deimos

elecnor group

SYSTEM USER MANUAL

Open Simulation Framework
openSF

Code: OPENSF-DMS-TEC-SUMO01
Issue 4.3

Approval Date: 27/05/2022
Confidentiality Level: Unclassified

openSF Team

Javier Martin Avila / Technical Responsible

Federico Letterio / Project Manager

© Deimos Space S.L.U., 2021 1 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

. 4.3
deImOS System User Manual :

27/05/2022
elecnor group
___————’{_____7_4! &_ﬁ_\—ﬁi

This page intentionally left blank

© Deimos Space S.L.U. 2021 2 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

- &
dEImOS System User Manual

elecnor group

Document Status Log

4.3
27/05/2022

Issue Change description Date
1.0 | First issue of this document 21/12/09
1.1 | Version of this document after openSF AR1 15/03/10

O Installation details section completed
O New chapter describing the openSF web page.
U New chapter 0 tutorial for defining an E2E simulation in openSF
U Product tools section updated, with a list of popular product tools (section 4.5.4)
1.2 | New version in response to ESA assessment for openSF version 1.1 20/04/10
U Section 3.5.1.1 updated clarifying that the openSF installation mechanism for
Linux platforms is the same as the Windows one. Installation of JRE under Linux
completed.
U Bin folder reference removed. OSFI folder added
U Section 4.5.4 updated. Tools for MacOS issue.
U Added Annex A detailing how to build openSF from sources files.
U Updated chapter 5 with latest changes for the web site.
U Updated chapter 6. Folder structure guidelines.
1.3 | Minor corrections: 26/04/10
U Clarifications on section 5.2
O typosin Annex A
1.4 | New version for the openSF v2 acceptance 22/09/10
L Section added: Management of databases
1.5 | Added Annex B detailing Parameter Editor functionality. 15/10/10
1.6 | Update after openSF AR 2 meeting: 12/11/10
U Added IDL and Matlab windows for the Linux installation
U Updated functioning of databases in the multi-repository: Independence between
databases.
U Added IDL requirements for Linux installation: Problems with installation path and
different types of licenses
U Added Matlab requirements for Linux installation: licenses
U Updated introduction sentence in Annex A, section 9. Instructions to build the
framework.
U Removed import capabilities in Simulation creation
U Updated obsolete screenshots.
U Added new section for module developers.
© Deimos Space S.L.U. 2021 3 of 155

DEG-CMS-SUPTR09-SUM-10-E

e

openSF

- &
dEImOS System User Manual

elecnor group

Change description

New version including extended capabilities for openSF 2.2:

Q

O o000 O0O0

a

Parameter Perturbation plug-in (from SEPSO)
Parameter Editor integration

Tool management extension

Check output generation

MATLAB errors inclusion

Import/Export capability

Extended log capabilities

Keyboard shortcuts

HMI Isolation

OPENSF-DMS-TEC-SUMO1

4.3
27/05/2022

Date

16/02/12

2.1

New version after version 2.2 acceptance meeting

a
a

Added IDL version selection to openSF installer (section 3.5.1.1)

Plot perturbation capabilities

02/03/12

3.0

New version including extended capabilities for openSF V3:

a
a

000D

(M

00O

OO0 0D00CO0

Updated framework pre-requisites (section 3.3.3);

Updated installation instructions, leaving only references to the supported
operating system - Linux (section 3.4.1.1);

Added references to OSFEG libraries;
Added section on migration from previous versions to V3 (section 3.5);
Updated framework figures throughout section 4;

Added reference to new system configuration parameter to control module
parallelisation (section 4.5.1);

Added section on importing an XML database definition (section 4.5.2.5);

Added section on the CPU core usage view that supports module parallelisation
(section 4.5.6);

Added copy capabilities for several openSF elements (from section 4.7 to 4.11);

Updated the module chain management in a simulation according to the openSF
framework revision (section 4.11);

Added capability for removal of intermediate output files (section 4.11.2.8.1);
Added capabilities for simplified module management:

Switching a module version (section 4.11.5.1);

Bypass/Switch-off module execution (section 4.11.5.2);

Run from a given point in the module chain (section 4.11.5.3);

Added capabilities for parallelisation of module execution (section 4.6);

Added capability for exporting/importing module of an executed simulations
(sections 4.11.9.3 and 4.11.9.4);

