/home/tester/openSF/inputTest.txt or $IO0inputTesttxt).

Figure 4-74: Tool parameters specification

http://meld.sourceforge.net/

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 98 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

❑ The value of the other session related variables would be (DATE represents the date when session

was executed):

• $SESSION_FOLDER = /home/tester/openSF/sessions/sessionTest$DATE/

• $SIM_FOLDER_0 = /home/tester/openSF/sessions/sessionTest$DATE/0-simTest/

4.11.2.10. Iterative sessions – iterating input/output files and parameter values

Users can assemble iterative sessions. This is a powerful feature that helps to run a large number of

simulations by changing values of the parameters. Users can alter any parameter’s value to fine-tune the

behaviour of a module for a particular simulation run.

Selecting one or many parameters and pressing on the “Iterate” button, will open the dialog shown in

Figure 4-75. In this example we are going to iterate two float parameters from two different modules.

Figure 4-75: Session creation – Iterating parameters

This figure shows the initial state of the dialog. The list of selected parameters is in the left table and a

preview of the modules upon the combination of all the different parameter values on the right table.

Accessing to the “values” column of the left table, users can input a list of valid values separated only

by blank spaces or commas, but not both.

By selecting a parameter and clicking the cogwheel icon, or by double-clicking (left or right button,

depending on the OS) on a parameter, the user can open the following “numeric sequence generator”

dialog for an advanced customization of the iteration values:

Figure 4-76: Session - Creation - Editing numeric sequences

This is the step/division
text field

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 99 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

This dialog lets the user define a numerical sequence of values (of the selected type: FLOAT or

INTEGER) in three different ways:

❑ User input. Users can introduce their own values using the “Values” text field.

❑ Numeric sequence by step. Once defined the starting (x1) and ending (xn) values of the sequence,

users can input the value of the step (s) in the step/division text field. Pressing the “generate”

(marked with the ellipsis symbol) will create an arithmetical sequence following this rule:

 ,2,, 111 sxsxx ++

Numeric values will never be greater than the upper limit. For example, a numeric sequence starting

from 1 to 10 with a step of 5 will generate a series of (1, 6).

❑ Numeric sequence by division. Once defined the starting (x1) and ending (xn) values of the

sequence, users can input the number of divisions (d) in the step/division text field. Pressing the

“generate” (marked with the ellipsis symbol) will create an arithmetical sequence following this

rule:

 
()

d

xx
ssxsxx n 1

111 ,,2,,
−

=++ 

Numeric values will never be equal or greater than the upper limit. For example, a numeric sequence

starting from 0 to 10 with five divisions will generate a series of (0, 2, 4, 6 and 8).

Users can now accept or cancel the numerical sequence.

Once a valid set of values is input in both parameters, users can press the “preview” button to consult

the configuration of the iterated parameters. Note that parameters not involved in the iteration will

remain fixed to a value but they can be manually changed as seen in chapter 4.11.2.5.

The iterated parameters will be highlighted in the session parameters’ tab as shown in the Figure 4-77

and iterate view can be opened again for more customization with double-click on an iterated parameter.

Figure 4-77: Session with iterated parameters

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 100 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Readers must know that the openSF system can filter redundant modules out of an execution process.

There is more information in chapter 4.11.5.

4.11.2.10.1. Parameter iteration definitions files

Upon defining an iterative configuration, the user can save this definition in a parameter iteration

definition file. This is accomplished by using the “Save” button in the dialog shown in Figure 4-75.

Additionally, the user can load a previously defined iteration configuration from file (using the “Load”

button).

The format of the files used to store the iteration configuration definitions is compliant with the

configuration parameter file format as specified in [AD-E2E].

4.11.2.11. Batch session

Section 4.11.2.10 explains how the user can configure an iterative session, allowing the user to define

multiple values for the desired parameters an openSF will automatically perform a permutation between

all the possible combinations of values and run all the cases.

In situations where the user needs to run multiple variations of an original session with some

customization of the parameters’ values (but not all the possible combinations of those values), openSF

enables the definition of a batch execution. This ability aims to provide fine grained control over the

number of executed variations of the original session and the parameter values that are customized for

each of them.

The configuration of a batch session requires the creation of a “batch session configuration file”. The

syntax and format of this type of file is described in [AD-E2E]. This file can be loaded through the

“Batch” button available in the session’s parameters tab.

Upon loading the file, OpenSF checks the format and imports the contents. The session will be

successfully configured and a confirmation message will be displayed with the total number of session

executions after the session template spawning together with the id and module names of the overridden

parameters.

Figure 4-78: Successful batch configurated session message

As was the case with the overridden parameter values configured through the “Iterate” option, the

overridden parameters are highlighted in the session’s parameters tab as shown in the Figure 4-79.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 101 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-79: Session with overridden parameters through the batch option

To ease the use of this feature, together with the examples of the validation database, an example of a

“batch session configuration file” for the “E2E_test_session” is provided and can be found in the

following path: $INSTALL_DIR/test/data/batch/E2E_test_session_batch.xml.

4.11.2.12. Session Perturbation

Figure 4-69 shows a Parameter Perturbation option that covers the capability of adding a perturbation

function to a module parameter. This functionality is further described in section 4.16.

4.11.3. Session Modification

It is possible to edit a given session and create a different one altering the information previously stored.

Consequently, changes made to the session will not alter the previous but will create another.

When editing a session, the system will show the same window as shown in the session creation. But

this time, all the information concerning this session will fill every data field.

Once finished, the user can cancel the changes or execute this new session pressing the “Run” button.

4.11.4. Session deletion

Users can select a certain session and choose the option to delete it. Once the operation is confirmed the

session is deleted from the repository and the file system. It is to be noticed that for consistency

reasons, the session deletion causes the removal of all results generated from that session from the

system.

4.11.5. Session execution – run

Once a session definition is ready, users can execute it.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 102 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Upon the activation of the “run” command, the system performs a series of checks to ensure the validity

of the session:

❑ If the global configuration file for the session, or the local configuration file of any active module in

the session is missing, the execution will not proceed, and a dialog will be displayed listing the

missing files as shown below.

Figure 4-80: Session execution – Execution prevented due to missing configuration files

❑ If there is any other file with the “missing” status (that is, the system is unable to find in the given

location), openSF will assume that this file will be in the right place when needed, so it leaves the

responsibility of placing it in the correct place to the user or to process outside the system. A fatal

error is likely to be raised by a module if it cannot locate a needed file.

❑ If there is any parameter not valid, openSF will show a message warning the user. The session can

be run with parameters in a not valid state, but modules may then raise errors and stop the execution

if they cannot parse the value, if a parameter points to a non-existing file, etc.

❑ In some cases, like executing iterative sessions or sequences of the same modules, some of the

modules may be redundant (that is, they will generate the same output because they are run with the

same input and configuration).

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 103 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-81: Session execution – Redundancy

Figure 4-81 shows the dialog that shall pop-up in case there is any redundancy. Users can choose to

either execute or ignore all the modules marked as redundant. Once every validity check is fulfilled, a

background process (Figure 4-82) will run the simulation and information concerning it will be given to

the user in two different ways. One is the log window and another is the “session progress” window.

The window presents a progress bar showing the percentage of session progress and a button to

abort/close the execution.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 104 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-82: Session – Execution progress

In order to a better log visualization, the session execution interface provides a log column

activator/deactivator.

The execution of a session raises a set of events. These events can be of one of these groups:

❑ System information – An event with some information to the user is generated by the platform. This

is a harmless event; thus, the execution continues with no interruption. Coloured in dark green;

❑ Information – Some module raises an event. Its message is intercepted and stored by the platform.

This is a harmless event; thus, the execution continues with no interruption. Coloured in green;

❑ Warning – A module has detected a non-fatal error or situation that may cause a fatal error. This is a

harmless event; thus, the execution continues with no interruption. Coloured in yellow;

❑ Debug – These events are raised when executing the session in “debug mode”. Some modules

optionally use this environment variable to show debugging information. Coloured in grey;

❑ Error – A fatal error has happened in the module execution and the module itself informs the

platform about it, so the module has time to “graciously” close the execution. Another event that

causes an error is that a module execution unexpectedly crashes, so this time the platform intercepts

this error, informs the user and stops the execution. Coloured in red.

❑ Exception – This log type shows the error output stream of a module when the execution crashes.

Typically, this kind of messages are produced when an un-controlled exception has occurred (Ex:

error in bash script syntax). Coloured in orange. See figure below.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 105 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-83 Execution Log showing Exception message

In the previous screenshot it is also shown how openSF warns the user about output files that have not

been created by the module: “Output file/folder “…” has not been successfully generated by the

module”, there is a log message for each output item not generated.

Pressing the “abort” button will make the system ask for confirmation. Once granted, the execution will

be interrupted with an error event generated by the system. Later on, this session execution can be

restarted or recovered from the last valid module executed.

4.11.5.1. Switch module version

In order to make more flexible the definition of a given session, this functionality allows selecting a

specific version of a module for a session execution (as depicted in Figure 4-84 below).

Model C
version 1

Model A
version 2

Model B

Model A
version 3

Model A
version 2

Model A
version 1 Model C

version 2

Model C
version 1

Figure 4-84 Module chain with different module versions

From the openSF HMI, the switch module version operation can be invoked from the session execution

window by navigating down to the module that the user wishes to alter the version. Next, right-clicking

over it whenever the module has more than one version available the “Switch module version” option

appears for selection. This is illustrated in Figure 4-85 below.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 106 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-85: Switch module version

4.11.5.2. Bypass/Switch-off module execution

This functionality enables users to switch off certain modules when running sessions.

From the openSF HMI, the bypass/switch-off module operation can be invoked from the session

execution window by navigating down to the module that the user wishes to bypass. Next, right-clicking

over it the “Bypass/Switch-off module” option appears for selection, as illustrated in Figure 4-86 below.

This choice is persistent, if the session is saved to database.

Figure 4-86: Bypass/Switch-off module

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 107 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

As a result, openSF will inform the user of the change in the list of data files needed to be provided due

to the omission of modules and their corresponding outputs. Some inputs will no longer be needed, but

other files may become “missing” instead of “pending” if a module that was going to generate them as

its output becomes inactive.

Figure 4-87: Bypass/Switch-off module missing files

The user can revert the bypassed module and switch it back on by navigating down to the module that

the user wishes to re-activate. Next, right-clicking over it the “Switch-on module” option appears for

selection.

Figure 4-88: Switch-on module

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 108 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.11.5.3. Run from a given point in the module chain

The idea is to allow users to skip modules at the beginning of the sessions, and therefore start sessions

from a certain point. However, the data from non-executed modules is needed for the re-run. Before

executing the session, the user needs to define the data files needed for the run.

The figure below shows a simple example. Modules A, B and C constitute the session. If we want to

rerun it but starting from B, we need to provide the output of Module A, from a previous run.