22/11/13

© Deimos Space S.L.U. 2021

4 of 155

DEG-CMS-SUPTR09-SUM-10-E

e

openSF

- &
dEImOS System User Manual

elecnor group

OPENSF-DMS-TEC-SUMO1

4.3
27/05/2022

Issue Change description Date
3.1 |New version answering the comments generated by ESA on the openSF V3 AR |15/01/14
documentation package.
Implementation of the following RIDs:
U OSF-AR3-05: Update semantics of maximum number of threads parameter with
associated warning message (section 4.5.1);
L OSF-AR3-06: Updates database view related figures 4-14 and 4-20 (section
4.5.2);
L OSF-AR3-07: Added clarification on the log functionality in the case of module
parallelisation (section 4.11.6.1);
L OSF-AR3-10: Clarification on simplification of simulation directory name (section
4.13).
L OSF-AR3-11: Renamed section 4.19 to “Table of keyboard shortcuts”;
L OSF-AR3-RF-01: Updated change log to list sections changed for openSF v3;
L OSF-AR3-RF-02: Updated Applicable and Reference documents (section 2.1 and
2.2) including also document versions; added section 1.1.1 identifying the
changes from openSF V2.2 to V3;
U OSF-AR3-RF-03: Revised Tutorial (section 6) according to openSF V3 and added
a reference to the training material (course handouts);
L OSF-AR3-CE-01: Corrected the supported IDL versions (section 3.3.3.3);
L OSF-AR3-CE-02: updated pre-requisites section to appear chronologically before
framework installation (section 3.3.3).
L OSF-AR3-CE-03: Updated section to clarify typical definition of OPENSF_HOME;
L OSF-AR3-CE-04: Added a clarification regarding the installation an execution of
openSF in the appropriate machine architecture (section 3.5.1.1).
The implementation of these RIDs closes action ACT-AR3-03 from the AR3.
3.2 | New version including the integration of Python modules in openSF. 04/04/14
3.3 Updated after review comments from ESA: implemented RIDS OPENSF_v3.2_RID_01 30/04/14
and OPENSF_v3.2_RID_07 by updating section 3.3.3.5.
3.4 | New version with updated installation procedure including also the porting to OSX. 03/06/15
3.5 |New version including extended capabilities for openSF V3.4: Time Based Scenario 02/12/15
Orchestration.
Included special conditions for installation in OSX.
3.6 | OPENSF-AN-004: The ‘iterate parameters” functionality is able to import parameter 16/03/16
iteration definitions from file
OPENSF-AN-017: Updated SUM to use "modules" instead of "models".
Added section on execution of script modules and special conditions applicable to OSX
10.11.
© Deimos Space S.L.U. 2021 5 of 155

DEG-CMS-SUPTR09-SUM-10-E

e

openSF

- &
dEImOS System User Manual

elecnor group

Change description

Updated with extended capabilities for openSF V3.5:
U OPENSF-AN-003: Remote orchestration;
L OPENSF-AN-019: Automatic openSF version checking;
L OPENSF-AN-030: Select subset of parameters to monitor;
O Miscellanea HMI corrections and simplifications.

U Descriptor syntax clarifications.

OPENSF-DMS-TEC-SUMO1

4.3
27/05/2022

Date

16/05/16

3.8

Overall review based on ESA comments

06/06/16

3.9

Updated installation requirements.

20/01/17

3.10

Updated with HMI revamping for Eclipse RCP.

09/06/17

3.11

Updated with COTS requirement (Table 3-1 and Sec 3.3.2)

28/08/17

3.12

Remove OSFI from framework pre-requisites

Update MySQL tools path configuration during installation

Database created during installation selected by the user

Update folder structure

Small updates on database connection, deletion and backup due to bug fixes
OpenSF log messages moved to simulation dedicated log files

Move ParameterEditor appendix to dedicated SUM

15/12/17

3.13

Update for openSF version 3.7.2
U §3: Removal of the V2 upgrade path.
§0 and §3.4: Update of the supported platforms.
Reorganization of §3.4.3, splitting off the module-specific requirements into §6.3.
§3.6: Update of the command line arguments section.
§4.9.6: New dialog for missing configuration files.
§4.9.6.9: Update simulation export/import files, dialog
§4.12, 84.17: add per-module log files.

O 0o0o000OC

§9: Update of build instructions

15/06/18

© Deimos Space S.L.U. 2021

6 of 155

DEG-CMS-SUPTR09-SUM-10-E

e

openSF

- &
dEImOS System User Manual

elecnor group

OPENSF-DMS-TEC-SUMO1

4.3
27/05/2022

Issue Change description Date
3.14 Update for openSF version 3.7.3: 14/12/18
U §3 and §4: Added Windows as a supported platform.
U §3.4.2: Updated the folder structure of the OpenSF installation folder.
0 §3.4.2, 84.11.5.4 and §4.13: Documented new feature for grouping timeline and
iteration/perturbation simulations.
U §3.3, §3.4, $4.5, §4.18: Updated the dependency from MySQL, since starting on
v3.7.3 the client tools are not necessary.
L 8§4.5.1: XSD Validation and other changes in Preferences dialog.
U 8All sections: Updated several images to comply with the newly delivered version.
U §3.4.3: updated licencing scheme
U Various minor changes
3.15 Update for openSF version 3.8.0: 06/06/19
U General revision and update of the document.
L §2: Update the description of the installation process.
U 8§4.9.3.2: New section on iterations on parameter sets.
U 8§4.13: Include the concept of the “User Roles” and explain them.
U 8§4.14 Addition of some guidelines on how to implement a Monte Carlo study in
openSF.
3.16 Update for openSF version 3.8.1: 17/07/19
U §3.4.3.1 Modification of supported versions to align them with the pre-requisites
listed under §3.4.3.
U Added description of the new preferences added to the Application Settings
preferences page.
3.17 Update for openSF version 3.9.0: 27/11/19
U Removal of the Stage and Simulation concepts.
U Renaming of the previous “Session” concept to “Simulation”.
U Clarify the setup of the $INSTALL4]_JAVA_HOME environment variable.
U Update all images to the latest openSF HMI.
U Removed “product” concept.
3.18 Update for openSF version 3.9.2 12/03/20
U New feature: Python-like format for parameter value edition.
© Deimos Space S.L.U. 2021 7 of 155

DEG-CMS-SUPTR09-SUM-10-E

e

openSF

- &
dEImOS System User Manual

elecnor group

Update
a

a
a
a
a
a

a

Change description

for openSF version 3.9.3

Added preference “Symlink handling mode”

New section Parameter Series

Sub-sections 4.9.2 renumbered

Update images in §4.9.2

New conditions for inline editing

Introduction of E2E_ HOME variable and new meaning for OPENSF_HOME

Moved Perturbations explanation to 4.9.3

OPENSF-DMS-TEC-SUMO1

4.3
27/05/2022

Date

03/07/20

4.0

Update

for openSF version 3.9.5
Overall review of the document
Added Sec. 4.5.4

Added Sec. 6.3.1

17/12/20

4.1

for openSF version 3.10

Added Sec. 3.6.2

Updated Sec. 3.5.1, 3.5.2 and 4.6.1
Updated Sec 3.4.3

Updated Sec. 4.2.1

Added Annex E

24/06/21

4.2

00O

000D O

for openSF version 3.11

Removed requirement of a pre-installed Java runtime: updated Sec. 3.1, 3.4.3,
3.4.3.2, 3.5, 3.5.1.1

Modified GTK+ version pre-requisite on Sec. 3.4.3

Updated uninstall mechanism for files removal and related screenshot on Sec.
3.5.1.3

Added update dialog screenshot on Sec. 3.6.3

New Sec. 4.2 on the workspace selection feature. Also modified table in Sec.
3.5.1.4

Updated Sec. 4.2.3 with comment about symlink creation on Windows
Updated Sec. 4.3.3.6.5 with explanation about string parsing

Updated Sec. 4.3.5.1 with clarifications about the “new tool” dialog fields
Updated Sec. 3.4.3.1 for required MySQL/MariaDB server settings
Updated JDK version to 11 on Sec. 8.1, and updated the build procedure

01/12/21

© Deimos Space S.L.U. 2021

8 of 155

DEG-CMS-SUPTR09-SUM-10-E

e

openSF OPENSF-DMS-TEC-SUMO1

d . & 4.3
EI mOS System User Manual 27/05/2022
elecnor group

4.3 Update
a
a

Change description Date

for openSF version 4.0 27/05/22
Updated minimum requirements on Sec. 3.1 and 3.4.

Expand explanations on launcher options and advise against running long
simulations via SSH in Sec. 3.6.

Update the description of the XML import/export mechanism, and explain the
non-portable paths warning in Sec. 4.2.2.4.

Update module view explanation and screenshot, removing the XSD schema
validation, in Sec. 4.3.2.2.2 and 4.5.2.

Update the simulation view description and screenshot for the new graphical
simulation editor and execution monitor, in Sec. 4.3.3.