Model A Model BInput A

Input B

Model C Output C

Output A Output B

Figure 4-89 Run simulation from Module B

From the openSF HMI, the run from a given point capability can be invoked from the session execution

window by navigating down to the module that the user wishes to start the execution from. Next, right-

clicking over it the “Run from here” option appears for selection. This is illustrated in Figure 4-86

above.

Figure 4-90: Run session from a given module

The result of this action is similar to doing option bypass/switch-off modules to each module previous to

the point where the execution should start.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 109 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.11.5.3.1. Run from a given module using previous data

The option to run a session from a given module is available both for a new session definition as well as

for re-running a session execution. In this latter case the user can choose to use the input data previously

used for the original session execution or use the input data produced in the session execution.

The user can revert the input and configuration data to the one originally used in the session definition

by navigating down to the module that the user wishes to reset the IO descriptors. Next, right-clicking

over it the “Reset setup” option appears for selection.

Figure 4-91: Reset IO descriptor option

As a result, the session’s original definitions are now re-established.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 110 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-92: Reset IO descriptor setup

Furthermore, the user can revert to the data produced in the session execution for an individual IO

descriptor by navigating down to the descriptor that the user wishes to restore the IO descriptors. Next,

right-clicking over it the “Use previous data” option appears for selection.

Figure 4-93: Use previous setup IO descriptor options

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 111 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.11.5.4. Grouping sessions – Time-Driven or Iteration/Perturbation

When sessions run in Time-driven or Iteration/Perturbation mode, a considerable number of child

sessions can be opened at the same time. To tackle this issue, OpenSF groups all the child sub-sessions

into a parent window, as well as in a parent output folder (section 4.13) to ease the user management of

the overall session results.

Thus, if any session is executed following any of these modes the user will be prompted with a screen

comprising all the sub-sessions and the result of the execution for each – depicted in Figure 4-94 for the

Timeline execution and in Figure 4-95for a execution with iterated or perturbed parameters.

Figure 4-94 Grouping of sessions for the Time-Driven execution

While the sessions are executing, the user has several available options: “Abort all…” which aborts all

the sub-sessions, “Abort selected” which aborts only the selected Sub-session or “Details…” if the user

wants to open one subs-session in particular. The latest option can also be accessed if the user double-

clicks on top of any session.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 112 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-95 Grouping of sessions for the Iteration/Perturbation execution

4.11.6. Parallelisation of module execution

Parallel execution of modules in openSF is based on Multicore programming for parallel computing.

A multi-core processor is a single computing component with two or more independent actual

processors (called "cores"), which are the units that read and execute program instructions. The

improvement in performance gained by the use of a multi-core processor depends very much on the

software algorithms used and their implementation. In particular, possible gains are limited by the

fraction of the software that can be parallelised to run on multiple cores simultaneously (Amdahl's law).

openSF target system is typically a computer or server. The availability of multicore processors makes it

common that almost every target computer nowadays has two or more cores.

Regarding the parallel execution the approach is based on performing Parallelisation at module level:

each module acquires a core resource thread and uses it, then releases it when finished. This approach is

also generic enough to cover parallelisation at module chain level as well.

Parallelisation is implemented in openSF according to the principle that a module starts its execution as

soon as its inputs are available. Therefore, the only modules that can run in parallel are those having

external inputs (i.e. not generated by other modules).

4.11.6.1. Parallel execution

The parallelisation of module execution feature is activated and controlled by the system configuration

regarding the number of core threads to use for execution.

Parallelisation is always transparent to the user, i.e., the parallelisation is performed without requiring

feedback from the user, both at module chain level and module level. Figure 4-96 show an example of a

session execution were two modules are executed in parallel as can be seen by log messages originating

from the two modules interspersed with each other.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 113 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-96 Session execution showing Parallel module execution

In case two modules are executing in parallel the log messages are shown in the order of arrival to

openSF. They will appear mixed in the session log. By looking at the Source column the user can

identify which module produced each message. Nevertheless, the user can access the “Execution-

>Logs” option and select/filter whichever log messages according to given criteria. Notice that the

writing accesses to the log file itself is protected for concurrency issues.

The choice on whether to parallelise module execution is based on the session module’s IO descriptors

dependencies. Only modules without such dependencies are considered for parallel execution. This

means that during the session execution the consistency of the data flow constituents is granted.

In case parallelisation is active for a session execution with parameter perturbation a choice is given to

the user whether parameter perturbation can be parallelisable or if it should be serialized.

Figure 4-97 Session execution showing Parallel module execution

4.11.6.2. Precautions for module developers to ensure safe module parallelisation

The evolution of openSF to allow parallel execution brings also added responsibility to module

developers. It should be clarified that module developers must ensure that the modules/algorithms

developed are in fact parallelisable, e.g., that the implementation has the proper precautions

regarding access to common resources. openSF can only go so far in assuring synchronization of

module execution and must rely on modules being “well behaved” with respect to parallel execution.

In order to ensure safe module parallelisation module developers should ensure that modules are either:

- Thread safe: implementation is guaranteed to be free of race conditions when accessed by

multiple threads simultaneously, or;

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 114 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

- Conditionally safe: different threads can access different objects simultaneously, and access to

shared data is protected from race conditions.

The use of software libraries can provide certain thread-safety guarantees. For example, concurrent

reads are typically guaranteed to be thread-safe, but concurrent writes might not be. Whether or not a

program using such a library is thread-safe depends on whether it uses the library in a manner consistent

with those guarantees. Thread safety guarantees imply some design steps to prevent or limit the risk of

different forms of deadlocks, as well as optimizations to maximize concurrent performance.

There are several approaches for avoiding race conditions to achieve thread safety. The first class of

approaches focuses on avoiding shared state, and includes:

- Re-entrancy: writing code in such a way that it can be partially executed by a thread re-executed

by the same thread or simultaneously executed by another thread and still correctly completes

the original execution. This requires the saving of state information in variables local to each

execution, usually on a stack, instead of in static or global variables or other non-local state. All

non-local state must be accessed through atomic operations and the data-structures must also be

re-entrant;

- Thread-local storage: variables are localized so that each thread has its own private copy. These

variables retain their values across subroutine and other code boundaries, and are thread-safe

since they are local to each thread, even though the code which accesses them might be executed

simultaneously by another thread.

The second class of approaches are synchronization-related, and are used in situations where shared

state cannot be avoided:

- Mutual exclusion: access to shared data is serialized using mechanisms (e.g. semaphores) that

ensure only one thread reads or writes to the shared data at any time. Incorporation of mutual

exclusion needs to be well thought out, since improper usage can lead to side-effects like

deadlocks and resource starvation;

- Atomic operations: shared data are accessed by using atomic operations which cannot be

interrupted by other threads. This usually requires using special machine language instructions,

which might be available in a runtime library. Since the operations are atomic, the shared data

are always kept in a valid state, no matter how other threads access it. Atomic operations form

the basis of many thread locking mechanisms, and are used to implement mutual exclusion

primitives;

- Immutable objects: the state of an object cannot be changed after construction. This implies that

only read-only data is shared and inherent thread safety. Mutable (non-const) operations can

then be implemented in such a way that they create new objects instead of modifying existing

ones (e.g. this approach is used by the string implementations in Java, C# and python).

Thread safety

Thread safety is a simple concept: is it "safe" to perform operation A on one thread whilst another

thread is performing operation B, which may or may not be the same as operation A. This can be

extended to cover many threads. In this context, "safe" means:

- No undefined behaviour;

- All invariants of the data structures are guaranteed to be observed by the threads.

The actual operations A and B are important. If two threads both read a plain int variable, then this is

fine. However, if any thread may write to that variable, and there is no synchronization to ensure that

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 115 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

the read and write cannot happen together, then a data race occurs, which is undefined behaviour, and

this is not thread safe.

Unless special precautions are taken, then it is not safe to have one thread read from a structure at the

same time as another thread writes to it. If it can be guaranteed that the threads cannot access the data

structure at the same time (through some form of synchronization such as a mutex, critical section,

semaphore or event) then there should be no problem.

Element like mutexes and critical sections can be used to prevent concurrent access to some data, so that

the writing thread is the only thread accessing the data when it is writing, and the reading thread is the

only thread accessing the data when it is reading, thus providing the thread safety guarantee. This

therefore avoids the undefined behaviour mentioned above.

However, the programmer still needs to ensure that the code is safe in the wider context: if more than

one variable needs to be modified then the mutex needs to be held across the whole operation rather

than for each individual access, otherwise the invariants of the data structure may not be observed by

other threads.

It is also possible that a data structure may be thread safe for some operations but not others. For

example, a single-producer single-consumer queue will be fine if one thread is pushing items on the

queue and another is popping items off the queue, but will break if two threads are pushing items, or

two threads are popping items.

Global variables are implicitly shared between all threads, and therefore all accesses must be protected

by some form of synchronization (such as a mutex) if any thread can modify them. On the other hand, if

a separate copy of the data is held for each thread, then that thread can modify its copy without worrying

about concurrent access from any other thread, and no synchronization is required. Of course,

synchronization is always needed if two or more threads are going to operate on the same data.

4.11.7. Remote execution

When execution a session the user can select a remote machine in which the execution is to take place.

This configuration can be applied:

(a) to the whole session: selecting a remote machine (previously configured) in the ‘Remote

Machine’ drop down list box of the session execution window;

(b) on a module by module case: selecting for each module a remote machine from the contextual

menu obtained when right-clicking over the module listed in the session setup pane of the

session execution window.

The configuration assumed is the last one performed: selecting a machine for the whole session

overrides previously configured machines per module; as configuring a remote machine module by

module after configuring the whole session allows a finer configuration.

4.11.8. Session script generation

This functionality is provided to create and save a file script to enable the external execution of the

session. This script file, called “<session_name>.sh”, will be saved in the session folder as every

needed input and configuration files. This script shall contain all the environment variables definitions

and calls for modules’ executions. The script can be executed from command line and it requires no

parameters.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 116 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Note that the script is always generated when executing a session. Hence this functionality of Session

Script Generation is made available to generate the script without having to execute the session for it to

be generated.

It is important to recall that while the execution will be mimicked, executing this script outside the

openSF system, the error handling and results storage capabilities will be lost. Moreover, the

session is executed without resorting to the parallelisation capabilities provided by openSF.

4.11.9. Session Resuming

Once it is possible to interrupt a session execution with the breakpoint scheduling system it is possible

to resume the paused session and continue with the simulation chain keeping the same settings as the

previous run.

Users can also resume aborted or failed sessions taking into account that the simulation chain will start

in the last successfully run module.

4.11.10. Import and Export session

The import/export capability provides the means to share all the information associated to sessions

among different openSF instances. Thus, the data needed to import a session consists in two files,

obtained through a previously executed export operation:

❑ SQL file, containing the sql operations to perform a replica of the database data into the target

openSF instance.

❑ ZIP file, containing the data files needed for the execution of the session. Furthermore, in case of an

executed session, the zip file includes also the input files used for that particular run.

4.11.10.1. Export session

From the openSF HMI, the export operation can be invoked from two different locations:

1. From the Repository menu. In this case, we need to navigate from the Repository menu down to the

session that the user wishes to export. Next, right-clicking over it; the “Export” option appears for

selection. This is illustrated in Figure 4-98 below.

Figure 4-98: Export from the Repository menu

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 117 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

2. From the Executions menu. If the user wishes to export a session that has been run, he/she can do

so by accessing the Executions menu and selecting the Export operation upon the desired session,

similarly to the previous case. This is shown in the next figure.

Figure 4-99: Export from the Executions menu

In both cases, the output obtained as a result of the Export operation are three files (sql, log and zip) that

are placed in the folder indicated by the value of the OPENSF_HOME environment variable. These files

are needed for the import operation, and they ensure the creation in the database of the constituent

elements of the session (i.e. descriptors, stages, modules, simulations, tools, and session, as well as the

provision of input and configuration files) needed for the session’s execution. However, it is to be

noticed that the executable files corresponding to the modules and tools are not included in the export

operation.

The difference between both types of export (from the Repository menu and from the Executions menu)

is that the Import of the latter type creates the session only in the Executions tab. That is due to its

identifier (featuring the execution time stamp) and its state (Successful or Failed), which indicates that it

is an executed session.

Once the export has been carried out, openSF reports the status in a dialog as the one shown below.

Figure 4-100: Successful execution of the export

4.11.10.2. Import session

Users can activate the import operation by accessing the Repository menu and clicking on the “Import

session …” option, showing the dialog of Figure 4-101. The dialog requests the files needed to complete

the operation: the SQL file that includes the statements needed to create the session in the target

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 118 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

database, the log file and a ZIP archive with the session data files (configuration and optionally, inputs)

for the session’s execution.

Note that for sessions exported by openSF v3.7.1 onwards, the ZIP archive includes the session logs, so

it is not necessary to provide the log file on import. If one is specified, it will be silently ignored.

Figure 4-101: Inputs requested for the import

The user can navigate through the file system in order to access the files by clicking on the buttons

appearing at the right side of each input field. Upon completion openSF shall report on the status of the

operation. The figure below shows the dialogue that is presented in case the import was performed

successfully.

Figure 4-102: Successful execution of the import

Figure 4-103 shows the results of an import operation from the Repository menu. The import of the

BIOMASS-GM session has derived in the creation of two new descriptors (GM-IN and GM-OUT), one

module (BIOMASS-GM), one simulation (BIOMASS-GM-Sim) and the session (BIOMASS-GM-

Session).

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 119 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-103: Import results from the Repository menu

4.11.10.3. Export module of a session

This capability deals with the possibility of exporting the data associated to a module that has already

taken place in a simulation. The export functionality exports the data related to only one module of a

given session. Thus, the data exported is comprised by the module configuration and input files.

From the openSF HMI, the export module operation can be invoked from the session execution window

by navigating down to the module that the user wishes to export. Next, right-clicking over it; the

“Export” option appears for selection. This is illustrated in Figure 4-104 below.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 120 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-104: Export module from the Session Result view

The output obtained as a result of the Export operation is a zip file placed in the folder indicated by the

value of the OPENSF_HOME environment variable. This file is needed for the import operation

providing the input and configuration files needed for the session’s execution. However, it is to be

noticed that the executable files corresponding to the modules and tools are not included in the export

operation.

4.11.10.4. Import module of a session

From the openSF HMI, the import module operation can be invoked from the session edition window

by navigating down to the module that the user wishes to import to. Next, right-clicking over it; the

“Import” option appears for selection. This is illustrated in Figure 4-105 below.

Figure 4-105: Import module from the Session edition view

A module data can be imported into an openSF instance from the data obtained from the export

operation. As the contents of the export relate to data files, it is required that the module exists in the

target openSF instance.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 121 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.11.11. Copy session

Users can select a certain session and choose the option to copy it. The user needs to specify a new

name for the session, unique with respect to the existing sessions. All session definitions shall be copied

to a new session instance.

Figure 4-106: Session. Copy Session

4.12. Executions

As mentioned in section 4.6 openSF can be divided in three logical parts: repository, products and

executions.

The third of these parts, named executions, represents the dynamic view of the system. Here the

executed sessions are stored with their input and output data.

Users can consult their results and log messages generated, as well as re-run sessions as needed.

4.13. Results

openSF approach for naming session execution directories, as well as their relative supporting files,

involves the use of names with a timestamp. The use of a timestamp is meant to ensure a unique

identification of the session folder and files.

In case of a nominal session (single execution) the execution result (whether it was successful or not) is

stored in a <sessions> folder, named as “<session_id>.<starting_time>”. Starting time is coded as

“YYYYMMDDTHHmmSSdsss”12 in local time – see the format in Figure 4-107 and Figure 4-108.

In case of timeline-based and iteration/perturbation-based sessions, openSF groups related sessions

execution results into separate output folders (since these two types of executions can end up to

hundreds of sessions). Also, in these two cases, in order to uniquely identify the executions, a timestamp

is appended to the execution identifier, as shown in Figure 4-107.

Note that the prefix “exec#” is used for each iteration folder as a way of facilitating the user’s

distinction between Timeline and Iteration/Perturbation executions.

12 “sss” denotes milliseconds

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 122 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-107: (left) grouping of timeline sessions; (right) grouping of iteration/perturbation
sessions.

Summarising, the naming scheme for session result folders is as follows:

❑ nominal session (single execution)

o <session_id>.<start_time>, where

▪ session_id is the session name (as seen in the Repository view)

▪ start_time is the session execution start time, formatted as YYYYMMDDTHHmmSSdsss

❑ iteration/perturbation-based session (multiple executions, based on the combination of

iteratios/perturbations)

o <session_id><start_time>/exec#.<start_time2>, where

▪ session_id is the parent session name (as seen in the Repository view)

▪ start_time is the session execution start time, formatted as YYYYMMDDTHHmmSSdsss

▪ # is an incremental integer defining the order of execution of the multiple executions

▪ start_time2 is the iterated execution start time, formatted as YYYYMMDDTHHmmSSdsss

❑ timeline-based session (multiple executions, based on time segments specified)

o <session_id><start_time>/<time_segment_start>.<start_time2>

▪ session_id is the parent session name (as seen in the Repository view)

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 123 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

▪ start_time is the session execution start time, formatted as YYYYMMDDTHHmmSSdsss

▪ time_segment_start is the time segment start time (as defined by the user)

▪ start_time2 is the time segment execution start time, formatted as

YYYYMMDDTHHmmSSdsss

In order to simplify session results directory names, symbolic links are used. Each time a session is

executed a Linux symbolic link is generated in the file system with the name of the session being

executed (appended by “.last”) and pointing to the corresponding session execution directory. Each time

a session is re-run the symbolic link is re-generated pointing to the latest session execution (the one with

the latest timestamp). Keep in mind that these symbolic links are not generated in Windows.

Figure 4-108: Side bar. File system (including symbolic link to last session)

Users can access to the list of results known by the system in the executions view of the side bar or via

the “Executions” menu (Figure 4-109) from the main menu.

Figure 4-109: Results menu

Figure 4-110: Results pop-up menu

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 124 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Operations involving results include the following:

❑ List – present the list of existing execution results;

❑ View – consult the data of an existing execution result;

❑ Re-run – Starts a new session execution. This new session is a replica of the former, but shall create

a new session folder.

❑ Report generation – shows a text report describing the execution.

❑ Exportation - Exports the entire execution definition;

❑ Deletion – delete an execution result from the system.

4.13.1. Result view

Accessing this functionality, users can consult the result of a session execution. Figure 4-111 shows a

window very similar to a session editor but including more information.

Figure 4-111: Execution results

First of all, some data is presented in the “general properties” region showing these attributes:

❑ Date / time – this is the local computer date and time that the execution began. This date and time

can also be part of the simulation identifier to distinguish this session execution from others;

❑ Duration – the time (in minutes and seconds) elapsed from the starting time until the execution was

finished or interrupted;

❑ Status – the overall status of the execution. The possible values are “Failed, “Successful” and

“Aborted”;

❑ Last module – This is the number and identifier of the last module successfully executed. In case of

a successful execution, this module must coincide with the very last module of the session. This

information is useful for the user to know which module was erroneous.

Second, the Log tab is filled with the log messages generated by the session execution. Users can access

all these messages to check its performance.

Models time view

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 125 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.13.2. Result re-run

Accessing to this functionality, users can repeat the execution of a previously executed session. If the

session execution was successful, the system just creates another execution (changing the starting date

and time) but, if the previous execution was aborted or failed, the system will inform the user with the

dialog shown below.

Figure 4-112: Result. Re-run

Users now can choose to restart the execution from the beginning or try to resume the execution, that is,

to continue the execution from the last valid module. So the execution will continue provided that the

outer conditions that ruined the previous run have been corrected.

4.13.3. Report generation

Clicking on the “Generate report” option from the Results pop-up menu accesses this functionality. A

window similar to the one shown in Figure 4-113 is presented to the user.

Figure 4-113: Execution report

This execution report consists in a textual description of the same data that users can access with the

“Result view” functionality. The only difference resides in that this textual information can be copied

and pasted into another application outside the openSF system.

4.13.4. Delete result

Users can select a certain execution result and choose the option to delete it. Once users confirm the

operation the execution result is erased from the repository and the file system. Log messages associated

with this session execution result will also be erased.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 126 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.13.5. Modules execution time

In Figure 4-111 the session results view is presented. Within this panel there is a clock icon button in the

mid-right side that presents the time consumed by each module involved in a session run.

Module execution time is presented in a new window with three tabs:

1. Module Times tab: presents the module execution time in a bar chart graph*. See Figure 4-114

2. Time Statistics tab: shows a pie with the session time percentage consumed by each module. In

case there is more than one Simulation involving one Module, time is divided by the number of

module repetitions. See Figure 4-115

3. Module Times Table tab: shows the same information that the bar chart graph but in a table. See

Figure 4-116

*Hint: Users can zoom within bar chart graph in order to better visualize module times

Figure 4-114 Bar graph showing Module times

Figure 4-115 Pie chart showing the percentage of time

Figure 4-116 Table showing Module times

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 127 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.14. Logs

Executing sessions has a secondary consequence: a set of events are produced and stored for the system.

These events are described in detail in section 4.11.5.

Log messages are stored in the file $OPENSF_HOME/sessions/openSF.log for global events,

and in a file named log/session.log under each session folder for events related with a specific

session. Also, if a certain application setting is enabled (see §4.5.1), log files are also stored for each

module in a session, in the same folder and named after the related module.