New Annex on the packaging and delivery of complete simulators

© Deimos Space S.L.U. 2021

9 of 155

DEG-CMS-SUPTR09-SUM-10-E

_ N OPENSF-DMS-TEC-SUMO1

. e openSF
dEl mOS System User Manual 27/05/2042§
elecnor group
Table of Contents
1. INTRODUCTION ..ocucuuuiuresmaunssasasassssasassssssssasssssssssssssssstasssssssssssssssstsssssssssasssassssssasassssssasannsnns 20
B R T oo T F T 20
I ol o T 5 1= e 20
1.3. Acronyms and Abbreviationsccciiiiiiiiriis i 20
B R 0 7= 1 1 o o S 21
2. RELATED DOCUMENTS ..uicucuturaresenssasasasassasesesassssasasassssssassssssstasssssssssssssssssasasssassssasassssssannnas 23
2.1. Applicable DOCUMENEScieiimierimrrimrsrmsa i s s s s s s s s s s s s e s s s s s s nsn s nsmsanansnnnnnnnnnss 23
2.2, Reference DOCUMENES .. uiiiiiiiisieieiiesrere s ra s s s s s s r s raaar s s s nnannnnmnananannnnnn 23
7 TR - 1 T - T o« 1 23
3. GETTING STARTED . cucuiuiuieieisurareraiasrarasatasasesesassstasasassssasasassssstassssssasasasassstasassssssasasasassssasnsas 24
2 R 13 1 o X« [T T ot o o 24
3.2. openSF User Profiles and ROIESc.ciciiiimimimimiererererasasasssssiesasasasasasssassssssnsasasasasasasasasass 24
3.2.1. User profiles definition and quick-start guUIdec.oiiiiiiiiii s 24
3.2.1.1. Scientific MOdUIES AEVEIOPEI ... c.i e e e e e e eenees 24
3.2.1.2. E2E processing chains iNtegratoru.iieiiiiiiiiii e en e 25
IC 20720 NG T =] = o T=T o Vo] g p a = T a Lol =T g Vo 1 1= o PP 25
3.2.1.4. E2E performance a@naly St ...t e 26
A oY 0 1= 1] S U= gl o] =T 26
2 A 0 1 1} =T 1 oo T 3 28
3.3.1. <OPENSF _INSTDIR > ..titiiiititittniat et eee et ettt e s et e a et e e et eaee s et en e e e e e enenrerenananaaaeenanns 28
3,302, SE2E HOME ottt ittt ettt e ettt aaans 28
GG G TR D T) = I 1V o =T RS 29
3.4. System RequUiremMentscucuirimirisiernmrars s s s s s s sa s s aa s s s aa s an s s aa s annannnannnnnnnnns 29
G 0 W o =T e 1YV Y ol I =T LU =Y o 1= o] o= 29
3.4.2. Operating system reqUIrEMIENES ..t e e e e a e e e e anens 29
3.4.3. Framework Pre-reqUISIEES. ...ttt e 29
3.4.3.1. MySQL/MariaDB installationcccouiuieieiiiii e 30
3.4.3.2. Remote execution inStallationcoiieiii i e 30
3.4.3.2.1. LinuX iNSTAllationeeiiieie e 30
3.4.3.2.2. MAcOS iNStallationc.oeiiiii s 30
3.4.3.2.3. SSH access permission CONfigQUIration........cocvuiuiuiiiiiiiiiii e 31
3.5. How to Install the Frameworkc.ciciiiiiiiiiiiiiiicrcre s s s s s s s s n s s s s s nana e 31
3.5. 1. INStaller GUIAE SEEUPDvieiie i e 31
3.5.1.1. LiNUX INSEAII@tIoN ...vieeiii e 32
3.5.1.2. macOS and Windows installationoeieiiiiiii e 34
3.5.1.3. Uninstalling OPENSF .. uiuiiiiii e 34
3.5.1.4. Folder StrUCTUrE ...oviviiiii 35
© Deimos Space S.L.U. 2021 10 of 155

DEG-CMS-SUPTR09-SUM-10-E

- . &W openSF
dEl mOS System User Manual

elecnor group

3.5.2. Licensing SCheme ... oo
3.6. RUNNING OPENSF.....cciiiirsiramrrsr s s s s sm s s am s nm s nas
3.6.1. How to start the application........ccociiiiiiiiiiii e
3.6.2. First Start-Up «ovoiiiiii i e e e e
3.6.3. Check for Updateso e e
3.6.4. EXit the System . i
4. REFERENCE MANUAL.....ccccvumtammummsnssessassassansanssnssnssnssnssnssansansansansnns
4.1. HMI Description.....ciciiiiiiimimimi s sms s smsssssssassassasssnsasssnsansnns
i N R = Yo 1A o o o PP
4.1.1.1. SIide Dar ..o
4.1.2. Frame management ... e
4.1.3. Generic functionalities, dialogues and displaysccceeuene.
4.2. Data Structureccuerviirin i s
A 1T o] g o =l = PP
4.2.1.1. SWiItching WOrkSpacesccvvviiiiiiiiiii i
4.2.1.2. Configuration persisted across workspacescvovevuennn.
4.2.2. Databases ...
4.2.2.1. Connect to a databasecccoviiniiiiiiiiii
4.2.2.2. Create a new database.........cccoveiiiiiiiiiii e
4.2.2.3. Delete @ databasecocviiiiiiiiii
4.2.2.4. Import and Export a database............cocoviiiiiiiiii
4.2.2.5. Refresh database listcccviviiiiiii
4.2.2.6. Database maintenance.........ccooiiiiiiii i
4.2.3. Simulation Results Naming Conventions..........ccooviiviiiiiieinnnens
4.3. Framework Elements.......c.cicioiiiiiimimimieimiirere s s snsasnsaass
LG T R B 1T~ of '] o) o] =3P
4.3.1.1. DescCriptor liSt ..ouuiiiiiiiii i
4.3.1.2. Descriptor Creationccvvviiiiiii i
4.3.1.3. Descriptor modificationcccocveiiiiiiiiii
4.3.1.4. Descriptor deletioncooiiiiiiiii
4.3.1.5. DESCriPLOr COPY tvvuutiniintitiitinire it raeaaas
4.3.2. MOAUIES e
4.3.2.1. ModUle ISt ..
4.3.2.2. Module creation.......c..oiiiiiiiir
4.3.2.2.1. General data......ccoiiiiiiiiii
4.3.2.2.2. Configurationcooiiiiiiiiii
4.3.2.2.3. IO deSCriPLOrS . uuveiiiiieeeee e e e e a e
4.3.2.3. Module modification.........ccoiviiiiiiiiiii

© Deimos Space S.L.U. 2021

OPENSF-DMS-TEC-SUMO1

4.3
27/05/2022

11 of 155

DEG-CMS-SUPTR09-SUM-10-E

T .
deimos

elecnor group

openSF

System User Manual

4.3.2.3.1. Module upgrade - NEW VEISIONcviiiiiiiiiiiiii i neneeaeas
4.3.2.4. Module deletion......ccoiiiiiiiiii
4.3.2.5. MOAUIE COPY tviitiiiiiiii i e e e e
4.3.3. SIMUIALIONS 1.eeiiii
4.3.3.1. Simulation list.....ooiiii
4.3.3.2. Simulation creation.........oovviiiiiiin
4.3.3.3. Simulation deletion ...
4.3.3.4. SIMUIGLION COPY tiiuiiiiiiiiiiii i i e eaaeas
4.3.3.5. Simulation modificationcoiiiiii
4.3.3.6. Settings in @ simulation........coooiiiii
4.3.3.6.1. Simulation definitioncoooiiiiiiiiii
4.3.3.6.2. INPUL fil@S .. e e
4.3.3.6.3. Configuration filescoviiiiiiiiiii
4.3.3.6.4. OUEPUL fil@S. e v e
4.3.3.6.5. Parameters configuration.........ccooeiiiiiiiiiiiiiiicc
4.3.4. RESUILS .o
4.3.4.1. RESUIL VIEW . et a e e

4.3.4.1.1. Modules execution time.......coiiiiiiiiiiii i e

4.3.4.2. Continuing or repeating the execution of an existing simulation

4.3.4.3. Report generationoouiiiiiiiiiii e
4.3.4.4. Result deletion ...
4.3.5. Product T00IS . ..viviiiiii
4.3.5.1. NEW 00! .oriiiii e
4.3.5.2. EAIt 00l e
4.3.5.3. Delete t0O0l ..o
4.3.5.4. TOOI @XECULION ...iiiiiiie e e
4.3.5.5. Popular product t00ISciiiiiiiiii i e
4.3.5.6. Specification of final product tooIScccovviiiiiiiii
4.4, Executing a Simulation ..o
4.4.1. EXecUtion SEtEINGS ..ovviiiiii i
4.4.1.1. Switch module VErsioncooviiiiiiiii e
4.4.1.2. Bypass/Switch-off module execution..........c.cooviiiiiiiiiiiiienes
4.4.1.3. Run from a given point in the module chain.............c.cocviieinnenn.
4.4.1.3.1. Run from a given module using previous data.......................
4.4.1.4. Removal of intermediate output files........cccooeiiiiiiiiiii
4.4.1.5. Breakpoint scheduling.........cooiiiiiii
4.4.1.6. Remote eXeCULION....coiiiiiiii i

4.4.2. Series of simulations with parameters variationcooviiiiinnn.

© Deimos Space S.L.U. 2021

OPENSF-DMS-TEC-SUMO1

4.3
27/05/2022

12 of 155

DEG-CMS-SUPTR09-SUM-10-E

4 y openSF

. S
dEImOS System User Manual

elecnor group

4.4.2.1. Parameters iterationccoviviiiiiiiniii
4.4.2.1.1. Saving parameter iteration definitions...............coooeiiiinnt.
4.4.2.2. Batch simulationcooviiiiiiiii
4.4.2.3. Parameter perturbationsccoiiiiiiiiiii
4.4.2.3.1. Parameter perturbation interface..........cccocviiiiiiinine.

4.4.2.3.2. Defining a new perturbation.........cccovviiiiiiiiiiiiiiii

4.4.2.3.3. Statistical and combined perturbed execution modes

4.4.2.3.4. Perturbations functionscccooiiiiiiiiiiii
4.4.2.3.4.1. Deterministic functions...........oooiiiiiiiiiiii e
4.4.2.3.4.2. Sampling functionsc.cocviiiiiiiiiiii e
4.4.2.3.4.3. Non-deterministic functionscccocviiiiiiiininnnn,
4.4.2.3.4.4. Binary and composite operationsc.coeeviiiiiiiennnns
4.4.2.4. Time-based scenario orchestrationccccvviiiiiiiiiins
4.4.2.4.1. Time-based orchestration interface...........cocoevviiiinnnne.
4.4.2.5. Monte Carlo simulationscocvviiiiiiii
4.4.2.5.1. One module MC with local parameter..........cocoviiiiiiiinnnnns
4.4.2.5.2. Multiple modules MC with local parameter(s)ceeevnnns
4.4.2.5.3. Multiple modules MC with global parameter
4.4.3. SIMUIALION FUN .. e e
4.4.3.1. Parallelisation of module executioncccovviiiiiiiiiiinines
4.4.3.1.1. Parallel @XeCutionc.coveiiiiiiiiiiii e
4.4.3.2. Simulation RESUMINGviviiiiiiiiiiie i e e e e
L G T TR I T 1= P
4.4.3.4. SIMUIAtioN groUPS ...oviiiiii e
4.4.4, Import and export simulationsc.cciiiiiiiiiii
4.4.4.1. EXport simulationc.coiuiiiiiiii
4.4.4.2. Import simulation.....c.coiiiiiii
4.4.4.3. Export module of a simulation...........ccooviiiiiiiii
4.4.4.4. Import module of @ simulation ...
4.4.5. Simulation script generationcoviiiiiiii s
4.4.6. Multi-node simulationc.coiriiiiiii
4.4.6.1. Remote machine management..........coooiiiiiiiiiiiii e
4.4.6.2. Connect to a remote machine ...
4.4.6.3. Disconnect from a remote machine............cccoeiiiiiiiiiiienne.
4.4.6.4. Configure a new remote machineccoovviiiiiiic e
4.4.6.5. Delete a remote machingcoooveiiiiiiii e
4.4.6.6. Refresh remote machine list ..o