Users can access to the complete set of logs stored by the system in the “Logs” menu (Figure 4-117)

from the main menu.

Figure 4-117: Logs menu

4.14.1. Log messages list

The figure below shows a window with a list of log messages stored by the system. As can be seen, the

table shows the computer date and time when the platform intercepted the event, the type of the event, a

message describing the event, the identifier of the session associated to the event and its detailed source

(module, simulation, session or system).

This list of events is sorted (by default) in increasing time order until filling the “Maximum number of

rows displayed” field. Users can change the number of log messages to be displayed. For example, if the

“Maximum number of rows displayed” is set to 10, the list displays the last 10 messages

Users can also filter this list. Users can select a field, input a string that must contain this field and press

the “filter” button. Then another search is performed into the system and the results are shown on

screen. Only records fulfilling the filter restriction will be shown. When clearing the filter text the

system shall retrieve again the full set of log messages.

Figure 4-118: Logs list view

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 128 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Moreover, users can access the “dump log” functionality at the bottom of the window. Once selected,

users can select the name and location of the log destination file. Then, the list of logs shown by the

window is stored in the file system.

4.15. User Roles

openSF, as a simulator integration framework, intends to support two different types of users whose

goals are clearly distinct. Each such type of use requires a different set of features for their typical use of

the tool.

On the one hand, there is the user responsible for the the development of the simulator modules and

their integration into openSF to compose the simulator. This user is expected to have a deep

understanding of openSF, its capacities and limitations. Typically, the work of this user unfolds during

the development phase of the simulator, and it is expected that a significant number of modifications to

the openSF simulation elements (i.e. descriptors, modules and sessions) will be needed until a state of

maturity is reached and the simulator can be considered production ready. For these users, openSF

provides the features enabled by “Developer Mode”.

On the other hand, there is the user of the E2E simulators integrated in openSF. This user is not

expected to understand openSF in detail, as his goal is to use the fully integrated simulator. This type of

user is typically interested in modifying simulation inputs, executing the pre-defined sessions and

collecting the results. In order to ensure reliable and repeatable results, this type of user should be not

required (and eventually denied) to modify the openSF simulation elements. openSF provides a

restricted set of features for these users, known as “Normal Mode”.

By default, openSF is configured in “Normal Mode” and the user role selection toolbar is hidden. If the

user desires to create or modify any openSF simulation element, the “Enable user role selection” option

can be enabled in the Application Settings (see section 4.5.1) to display the user role toolbar, and thus

select the “Developer Mode”.

Figure 4-119: User Role selection toolbar

The main differences between these two modes are the following:

❑ Developer Mode:

o The user can create new simulation elements (e.g. descriptors, modules, sessions).

o The user can modify previously created simulation elements.

o The user can execute simulation sessions.

o The repeatable production of the results is not guaranteed as simulation elements can be

modified between two session executions.

❑ Normal Mode:

o The user can view the previously created simulation element.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 129 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

o The user can create, modify and execute sessions.

o The reliable and repeatable production of the results is guaranteed.

In both cases the user can delete the existing simulation elements, potentially resulting in cascading

deletions of any related element which depends on deleted elements (e.g. deleting a descriptor will

cause the deletion of all modules that refer to it, and of all sessions that refers to those deleted modules,

eventually reaching all the results of those sessions).

Therefore, if during the development stage of the simulator, one of its module’s inputs get modified and

a created descriptor is no longer needed but it is desired to keep the rest of the simulator unchanged, the

user cannot directly delete it. Instead, while in “Developer Mode”, the affected modules shall be first

modified to remove that descriptor from its inputs/outputs and only then it can be safely removed. As it

might be expected, this kind of practices break the replicability of the results, that’s why they can only

be performed in “Developer Mode”.

openSF applies a session fingerprint to keep track of the session results whose reliability is not assured.

Unreliable results are displayed in the Executions tab of the Navigation pane with a light red

background. Replicable results are shown on a white background (see Figure 4-120). At the end of the

simulator development stage and before entering in production stage, all the results with an unassured

replicability should be removed.

Figure 4-120: Executions tab. Results colour code based on its replicability

A result is considered as potentially not reliable if any of the following criteria applies:

❑ The result was obtained while in “Developer Mode”.

Results with unassured replicability

Results with assured replicability

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 130 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

❑ The computed fingerprint of the session, or any of its components, at the time of the results’

calculation does not match the current fingerprint of that session and its current components.

4.16. Parameter Perturbations

In this section the openSF perturbation system is detailed. This functionality is intended for adding new

capabilities to session iteration (section 4.11.2.10).

The session perturbation system brings users with the following functionalities:

❑ Independently define a perturbation function for each module involved in a session.

❑ Combine different functions for perturbing parameter values (Ex: sinusoidal with amplitude values

varying as a normal random distribution)

❑ Two different execution schemes, Statistical and Combined modes (section 4.16.3)

4.16.1. Parameter Perturbation interface

The module perturbation interface is composed by the following panels:

❑ A tab that shows for each module the “Perturbation Function Tree”. This tree presents module

parameters and perturbation function specified.

❑ An info panel where perturbation parameters can be modified:

- Number of shots (integer format)

- Time min and time max for analytical perturbations (double format)

- Perturbation file where function definition is stored (XML format)

❑ Execution summary panel where session execution is outlined prior saving/running it.

❑ A tool bar for adding new functions to a module “Perturbation Function Tree”

Figure 4-121 openSF Perturbation system main window

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 131 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.16.2. Defining a new perturbation

This section describes the steps that an user shall follow in order to add a new perturbation to a session.

1. Select from Session Addition/Edition interface the desired INTEGER/FLOAT parameters. If no

parameters are selected the following message will appear.

Figure 4-122 No selected parameters

- User can select more than one parameter using the Ctrl key.

- Global configuration parameters cannot be perturbed

Figure 4-123 Selection of parameters for perturbation

2. Launch parameter perturbation system using the button in the top part of “List of parameters”

panel

3. Select a Perturbation Tree leaf and click on “+” button from the Perturbate Session toolbar. This

action will pop-up the “Select Function” frame.

- Remember that functions can be nested so “+” button is also used for creating complex functions.

(see Figure 4-125)

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 132 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

- If user want to setup another perturbation function for a parameter remember to previously delete

it selecting the node and pressing “-“ button from the Perturbate Session toolbar.

Figure 4-124 Adding a perturbation function to a module parameter

Figure 4-125 Complex perturbation function

4. In the “Select Function” window insert the function parameters checking that table frame changes

to green colour (Ex: Random --> normal function must have a sigma greater than 0, second

operand of BinaryOperations --> Root must be positive)

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 133 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-126 Random perturbation properties

5. Click on “Add” button to update Perturbation Function Tree

6. Change number of shots, min/max time as desired (remember that time is only used in analytical

perturbations)

- If the error function assigned to the parameter is an analytical one, it is assumed that the

perturbation per shot actually can be represented by a time series. For example, it could be a

perturbation Y = cos(*t); then t values (in number equal to Number of shots) will be drawn

between “Time Min” and “Time Max”. Note that the step between points is (tmax-tmin) /

number of shots

7. Preview execution, selecting the desired perturbed execution scheme, see section 4.16.3

Figure 4-127 Preview of Statistical Mode execution scheme

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 134 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

8. Accept the session perturbation, adding it to session definition by clicking on “Accept” button.

4.16.2.1. Additional operations

❑ Clear module perturbation: Right click on module tab and select “Close”

❑ Save perturbation into selected file: Dumps Perturbation Function Tree into an XML file. Right

click on module tab and select “Save”

❑ Plot perturbation: Right click on the desired tab and select “Plot”. A new window will appear

showing the time series and histogram for each perturbed parameter. Figure 4-128, Figure 4-129,

Figure 4-130 show how a parameter perturbation can be defined and plotted from HMI.

Figure 4-128 Complex perturbation for a parameter

Figure 4-129 Time series line for a parameter perturbation

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 135 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-130 Histogram chart for a random parameter perturbation

❑ Load an external XML file with errors definition for a set of module parameters. Only errors

matching with a module parameter name will be loaded within the system.

Figure 4-131 Loading an external error file

XML Error File syntax, below users can find an error file example with all available functions.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<errorsFile>

 <simTime value="50" />

 <parameter name="Affine function">

 <affine>

 <float value="50" />

 <float value="5" />

 </affine>

 </parameter>

 <parameter name="Bias function">

 <bias>

 <float value="10" />

 </bias>

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 136 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

 </parameter>

 <parameter name="Linear function">

 <linear>

 <float value="15" />

 </linear>

 </parameter>

 <parameter name="Parabolic function">

 <parabolic>

 <float value="1" />

 <float value="1" />

 <float value="1" />

 </parabolic>

 </parameter>

 <parameter name="Polynomial function">

 <polynomial>

 <float value="1" />

 <float value="1" />

 <float value="1" />

 <float value="1" />

 </polynomial>

 </parameter>

 <parameter name="Step function">

 <step>

 <float value="3" />

 <float value="10" />

 <float value="20" />

 </step>

 </parameter>

 <!-- Test XML Comment: Sinusoidal Function -->

 <parameter name="Sinusoidal function">

 <sinusoidal>

 <float value="10" /> <!-- Amplitude -->

 <float value="10" /> <!-- Frequency -->

 <float value="0" /> <!-- Phase in degrees -->

 </sinusoidal>

 </parameter>

 <parameter name="Tangent function">

 <tangent>

 <float value="10" />

 <float value="1" />

 <float value="0" />

 </tangent>

 </parameter>

 <parameter name="Linear sampling">

 <linearSampling xMin="1.0" xMax="10.0" step="1">

 <float value="1" />

 <float value="3" />

 <float value="5" />

 <float value="7" />

 <float value="3" />

 <float value="2" />

 <float value="2" />

 <float value="10" />

 <float value="4" />

 <float value="3" />

 </linearSampling>

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 137 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

 </parameter>

 <parameter name="Polynomial sampling">

 <polynomialSampling xMin="1.0" xMax="10.0" step="1">

 <float value="1" />

 <float value="2" />

 <float value="1" />

 <float value="2" />

 <float value="1" />

 <float value="2" />

 <float value="1" />

 <float value="2" />

 <float value="1" />

 <float value="2" />

 </polynomialSampling>

 </parameter>

 <parameter name="Spline sampling">

 <splineSampling xMin="1.0" xMax="20.0" step="1">

 <float value="2" />

 <float value="3" />

 <float value="2" />

 <float value="3" />

 <float value="2" />

 <float value="3" />

 <float value="2" />

 <float value="3" />

 <float value="10" />

 <float value="2" />

 <float value="3" />

 <float value="2" />

 <float value="4" />

 <float value="7" />

 <float value="2" />

 <float value="3" />

 <float value="2" />

 <float value="3" />

 <float value="2" />

 <float value="7" />

 </splineSampling>

 </parameter>

 <parameter name="Beta distribution">

 <beta seed="1" v="2" w="5" xMin="0.0" xMax="1.0" />

 </parameter>

 <parameter name="Gamma distribution">

 <gamma seed="1" location="0.0" scale="0.5" shape="9" />

 </parameter>

 <parameter name="Exponential distribution">

 <exponential seed="1" a="1" b="1.5" />

 </parameter>

 <parameter name="Normal distribution">

 <normal seed="1" mu="100.0" sigma="10.0" />

 </parameter>

 <parameter name="Uniform distribution">

 <uniform seed="1" xMin="0" xMax="1" />

 </parameter>

 <parameter name="Poisson distribution">

 <poisson seed="1" mu="10" />

 </parameter>

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 138 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