4.5, Prefer@NCeS .iucuiirtrintnssmsnssras s ssssssssssssssssnsssnsssansssnsssnssnnnsnnnsnns

© Deimos Space S.L.U. 2021

OPENSF-DMS-TEC-SUMO1

4.3
27/05/2022

13 of 155

DEG-CMS-SUPTR09-SUM-10-E

S

. a— openSF OPENSF-DMS-TEC-SUMO1
dEl mO System User Manual 27/05/2042§
elecnor group
4.5.1. EnVIironment Variables ..o 124
4.5.2. Application Setlings ..o.u i e 125
LS TC Vo] o] o= [uTe] g TN o] Ua [T o= PP 126
4.5.4, Interpreters Definition ..o e 126
I =T o= | - T 4 =T L 129
L T Y o o 10 | o o 1= 1] PP 129
4.6.2. Embedded dOCUMEBNTS. ... 129
L S TR O o U =7 T =P 130
L N 0 1T o T P 130
L TG T o 0= ol © 1 P 130
L ST G 1A T ' [0 1= 130
5. ANNEX A: ERROR MESSAGES....ccicttumtummuamiariemmanmasmssmasmssmssssssssssasssssssssssssssssssnsasssnssnssnssnnsnnnas 131
6. ANNEX B: DEVELOPING MODULES FOR OPENSFccccccieieimimaiaseinisasesesassssasasassnsasasasnssnsanans 133
6.1. Precautions to ensure safe module parallelization...........cociimiirararainisr s sass 133
6.2. Environment variablesccciiiiiiaiiiiiiiirr s e 135
6.3. Module pre-requisSitesciciririrarirsr s s s r s 135
6.3.1. Modules not compliant with E2E GeneriC ICDcciiiiiiiiiiiiiiiiiie e e s ae e e 135
LG T 1 PP 136
LT TG T 1 I PP 136
6.3.4. Python and Other SO PES .ottt e et a e e eaaens 136
6.3.5. Python scripts execution in WINAOWS.......cuiiiiiiiiiii e e ae e e 137
7. ANNEX C: Packaging & delivering an E2E simulator......ccccvcvrierariemsmserassassssarassessnsasansasansass 138
7.1. Create the simulator.......ccciciiiirsire s s r s s s s s s s s r s n s ann s 138
7.2. Package the simulatorcciciiiiiimirsri s r s s s s s r s s s s r s r 138
A T o Tol <= T T o] 0 1< 4 15 PP 139
7.3. Install the packaged simulatorciciciiiiiiirnirs s s r s s s s s s s s n s nmnnn 139
7.3.1. MUIti-USEI ENVIFONMIENT ...ttt e e e e e e e e e e e e raes 139
7.3, 2, AUTOMIATION 1uiitii e 139
7.4. Framework configuration.......ccciciciciiiiiiiiiiiirsrs e 140
8. ANNEX D: TUTORIAL - CREATING AN E2E SIMULATION.....ccccuvemrammnmmsmsnessassassansansnnssnssnssnnss 142
2 0 I ol o 1 T o T Ty of T o 1o o] 3 e 142
8.1.1. Descriptors — Input and OULPUL FileS......cuuininiii e 143
812, MOAUIES ..o aaa 144
8.2. Framework Structure Definitionccciciciciciiiiiiiiiirrsre s s s s s 144
8.2.1. Folder Structure GUIAEIINESc.eiuiieiii e r e e e e e e 144
8.3. Product Tools Specification.......ccciieiiiiiiicrarasiii s s s s s s s s s nmnmnmnmnns 146
8.3.1. Simulation Products EXploitationc.ouieiiiiii e 146
8.3.2. Closing the Loop in an E2E Simulationocoiiiiiiii e e e e 146
© Deimos Space S.L.U. 2021 14 of 155