 <parameter name="Truncated gaussian distribution">

 <truncatedGaussian seed="1" mu="0.5" sigma="0.2" xMin="0.4" xMax="0.6" />

 </parameter>

 <parameter name="Uniform discrete distribution">

 <uniformDiscrete seed="1" i="0" j="1" />

 </parameter>

 <parameter name="Custom PDF">

 <customPDF seed="24" xMin="0.0" xMax="12.0" step="1">

 <float value="7" />

 <float value="43" />

 <float value="21" />

 <float value="10" />

 <float value="2" />

 <float value="6" />

 <float value="23" />

 <float value="31" />

 <float value="7" />

 <float value="2" />

 <float value="7" />

 <float value="43" />

 <float value="21" />

 </customPDF>

 </parameter>

</errorsFile>

❑ Functions with a variable number of properties (such as sampling functions, custom probability

density function etc …): users are able to add/del points through “+” and “-“ buttons of the “Select

Function” interface. See section 4.16.4 for details

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 139 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-132 Function with variable number of properties (points)

❑ Additionally users can change the double value of a leaf by double clicking on the Perturbation

Function Tree

Figure 4-133 Editing a double value of the Perturbation Tree

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 140 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.16.3. Perturbed execution modes

openSF iteration of parameters has been previously based on the combination of all possible values.

This approach results in an exponential increasing number of executions depending on the number of

parameters being iterated and the number of parameter values (i.e. the iteration of two parameters with

ten different values each one, involves one hundred executions !!)

In many cases the solution provided by openSF was not the optimal one, statistical modules (as in

SEPSO case), modules that need to run in different modes for each simulation (Sentinel 3 processors) or

modules that need to be executed more than one time depending on a parameter (BIOMASS

acquisitions). For coping with the needs of such simulators, two new possibilities have been

implemented for handling iteration/perturbation of parameters or multiple runs. Each module can be

configured with different parameter perturbations/iterations, no extra sessions shall be setup just a loop

is introduced executing the module “N” times. Note that the output files/folders of each module will be

the same and consequently it is module responsibility the handling of this issue.

The other approach is the possibility of setting up a number of sessions equal to the number of shots

configured for the perturbations of each module (this approach has a constraint, all module perturbations

shall be set-up with the same number of shots, the no-perturbed ones will be re-run with the same

parameters).

The new execution schemes for perturbed sessions are:

1. Statistical Mode: users are able to execute one module as many times as specified. Users shall

note that module implementation shall be aware of this fact because openSF will execute the

module on with same input and output files for each iteration. It is module responsibility to

smartly handle this situation (Ex: Merge output etc…). In this case the number of module

repetitions is completely independent.

B

A

B (1)

C D

B (2)

B (3)

B (n)

Figure 4-134 Statistical mode execution scheme

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 141 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

2. Combined Mode: creates as many simulations as shots are specified. All module parameters are

perturbed at the same time for each simulation. For this execution scheme it is required that all

module perturbations have the same number of shots.

B

B (1)

B (2)

B (3)

B (n)

A

A (1)

A (2)

A (3)

A (n)

C

C (1)

C (2)

C (3)

C (n)

D

D (1)

D (2)

D (3)

D (n)

Figure 4-135 Combined mode execution scheme

Figure 4-136 Execution mode selector

4.16.3.1. Differences between execution modes

❑ In Statistical mode, modules shall handle output files as openSF specifies always the same filename

for each shot.

❑ openSF in Combined mode creates parameter values in the moment the perturbation is accepted, in

the other hand Statistical mode sets values just before module is executed, when XML configuration

file is written.

❑ In order to make the Statistical mode repeatable by script, openSF creates a set of configuration

files, one per shot specified, using as name convention “File_N.xml” where N is the iteration

number. This is not needed in Combined mode as configuration files are stored in different session

folders.

❑ Combined mode sessions are not handled differently by openSF, just as new Executions of a

Session, Statistical mode instead adds a new log message specifying the module iteration number.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 142 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-137 Statistical mode iterations log message

4.16.4. Error Functions

4.16.4.1. Deterministic Functions

Deterministic functions are those whose value it is known in all the time domain.

❑ Affine

Calculates the perturbation as an affine value. An affine transformation consists in a linear

transformation and a translation.

• error = a1 + a0 * t

❑ Bias

Calculates the perturbation as a constant value.

❑ Linear

Calculates the perturbation as a linear value:

• p = a * t

This is a particular case of affine transformation when translation variable is equals to 0.

❑ Parabolic

Calculates the perturbation as a parabolic value.

• p = a0 + a1 * t + a2 * t2

❑ Polynomial

Calculates the perturbation as a generic polynomial value. This function has as many float parameters as

degrees of the desired polynomial plus one.

❑ Step

Calculates the perturbation as step function.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 143 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

• if simTime < t => p = a0

• if simTime > t => p = a1

❑ Sinusoidal

Calculates the perturbation as sinusoidal function

• p = a * sin(2 * pi * f * t + phi)

• f(Hz)

• phi(deg)

• t(secs)

❑ Tangent

Calculates the perturbation as tangent function

• p = a * tan(2 * pi * f * t + phi)

• f(Hz)

• phi(deg)

• t(secs)

Remember that the tangent function have singularities when the angle evaluated is (+-)*n*pi/2.

4.16.4.2. Sampling Functions

The openSF error generation plugin implements three interpolation methods, linear, polynomial and

spline sampling.

In order to define the points of the interpolation there is a common set of variables that are listed below.

• xMin: Min value of abscise axis

• xMax: Max value of abscise axis

• step: Increment between abscise values

The number of points must be :

 nValues
step

xMinxMax
=

−

❑ Linear Sampling

This function makes an interpolation with the given points assuming it follows a linear rule.

❑ Polynomial Sampling

This interpolation method builds a polynomial grade n, being n the number of specified points. This

interpolation minimizes the Least Square Error. Ref: Neville Method.

❑ Spline Sampling

Interpolate the given “n” points with Cubic Splines Method.

How to use the sampling functions

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 144 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

The sampling functions are useful for cases where the perturbation is a function known at discrete

instants. That is, F = {yj, xj}, j=1, …n. In such a case, openSF provides with the functionality of

interpolating according different methods: for a given time xt calculate the corresponding perturbation

in the discrete series {yj, xj} such that yt = F(xt)

The sampling functions configuration has to include yj values, because the xj have to be equally

sampled, providing only the minimum (xMin), maximum (xMax) and sampling (step).

• The "linear sampling" method uses a linear interpolation between points

• The "polynomial sampling" method interpolates using a Neville polynomial

• Eventually, the "spline sampling" method interpolates with splines

Summarizing, these functions are useful in those cases where the perturbation values for example come

from measurements whose underlying module is not fully known or cannot be represented by an

analytical equation (a gauss distribution, a beta distribution, a combination of gaussian and linear

function and so on).

4.16.4.3. Nondeterministic Functions

Common random function implementation with seed management for testing purposes. If seed is set to

zero openSF initializes pseudo-randomly the seed (used for non-repeatable executions, montecarlo

etc…).

❑ Beta Distribution

Generates random values with Beta function as probability density function.

❑ Gamma Distribution

Generates random values with Gamma function as probability density function.

❑ Exponential Distribution

Generates random values with Exponential function as probability density function.

❑ Normal Distribution

Generates random values with Gaussian function as probability density function.

❑ Uniform Distribution

Generates random values following a Uniform Distribution.

❑ Poisson Distribution

Returns the perturbation as a generated random value with Poisson function as pdf.

❑ Truncated Gaussian Distribution

Returns the perturbation as a generated random value with Truncated Gaussian function as pdf.

❑ Uniform Discrete Distribution

Returns the perturbation as a generated random value with Uniform Discrete function as pdf.

❑ Distribution with custom Probability Density Function

Returns the value of a random variable generated with a custom pdf given. It is only recommended to

use it by expert developers/scientists.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 145 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.16.4.4. Binary and Composite Operations

Error Generation Libraries implements the basics mathematical operations in binary mode. The

operations implemented are:

❑ Addition
❑ Subtraction

❑ Multiplication

❑ Division

❑ Exponentiation

❑ Root

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 146 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.17. Monte Carlo studies in openSF

This section provides guidelines to implement a Monte Carlo (MC) analysis in openSF, taking into

account current limitations. As a preparation, it is advisable to read sections 4.11.2.10 through 4.11.2.12

and 4.16, which explain the iterative and perturbation capabilities of openSF.

Full support for MC studies is intended in the future, as the current implementation is known to have

limitations. With the current status of openSF, MC analysis can be simplified by taking some

precautions when developing simulation modules.

Three different approaches are suggested to implement a MC analysis. The best approach depends on

the specific constraints of the project and the implementation of the module on which it is desired to

perform the MC analysis. These different approaches originate in the fact that, although openSF can

perform iterations both in local and global parameters (parametric analyses), it can only introduce

perturbations in the local ones (Monte Carlo analyses).

4.17.1. Approach 1: One module MC with local parameter

The first option to implement a MC analysis in openSF considers only one module needs to be executed

multiple times. The parameter to be perturbed only needs to be injected in a single MC module. The

layout of this approach is shown in the Figure 4-138.

Figure 4-138 Monte Carlo chain in Statistical mode

In the most generic version of this approach, the module on which the Monte Carlo will be performed is

preceded by a chain of modules and generates results that will feed into another set of modules. These

post-processing modules can be used to merge the multiple results of the MC.

The parameter(s) on which the MC is applied must be defined as part of the module’s local

configuration, with the perturbation specified in openSF through the “Perturbation” menu – see details

in the section §4.16 on how to configure the desired number of shots and use the Statistical execution

mode.

In the chain shown in Figure 4-138, the modules A through B are only executed once, and the same

happens with the modules D through E.

Notice that openSF only initiates the execution of a module when all expected inputs are available.

Therefore, to build a sequential execution the chain needs to define the inputs of a module as the outputs

of the previous one.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 147 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

To use this approach, the developer must consider the following points. Alternative approaches should

be considered in case the following points don’t apply to the problem at hand.

❑ The value of the varying parameter can only be defined in the local configuration file of the MC

module.

❑ openSF passes the same input and output files/folders to all the executions of the MC module.

This implies that the MC module knows the varying parameter and dynamically modifies the

name of outputs files to avoid overwriting them.

❑ To correctly process the results of the MC module, downstream modules must be able to read and

understand those results. Some degree of agreement is necessary between the MC module and the

downstream modules, either by sharing the naming convention used to generate output files and

recognise from the names the varying parameter, or by reading the result files and obtaining that

information from its contents.

❑ Considering that openSF initiates the execution of a module when all inputs are available, it is not

possible to simply specify a folder as output of the MC module to pass results to downstream

modules. After the first MC module terminates, the presence of the folder indicated to openSF

that the following module can be started.

Possible alternative solutions are listed below, knowing that the most applicable depends on the

design of the simulator.

o Pass the number of shots to the MC module, and at the end of execution generate a

“MC_Completed” flag file in case the expected number of output files is available (i.e. all

shots have finished). The “MC_Completed” flag file is essentially used to trigger the

execution of downstream modules.

o Pass the number of shots to the first post-processing module. This module is launched as

soon as openSF verifies that a results folder exists, and enters an active polling loop until it

finds the expected number of files is available.

o In case the modules design/implementation cannot accommodate the above approaches,

divide the whole Monte Carlo study in two completely independent sessions. The first

session executes the modules up to the MC modules, without any post-processing modules;

then the second, executes the remaining post-processing modules, manually configured and

launched by the user after the completion of the first one.

The options discussed above do not consider handling of errors in MC modules. In those cases,

either the modules need to implement error-checking mechanisms, or the user needs to check the

correct execution of all shots to ensure reliable results.

4.17.2. Approach 2: Multiple modules MC with local parameter(s)

Another approach has to be used when more than one module is executed with perturbed parameters for

each of the Monte Carlo shots. The chain presented in Figure 4-139 shows two main disadvantages: all

the modules are executed for each of the MC shots, with the consequent increase in the computation

time; and, it is not possible to combine all results generated by the MC modules.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 148 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-139 Monte Carlo chain in Combined mode

In the most generic version of this approach, a chain of modules on which the Monte Carlo will be

performed is preceded and followed by a set of normal modules.

As in the previous approach, the parameter(s) affected by the MC must be defined in the local

configuration file, with the perturbation specified in openSF through the “Perturbation” menu – see

details in the section §4.16 on how to configure the number of shots and use the Combined execution

mode.

This approach relies in assembling an independent session for each perturbation shot. Each shot is

considered independently, rerunning common modules, and storing the results in a different session

folder. In this case, the MC module is not obliged to provide a different name for the result files,

although it might be desired in order to gather all the results in a common folder.

The use of the same value of a perturbed parameter in more than one module is supported by simply

defining the desired parameter in the local configuration files of the affected modules, and in openSF

define the exact same perturbation for all of those parameters.

To keep the sessions executions coherent, all parameter perturbations of the MC modules need to have

the same number of shots. The non-perturbed modules will be re-run with the same configuration

parameters and the inputs produced by the previous modules of its session.

4.17.3. Approach 3: Multiple modules MC with global parameter

In case none of the previous approaches is applicable, or the parameter to vary is not local but global,

there is still one additional approach that can be used to implement a Monte Carlo analysis in openSF.

As this approach relies on an external tool to generate the perturbed parameter values, it should only be

used when the varying parameter needs to be injected into multiple modules and, either the varying

parameter must be defined in the global configuration file, or else no perturbation capabilities are

needed.

The typical chain for this approach is shown in Figure 4-140. To setup this approach create a normal

session in openSF, without taking into account MC. Use the “Iteration” features, as described in the

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 149 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

section §4.11.2.10, to customize the global parameter to be perturbed. The perturbed parameter values

can be introduced manually, or by providing a file containing the values – this file is typically generated

by an external tool. Consider also using a “batch session configurator file” as explained in the section

4.11.2.11. Executing the session essentially results in a parallel execution for each of the values of the

varying parameter.

Figure 4-140 MC with a global parameter

As the varying parameter is global, all the modules can access it and decide according to its value. As

with the previous approach, each shot of the MC is executed as an independent session implying that all

the common modules are executed repeatedly and that there is supported way to gather/aggregate all the

results.

This last limitation could be bypassed by implementing post-processing modules considering the

following:

1. Define the total number of shots of the MC in the global configuration file.

2. Considering that the all sessions files are stored as subfolders within the main session folder, at

the beginning of the module execution, retrieve the session folder path and go one level up.

3. Index all the existing folders and their contents.

4. Count the number of MC results and if it is lower than the expected number of shots, end the

execution of the post-processing module.

5. When the number of existing results is the same as the expected shots (i.e. when executing the last

session) perform the post-processing over all the indexed results.

The choice between using this or a similar solution or to simply defining another processing session to

aggregate the results and manually execute it depends on design decisions particular to each project.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 150 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.18. Time Based Scenario Orchestration

This section provides details regarding openSF time-based scenario orchestration, which is an enhanced

ability to customize session iteration (section 4.11.2.10).

The time-based scenario execution considers a time-driven execution of a simulation, where a distinct

simulation with different parameters is invoked for each time segment in a sequence. An example of a

scenario of instrument operational modes that can be defined for a SAR mission is shown in Figure

4-141.

Figure 4-141 Example instrument operational mode scenario

To understand the concepts and definitions supporting the time-based orchestration refers to [AD-E2E].

4.18.1. Time Based orchestration interface

In a session editing window, each specific module time mode is rendered as a node in the tree of

parameters – see Figure 4-142. This is only for display purposes, i.e., when rendering the parameters in

the session editing window parameters tree, so it is not reflected in the repository.

Figure 4-142 Module parameters folder organization on a per-mode basis

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 151 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

In the execution tab (Figure 4-143), a session radio button indicates whether the execution mode is time-

driven or data-driven based on the availability and configuration of an appropriate timeline (in the

timeline Pane). Classification of each module in the processing chain according to

Simulation/Processing categories is done (using the context menu) through the Execution pane in the

session edit window.

Figure 4-143 Module categorization by Mode

The interface for editing the timeline definition is available in the ‘Timeline’ tab in the Session Editing

window – see Figure 4-144. This panel allows to define and enable the global timeline parameters and

the actual list of time segments to be executed.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 152 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-144 Timeline management view

The global timeline parameters are: (a) the Initial Epoch, (b) the timeline definition file and (c) the

default time segment duration. Timeline segment are displayed below as rows in a table where each

column corresponds to the time segments attributes.

It should be noted that the global timeline parameters are stored in the global configuration file, so this

file must have been defined prior to the session’s Timeline definition. If no previous timeline parameters

are present on the global configuration file, openSF will initialize them to the default values. However,

they are only saved to the global configuration if the user actually Activates the timeline.

To define a Time-Driven session, the user can load a previously configured timeline scenario through

the Load Timeline button, or manually configure one. The timeline scenario file must be compliant with

the structure described in [AD-E2E], and the modes referred by the scenario file must match the ones

specified defined in the local configuration files of the relevant modules.

If the user chooses to manually configure a custom scenario, a valid file path shall be provided for the

global TimelineFile parameter. The user can define as many timeline segments as desired, saving the

modifications when he is satisfied with the result. It should be noted that if the filename defined for the

scenario file does not match any existent file, it is shown in grey and it will only change to black when

the user presses the Save button and the file is effectively created on disk.

Regardless of whether the scenario file is loaded or generated, it has to be activated with the Activate

Timeline button before the session can be run. To do so, no unsaved modifications can be present. It

shall be noted that the timeline activation not only configures the session as Time-Driven but it also

stores the general timeline parameters in the session’s Global Configuration File, so it affects to all the

sessions that share the same GCF. If, after the timeline scenario activation, any modification is done, the

file has to be saved and activated again.

For editing the timeline segments the interface has a set of toolbar buttons to add, remove or duplicate a

time segment row. These three actions can be performed either accommodating the existing segments

(e.g. add-shift) or without affecting the existing segments. Accommodation is accomplished by

adjusting the start times of the segments so that there are neither time segment overlaps nor gaps in the

timeline.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 153 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-145 Timeline editing toolbar

The addition of each time segment uses default values from the global timeline parameters defined

above. Within the timeline table on each row, it is possible to select the mode (active true or false) for

each module to be executed during each time segment.

The default representation of time segments in the timeline table can be configured via the System

preferences -> Application Setting -> Timeline visual. This allows using: duration, number of steps or

end epoch as time segment identifier (first column).

Figure 4-146 - Timeline preferences

Each timeline segment time definition shall then be introduced by the user with (a) a start time, and (b)

one of the following: duration, number of steps or end epoch. If the user inputs duration then from the

start time the system can compute the other two alternative values (and so on for any other selection).

Then in the timeline configuration file all the four time-related values will be written for each segment.

Therefore, when the user switches preference in the global definitions it’s simply changing the "view"

over the time data. Being a global configuration, it actually represents the specific user preference for

viewing one of the three alternative values. If the session is changed or if a given timeline configuration

file is supplied (which shall be self-contained) to another user then the displayed column shall be the

one corresponding to the users’ preference.

Furthermore, the default execution strategy when launching a session can be chosen between time-

driven and data-driven

4.19. File system

The last tab in the side-bar, named “File system” is a way to access the folder structure under the

$OPENSF_HOME.

Organized in the tree-like structure, the user can easily locate every needed file.

This structure is refreshed every time an operation involving files is performed or once the user presses

the “refresh” button.

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 154 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

Figure 4-147: File system view

4.19.1. Tool execution

As declared in section 4.5.4, the openSF system can associate external tools to a series of file

extensions.

In case the user right-clicks over a file name whose extension is associated to one or several product

tools, a menu showing some actions will pop-up.

Figure 4-148: IO file pop-up menu

Once the desired action is selected, a dialog will show up asking the user for completing the executable

command line. openSF HMI presents the location of the selected file. It presents the absolute path for

“external” tools and path relative to $OPENSF_HOME if it is an “internal” tool.

Users can accept the default parameters or can add extra. Users can also make use of the openSF

environment variables (described in section 3.5.1) writing the dollar symbol and its name. For example,

$ OPENSF_HOME or $DEBUG_MODE.

Once accepted the parameters, the tool program will be executed in a separate thread (so the openSF

operations are not interrupted).

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 155 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.20. Persistent storage - Database and file system

Most information systems must store information in a persistent way. openSF system trusts in a

relational database to store structural information and the file system to store the

input/output/configuration files. The following list shows which openSF elements are stored in database

and which into the file system.