DEG-CMS-SUPTR09-SUM-10-E

/@W openSF OPENSF-DMS-TEC-SUMO01
dEl mOS System User Manual 27/05/20425
elecnor group
9. ANNEX E: INSTRUCTIONS TO BUILD THE FRAMEWORKc.cicimimiemmmnisneresmmssasesnssnsasasannnnns 147
9.1. Pre-requisites to Build the Frameworkc.ccvciiiiiiiirssiss s s s s ss s s s s snm s nans 147
9.2. How to Build the openSF Platformcciciiiiiiimimi i i sns s s s s s s s s sssnssnssassassannas 147
1 I Y 10 oY o] 11 1T B o] o Yol =T LU | /=T PO 148
1S TR A A B T =1 (= B o o T =T [= 148
9.3. How to Build the Installer Packagesccvcuimiummiemiemiemismssmasmsnsssssassassassansasssnssnssansassannas 148
10. ANNEX F: USING DOCKER IN OPENSF SIMULATIONS....c.ccctmmammammsnssnssassansanssnsanssnssnssnnnnnss 150
10.1. Concepts and ReqUIirements ...cciiciiiiriiiamramsms s s s s ssasssasssssassansasssnssnssnssnssannnnsa 150
0 T 5 - T 3 1] o] = 151
3O B O =T = B o Yol (=T X o = o 151
10.2.2. Invoke Module in DOCKEr CONTAINET ...uiviiiiiiiiren et 152
10.2.3. Setup Module iN OPENSF ... it e s a 153
List of Figures

Figure 3-1: User role selection t00IDar.o e 27
Figure 3-2: Executions tab and color code based on results replicability.........ccocvviiiiiiiiiiiiiie 28
FIigure 3-3: OPENSF WED Page. .. ittt et a 32
Figure 3-4: Installation confirmation SCrEeNt e e e e e 32
Figure 3-5: Installer folder Selection WINAOWciuiiiriiiiie e e e e e e e raeeeas 33
Figure 3-6: Installation iCON WINAOWuieiiiii e e e e e e nanereas 33
Figure 3-7: Installation SUCCESSTUI SCrEENiiiieiii e e r e e e raeeeas 34
Figure 3-8: Uninstall confirmation screen under WiNAOWSciiiiiiiiiiiiiiii e e e e eees 34
Figure 3-9: First start didlog ..o.oeeieeieiiiiiii e e et e a 37
Figure 3-10: Dialog shown when an update is available ... 38
Figure 4-1: Main WiNAOW @D DEAIANCE .iuuuetiititeitttatsetee et s e ee et aae e et s sae e aanasaneraeasasanerneanasennrnn 39
Figure 4-2: Detail of Main MenU Dar ... e e 40
Figure 4-3: Detail of @ menu, showing mMenu itemMS ... e 40
Figure 4-4: Detail of @ contexXtual MENU. ... e e e eens 40
e T8 R R Y o [o - [PP 41
Figure 4-6: REPOSITONY VIEW . .uiuiiiiiiitiiitiiti ittt e st a s s e e st r et s et et e s e et s e e e e 42
Figure 4-7: File system view with the simulations directory inside (left) and outside (right) of the the openSF
[Tyt =Tl g e 1T =T ot u o] oY PP 43
Figure 4-8: Frame managemeEnt MENUueiiiiieitiierts e et e s s et s e e s e ane e 43
Figure 4-9: Internal frame NEader ...t et e e e e e 44
Figure 4-10: File ChOOSEr di@log.....ccvieieieiiii it e s e e e e eenans 44
FIgure 4-11: Dialog @XamIPIe .ottt st s et s e e e e a 45
Figure 4-12: Current database and workspace indiCationcooeiiiiiiiiiiii e 46
© Deimos Space S.L.U. 2021 15 of 155

DEG-CMS-SUPTR09-SUM-10-E

Figure 4-13:
Figure 4-14:
Figure 4-15:
Figure 4-16:
Figure 4-17:
Figure 4-18:
Figure 4-19:
Figure 4-20:
Figure 4-21:
Figure 4-22:
Figure 4-23:
Figure 4-24:
Figure 4-25:
Figure 4-26:
Figure 4-27:
Figure 4-28:
Figure 4-29:
Figure 4-30:
Figure 4-31:
Figure 4-32:
Figure 4-33:
Figure 4-34:
Figure 4-35:
Figure 4-36:
Figure 4-37:
Figure 4-38:

A

. G
deimos

elecnor group

Figure 4-39 Simulation diagram
Figure 4-40 Module editor side area
Figure 4-41 File edition side area
Figure 4-42:
Figure 4-43:
Figure 4-44:
Figure 4-45:
Figure 4-46:
Figure 4-47:
Figure 4-48 Execution results, definition tab
Figure 4-49: Execution results, results tab

Figure 4-50: Results menu

© Deimos Space S.L.U. 2021

Select workspace dialog
Database management window
Connect to a database
Create new database
DB creation error message (wrong name)
Delete a database
Confirm deletion operation

Database import

Descriptors in the side bar
Descriptors list view
Create a new descriptor
Copy of a descriptor
Repository view: modules
Repository menu
Module pop-up menu
Module list view
Module general data
Module configuration
Module input/output specification
Module copy
Simulations pop-up menu
Simulation list view
Simulation copy

Simulation general properties

Simulation inputs definition
Configuration files definition
Simulation output definition
Simulation parameters definition
Simulation execution warning message