Element Storage

System. Configuration File system. $ OPENSF_HOME /openSF.properties

System. Tools Database

Repository. Descriptors Database

Repository. Modules Database

Repository. Simulations Database

Repository. Sessions Database

Repository. Session script File system. <sessions_folder>/<name> /<name>.sh

Executions. Results Database

Executions. Logs File system. $OPENSF_HOME /sessions/openSF.log (global)

File system: session_folder/log/session.log (for each session)

File system: session_folder/log/MODULE.log (for each session and

module, only if enabled in application settings)

Execution. Dumped log session File system

Execution. Input/output/configuration

files

File system

<sessions_folder>/<name>/<filename>

4.20.1. Database maintenance

Currently, the database is allocated in a local MySQL server, named “openSF” and can be accessed with

a user named “openSF” with password “openSF”. This user and password cannot be changed or the

openSF system will not be able to access it and, consequently, it will not start.

The user (or the database server administrator) is responsible to regularly back up, de-fragment, clean

and perform similar maintenance operations to guarantee the database integrity. Users can execute the

following script to perform a manual backup to the openSF database.

~/openSF$ mysqldump --user=openSF --password=openSF openSF > openSFdb.bk.sql

In case of a major corruption problem it is possible for the user to directly use the “openSFdb.sql” script

included in $OPENSF_HOME this way:

~/openSF$ mysql --database=openSF --user=openSF --password=openSF <

data/openSFdb.sql

openSF

System User Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 156 of 171

© DEIMOS Space S.L.U., 2019

DMS-DQS-QRE0609-SUM-10-E

4.21. Table of keyboard shortcuts

This section describes the list of “acceleration keys” accessible for the user. These combinations of

keys, when pressed, access the desired platform functionality without using the mouse and menu

systems.

Here is the complete list:

Module Action Acceleration key

System Exit the system Control + x

System Exit the system Alt + F4

openSF

System User’s Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 157 of 171

© DEIMOS Space S.L., 2007

DMS-DQS-QRE0609-SUM-10-E

4.22. Error messages

openSF platform controls its correct behaviour with an error handling system. Users are informed about the nature of the error and a possible way to

correct it.

Here is a list of different kinds of raised errors:

Module Operation Error Comments

System. Configuration Adding a new variable Validation error Follow the instructions to correct the value

System. Tools Accepting changes Tool addition failed The user has chosen a duplicated identifier. Please provide a different

identifier

Validation error Follow the instructions to correct the value

Deleting a tool Database error Possible database failure. Is the database running?

Executing a tool File IO error Follow the instructions

Repository. Descriptors Accepting changes Descriptor modification

failed

Possible database failure. Is the database running?

Descriptor addition failed Duplicated identifier chosen. Please provide another identifier.

Validation error Follow the instructions to correct the value

Adding an IO file Validation error Follow the instructions to correct the value

A descriptor shall not have

associated two files with

the same id

Please choose another identifier

Deleting a descriptor Database error Possible database failure. Is the database running?

openSF

System User’s Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 158 of 171

© DEIMOS Space S.L., 2007

DMS-DQS-QRE0609-SUM-10-E

Module Operation Error Comments

Repository. Modules Accepting changes Validation error Follow the instructions to correct the value

Module addition failed Duplicated identifier. Please provide a different identifier

Deleting a module Database error Possible database failure. Is the database running and configured?

Creating a new version Database error Possible database failure. Is the database running and configured?

Repository. Results Deleting a result Database error Possible database failure. Is the database running and configured?

Repository. Sessions Accepting changes Validation error Follow the instructions to correct the value

Database error Possible database failure. Is the database running and configured?

Session addition failed Duplicated identifier. Please provide a different identifier

Adding a simulation Session identifier cannot be

void

Please provide a valid identifier before adding a simulation

Deleting a session Database error Possible database failure. Is the database running and configured?

Generating a script File IO error Follow the instructions

Iterating parameters Invalid list of values Please input a comma-separated list of valid values (no blanks)

Validation error Follow the instructions to correct the value

Removing a simulation There is no simulation

selected

Please select a simulation to remove

Running a session Cannot run an unnamed

session

Please input a valid identification to the session

Missing configuration files Provide the missing GCF or LCFs in order to run the session

openSF

System User’s Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 159 of 171

© DEIMOS Space S.L., 2007

DMS-DQS-QRE0609-SUM-10-E

Module Operation Error Comments

Validation error Follow the instructions to correct the value

File IO Error Follow the instructions

Repository. Simulations Accepting changes Simulation modification

failed

Possible database failure. Is the database running and configured?

Simulation addition failed Duplicated identifier. Please provide a different identifier

Validation error Follow the instructions to correct the value

Deleting a session Database error Possible database failure. Is the database running and configured?

Executing a simulation Validation error Follow the instructions to correct the value

Setting limits Validation error Follow the instructions to correct the value

Executions. Log Dumping the log File IO error Follow the instructions

In general, every time an input value is needed, the platform will perform a validation process. If the input does not comply with the needed format, the

user will be informed with a self-explained message.

Errors not shown as part of the graphical interface are not controlled messages. They correspond to messages from the standard output or error stream.

When executing a simulation, modules raise their own error messages and they are intercepted by the system and shown as log messages in the

execution view.

openSF

System User’s Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 160 of 171

© DEIMOS Space S.L.U, 2018

DMS-DQS-QRE0609-SUM-10-E

5. TUTORIAL: CREATING AN E2E SIMULATION

This chapter will show user how to create and end-to-end simulation within openSF software. The

simulation chain used is the one installed as validation scenario during openSF deployment.

This chapter is divided in the following sections:

❑ Scenario Description, showing the outline of the E2E simulation, logic entities, input and output

identification, etc…

❑ Module Development Guidelines detailing the module development process aimed to be integrated

in openSF.

❑ Framework Structure Definition, which details the steps that shall be taken in order to create a

whole simulation scenario within openSF HMI. This section also gives some guidelines about the

recommended folder structure for a simulation project that will be integrated within openSF.

❑ Product Tools Specification, including the definition of data exploitation tools.

This tutorial should be complemented by the information in the openSF Training course material [RD-

TM] available on the openSF web page (https://eop-cfi.esa.int/index.php/opensf).

5.1. Scenario Description

The outline of sample of a test simulation scenario is shown in Figure 5-1. The drawing of this diagram

is the first step to integrate a simulation scenario within openSF.

Figure 5-1: Outline of a test simulation scenario

https://eop-cfi.esa.int/index.php/opensf

openSF

System User’s Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 161 of 171

© DEIMOS Space S.L.U, 2018

DMS-DQS-QRE0609-SUM-10-E

After this point users shall identify and define the openSF entities that will be part of the simulation

scenario. The entities that take part in this tutorial E2E simulation are listed in the following sections.

5.1.1. Stages

To define stages sequence within the simulation chain users shall make a serialization of the simulation

scenario workflow. This step is critical as it determines the execution sequence. The abstract process to

define the stages for a simulation problem is as follows:

❑ Identify the simulation steps.

❑ Make an outline of the execution taking into account what are the requisites (files) for every

stage (ex: L1b generator requires the former execution of the Ionosphere module, Scene

generator and Observing system simulator)

❑ Serialize the simulation process taking care of the conclusions obtained in the previous point.

❑ Re-factor the simulation process by identifying non-dependent steps (in order to take advantage

of the module parallelisation execution).

For the simulation scenario presented in this chapter the following stages have been identified:

1. IonoStage: stage where ionosphere is computed.

2. GeoStage: stage where geometry is computed.

3. OssStage: instrument simulation stage

4. SceneStage: generation of the input scene.

5. L1bStage: level 1 processing.

6. L2Stage: level 2 product retrieval.

Notice that IonoStage step has been selected as the first in the chain but it can be performed afterwards

as long as it is positioned before L1bStage since Level 1b generator uses the computed ionosphere

information.

Consider also that placing IonoStage in the beginning of the chain allows the module chain execution to

take advantage of the module parallelisation since the Ionosphere Module and the Geometry Module

have no interdependencies and can therefore be executed in parallel.

5.1.2. Descriptors – Input and Output Files

The definition of the descriptors (file sets) shall be done together with the module definition as input

and files generated are the interfaces for simulation modules. This is described in the [AD-ICD].

The files showed in this section have been extracted from the validation test data set. These can be

found in the openSF installation test folder. See section 3.4.1.4. Note that even though they are XML

files, they are input/output files and not configuration files as defined in AD-E2E, and therefore they do

not use the same format.

❑ Input_Ionosphere: input used for the Ionosphere module.

• InputIonos.xml

❑ Product_Ionosphere: file generated by the Ionosphere module.

• Ionosphere.xml

openSF

System User’s Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 162 of 171

© DEIMOS Space S.L.U, 2018

DMS-DQS-QRE0609-SUM-10-E

❑ Input_Geometry, input used for the Geometry computation module.

• InputGeo.xml

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<openSFProduct>

 <InputGeo>

 <temperature type="FLOAT" value="30"/>

 <humidity type="FLOAT" value="56"/>

 </InputGeo>

</openSFProduct>

Figure 5-2: Product File Example

❑ Product_Geometry, file generated by the Geometry computation module.

• Geometry.xml

❑ Product_OSS, file generated by the Observing System module.

• Instruments.xml

❑ Input_Scene, input used for the Scene Generator, it is composed by a map input file and the outputs

of the Geometry module and the Observing System module.

• Maps.xml

• Geometry.xml

• Instruments.xml

❑ Product_Scene, output from the Scene Generator module.

• Scene.xml

❑ Input_L1b, input used for the L1b processor composed by the outputs coming from Scene

Generator, Observing System and Ionosphere modules.

• Scene.xml

• Instruments.xml

• Ionosphere.xml

❑ Product_L1b, descriptor that represents the level 1b simulated product.

• L1b.xml

❑ Product_L2, descriptor that represents the level 2 simulated product. This file can be considered as

the global simulation output.

• L2.xml

5.1.3. Modules

This is the list of modules identified within the test simulation chain. Each module has associated an

input and output description to allow a proper orchestration of the simulation scenario. Other module

configuration items such as binary file and XML configuration file are described in [AD-ICD].

❑ IonosphereModule

openSF

System User’s Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 163 of 171

© DEIMOS Space S.L.U, 2018

DMS-DQS-QRE0609-SUM-10-E

• Input descriptor: Input_Ionosphere

• Output Descriptor: Product_Ionosphere

❑ GeometryModule

• Input descriptor: Input_Geometry

• Output Descriptor: Product_Geometry

❑ OSSModule

• Input descriptor: Product_Geometry

• Output Descriptor: Product_OSS

❑ SceneGenerator

• Input descriptor: Input_Scene

• Output Descriptor: Product_Scene

❑ L1bGenerator

• Input descriptor: Input_L1b

• Output Descriptor: Product_L1b

❑ L2Retrieval

• Input descriptor: Product_L1b

• Output Descriptor: Product_L2

5.2. Module Development Guidelines

The module development process is described in [AD-ICD] in section 4.8. Refer also to section 4.11.6.2

for the Precautions for module developers to ensure safe module parallelisation.

5.3. Framework Structure Definition

This task consists in defining all the entities specified in section 5.1 into the openSF HMI. This can be

performed following the instructions specified in the openSF reference manual, chapter 4 of this

document. Furthermore, a step by step example of the creation of this simulation in the openSF HMI

can be found in the openSF Training course material [RD-TM] available on the openSF web page

(https://eop-cfi.esa.int/index.php/opensf).

5.3.1. Folder Structure Guidelines

This section gives some tips and recommendations about the folder structure within a simulation project

that is integrated into openSF. This section is aimed to ease the integration process. As mentioned, the

following instructions are not mandatory as users can choose whatever structure they.

Simulation Project Structure

❑ modules folder where all files regarding to the simulation algorithms are stored including binary,

configuration and input files

https://eop-cfi.esa.int/index.php/opensf

openSF

System User’s Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 164 of 171

© DEIMOS Space S.L.U, 2018

DMS-DQS-QRE0609-SUM-10-E

• src for modules source code

• bin for modules binaries

• lib for the libraries (example libProducts.dll for input output management that can be common to

all modules within the simulation chain)

• cots folder for storing third party applications and libraries used within the modules

• test folder for system and unit tests

• data

➢ conf for global and module configuration files

➢ input for filed used as input

❑ tools folder where store source code and related files for project specific tools (ex: end-to-end

comparator)

• bin for tools binary files

• lib for tools library files

• src for tools source files

❑ doc folder where useful documentation of the project can be located

openSF team recommends storing all the data regarding to the project in folders using OPENSF_HOME

as root directory or a subfolder of it. Example: /home/tester/openSF/E2Etutorial/ being

/home/tester/openSF/ the openSF home folder. This will help in the framework integration process as

relative paths to the files can be used. The resultant folder structure for the E2E tutorial presented in this

chapter is shown in Figure 5-3.

openSF

System User’s Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 165 of 171

© DEIMOS Space S.L.U, 2018

DMS-DQS-QRE0609-SUM-10-E

Figure 5-3: E2E Tutorial folder structure

5.4. Product Tools Specification

The definition of product tool is detailed in section 4.5.4; it is recommended that users take a look to

this section before going on reading.

5.4.1. Simulation Products Exploitation

Following the mechanism described in section 4.5.4 openSF users are able to plug-in any product tool in

order to visualize, post-process or archive the simulation products.

The election of this product tools depends on the type of simulation products (definitively files) users

want to analyse. A list of popular product tools used in openSF related simulation projects is shown in

section 4.5.4.5.

In the case of the test simulation scenario where all product files are XML and the tool associated can be

the user-preferred text editor (Notepad,Gedit,Emacs etc…)

5.4.2. Closing the Loop in an E2E Simulation

Usually the target of performing and E2E simulation is to validate the output of a set of algorithms

comparing the input and the output of the simulation. Other objectives can be the sensitivity and

stability analysis of a full processing chain over a set of simulation parameters.

In any of the mentioned cases it is necessary to perform a comparison between two points of the

simulation chain in order to analyse the results. This connection closes the loop within a simulation

scenario.

openSF

System User’s Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 166 of 171

© DEIMOS Space S.L.U, 2018

DMS-DQS-QRE0609-SUM-10-E

In order to close the loop in openSF, users can follow the following strategies depending on the

simulation scenario.

❑ Development of a product specific processing tool.

❑ Development of a new module and insert it into the simulation chain as a new processing stage.

❑ Use of a cots comparison tool. This mechanism is recommended when the product format can be

compared directly without any pre-processing step.

For the tutorial scenario possible points to close the loop are the Scene input (Scene.xml) and the L1b or

L2 product (L1b.xml or L2.xml). This action would require the development of a product specific tool

that performs a simple processing of the Scene input in order to compare with the L1b or L2 products.

This situation can be also solved including a new stage in the simulator where this comparison is

performed.

openSF

System User’s Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 167 of 171

© DEIMOS Space S.L.U, 2018

DMS-DQS-QRE0609-SUM-10-E

6. ANNEX A: INSTRUCTIONS TO BUILD THE FRAMEWORK

This annex explains how the openSF framework is built. This section is oriented only for developers

that need to build openSF from sources due to project specific customizations.

The openSF development team recommends the use of Eclipse IDE as it is the platform used for

developing the framework. It is just a recommendation, as the platform uses Maven as a build system

and thus can be built directly from the command line, or with another Java IDEs such as NetBeans.

6.1. Pre-requisites to Build the Framework

❑ openSF source files

❑ Java Development Kit, version 8 or later

❑ Apache Maven tool, version 3 or later

❑ If tests are to be executed, MySQL database to execute and test the framework.

❑ If installer packages are to be generated, install4j with a valid license, version 5.1.

6.2. How to Build the openSF Platform

Apache Maven is a Java-based build system that uses Project Object Model (POM) files to orchestrate

compilation and packaging of applications. Maven is able to automatically pull dependencies from the

Internet, a functionality that is used to download the Eclipse RCP Java files and native launchers.

Due to the above, building openSF requires a connection to the Internet, at least the first time that the

build is attempted: This is necessary in order for Maven to download its own plugins, including the

Tycho system that builds Eclipse RCP applications, and the Eclipse runtime files.

Once unpacked, the openSF tree contains the following relevant files and folders:

❑ build.sh: support script performing most of the Maven build steps.

❑ openSF.build: folder containing the majority of the “release engineering” architecture. In

particular, the main POM file that other files in the project reference.

❑ openSF.build/generate-installers.py: support script that gathers the files for each

platform into the right structure and calls install4j to generate the installer packages.

❑ openSF.build/dependencies-mvn2osgi: folder containing a separate POM project that

needs to be processed first and separately, due to a technical limitation of Tycho/Maven.

❑ openSF.build/installers: folder containing install4j project files in order to generate

installation packages for openSF (see §6.3). Also contains a folder to place the external

packages to be bundled in, like documentation files, example modules, ParameterEditor, etc.

❑ openSF.product: folder where the output of the build will be generated (under “target”).

❑ platform: folder containing the main source code for the openSF framework.

❑ platform.tests: folder containing unit tests for the openSF platform.

openSF

System User’s Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 168 of 171

© DEIMOS Space S.L.U, 2018

DMS-DQS-QRE0609-SUM-10-E

The output of this step is a series of “Eclipse packaged product” ZIP files, one for each platform,

available at the openSF.product/target/products/ folder. Note that a single build in one

machine generates the files for all platforms13, since the platform-dependent components are

downloaded from Eclipse and don’t need to be built.

These files are not full installations of openSF: they are only one of the multiple components that are

needed to build a fully-functional installer package, as described in §6.3. However, they can be used as-

is during development and testing, if they are unpacked on top of an existing openSF installation, they

will in effect “upgrade” that installation.

6.2.1. Simplified Procedure

Using the support script provided, it is easy to build the openSF platform files

$./build.sh

The support script runs the two-step build process outlined in the following session, accepting two

environment variables that change its behaviour:

❑ MVN: path to the Maven executable, defaults to “mvn”, so Maven is expected to be available in the

system PATH.

❑ SKIP_TESTS: if defined to “1”, skips the phase in which the openSF unit tests are run (the

Maven target used is “package” instead of the next step “verify”).

6.2.2. Detailed Procedure

Any build configuration changes before the process can be performed on the various files that define the

project settings. For example, the file openSF.build/pom.xml defines the system platforms to

build for; the file platform/plugin.properties configures some strings in the program, etc.

In order to build the platform, first the project under openSF.build/dependencies-mvn2osgi

must be built and installed (in the local Maven repo). This step is required due to a limitation of the

Maven/Tycho build, and only needs to be performed once as long as this project does not change. It

makes available some OSGi-enabled JARs for the second project to find and use.

$ mvn –f openSF.build/dependencies-mvn2osgi/pom.xml clean install

After the dependencies project is installed for Maven to find its outputs, the main project can be built:

$ mvn –f openSF.build/pom.xml clean verify

The “verify” target builds the product and runs unit tests. If such tests fail, the build stops immediately

and the product files are not generated. If such behaviour is not desired, there are two different options:

❑ Passing the -fae (“fail at end”) flag to Maven. In this case, the test failure will be noted and the

build will be reported as “failed”, but the product files will still be generated.

❑ Using the “package” target instead of “verify”, which skips the execution of the unit tests.

13 However, if building on Windows, the fact that the Windows file system does not save the “executable” bit will mean

that the launchers in the generated Linux and Mac OSX product files generated will require a later chmod +x.

openSF

System User’s Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 169 of 171

© DEIMOS Space S.L.U, 2018

DMS-DQS-QRE0609-SUM-10-E

6.3. How to Build the Installer Packages

As mentioned before, the output of the last step is a series of ZIP files in the Maven-generated "target"

folder under openSF.product. They contain the "archived" installations of the RCP products for

each platform, which can be used during development as mentioned in §6.2. However, a working

openSF installation is made up of several components, which if missing will make the system work

partially, or not at all. Those components are:

❑ Documentation files, the set of PDFs shown in the help menu. Without these files, no help files

will be shown at all in the HMI.

❑ ParameterEditor, which is built separately as another RCP archived product, but with the same

procedure described for openSF. If this platform-specific component missing, openSF will not be

able to launch PE as an external configuration file editor.

❑ Example modules and database, which is a set of dummy modules, configuration and input files,

along with a database with sessions including them. Since they include C++ modules along with

Java and Python examples, they are platform specific, built using CMake and require linking

against the OSFI library. If missing, only the “empty” database template file is available in the

HMI, but no openSF functionality is lost.

❑ Template openSF.properties file, placed by the installer in the installation folder after some

variables have been replaced. Without this file, openSF might not start.

In order to generate the installer, the openSF.build/generate-installers.py script can be

used. It requires the other components to be present at openSF.build/installers/external.

The user can place them there manually, or, if these outputs are uploaded to some internal Maven

repository (e.g. as part of some continuous integration build system), the dependencies.pom and

gather-components.py files in that same folder are designed to download them from such a

repository automatically. In either case, the layout should look like Figure 6-1.

Finally, if install4j is available, running the installer generation script will create files similar to those

displayed in Figure 6-2. The script accepts settings through several environment variables including the

product version and installer signing capabilities; see the script itself for details.

openSF

System User’s Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 170 of 171

© DEIMOS Space S.L.U, 2018

DMS-DQS-QRE0609-SUM-10-E

Figure 6-1: External components

Figure 6-2: Generated installers (one release
and one development build)

openSF

System User’s Manual

Code : OPENSF-DMS-SUM

Issue : 3.15

Date : 06/06/2019

Page : 171 of 171

© DEIMOS Space S.L.U, 2018

DMS-DQS-QRE0609-SUM-10-E

END OF DOCUMENT