Parameter visibility view

openSF

System User Manual

Grouping of iteration/perturbation (left) and timeline (right) simulations

File system in the side bar, including symbolic link to last simulation

OPENSF-DMS-TEC-SUMO1

4.3
27/05/2022

16 of 155

DEG-CMS-SUPTR09-SUM-10-E

T .
deimos

elecnor group

Figure 4-51:
Figure 4-52:
Figure 4-53:
Figure 4-54:
Figure 4-55:
Figure 4-56:
Figure 4-57:
Figure 4-58:
Figure 4-59:
Figure 4-60:
Figure 4-61:
Figure 4-62:
Figure 4-63:
Figure 4-64:
Figure 4-65:
Figure 4-66:
Figure 4-67:
Figure 4-68:
Figure 4-69:
Figure 4-70:
Figure 4-71:
Figure 4-72:
Figure 4-73:
Figure 4-74:
Figure 4-75:
Figure 4-76:
Figure 4-77:
Figure 4-78:
Figure 4-79:
Figure 4-80:
Figure 4-81:
Figure 4-82:
Figure 4-83:
Figure 4-84:
Figure 4-85:
Figure 4-86:
Figure 4-87:
Figure 4-88:

© Deimos Space S.L.U. 2021

openSF OPENSF-DMS-TEC-SUMO1
System User Manual 27/05/2042;

YO o ToT o R0] o 30 0 011 o 10 [PPN 73
Executions view in the side baro.ooiiiiii 73
Bar graph showing module timeEsciiiiiiii i e e 74
Pie chart showing the percentage of timecoiiiiiiiii e 75
Table showing Module tiIMeES. ... e 75
RESUIE. RE=FUN 1 uitiiiiiit i e et e s s e e s e e e e 75
EXECULION FEPOIT. .t e 76
Confirmation dialog to delete execution(s) from database and file systemccceniis 76
B Ie o 3 =] oY =1 77
B Ie o I =Ta [o T Y AT 78
Tool Execution/Schedule from Simulation Edition VIiEW ...uviiiiiiiiiiiiiiiiici i siaeenas 78
| (@ I8 1 1= 0o o R U] o I o 1= o 11 [PP 79
Web browser as openSF product £00]ciiiiiiiiii i 80
Product t00lS SPeCifiCationi.iiiiiii i e 81
File contextual MENU. ..o e ans 81
Tool parameters SPeCifiCation........ovieieie i e e 82
Module chain with different Module VErsioNScciviiieiiiiii e 83
SWItCh MOAUIE VEISION ..u e e e e e e 83
Bypass/SWitch-off MOdUle ..o 84
Bypass/Switch-off module missing filescviiiiiiii 84
SWILCh=-0N MOAUIE «..ee e et et e e e aaens 85
Run simulation from ModUIE Bouiiiiiiiiii e 85
Run simulation from a given module...... ..o 86
Reset IO desCriptor OPTIONttt et e e e e e e e e s 86
LY ol (O e (=TTl T o) o Y= (| o IS 87
Use previous setup IO descriptor OPLiONS. e 87
Breakpoint scheduling iNterface.c.ouiiieiii i 88
Tterating ParamIELErS ...o.uieii i e 89
Editing NUMEINIC SEQUENCESuieiiiiiie it ettt e e e e et et e e s e e e e neeeeens 89
Simulation with iterated parameterso 90
Successful batch configurated simulation MESSAgEvvviviiiiiiiiii e 91
Simulation with overridden parameters through the batch option ..., 92
Perturbation system main WiNAOWcciuiiiiiii e 93
No valid parameters SeleCtedo e 93
Selection of parameters for perturbation ... 93
Adding a perturbation function to a module parameter.........cccooviiiiiiii 94
Complex perturbation fuNCHIONouiuiei e 94
Random perturbation PropertiEsoi i 95

17 of 155

DEG-CMS-SUPTR09-SUM-10-E

E QW openSF

deimos

System User Manual
elecnor group

Figure 4-89: Preview of statistical mode execution scheme........c.covvviiiiiiiinnnne.
Figure 4-90: Complex perturbation for a parametercooooiiiiiiiiiii e
Figure 4-91: Time series line for a parameter perturbationccccoiiiiiinne.
Figure 4-92: Histogram chart for a random parameter perturbation
Figure 4-93: Loading an external error file........ccoviimiiiiii e
Figure 4-94: Function with variable number of properties (points)cccvvvenne.
Figure 4-95: Editing a value of the Perturbation Treecooviiiiiiiiiiiiieenes
Figure 4-96: Statistical mode execution schemec.coviiiiiiiiiiiiiii e
Figure 4-97: Combined mode execution scheme...........cooiiiiiiiiiiice
Figure 4-98: Execution mode SEIECLOrviviiiiiiiiiir e e
Figure 4-99: Statistical mode iterations l10g Message........c.ccvviviiiiiiiiiniiienns
Figure 4-100: Example instrument operational mode scenario............ccoevvevninenen.
Figure 4-101: Module parameters folder organization on a per-mode basis...........
Figure 4-102: Module categorization by Mode........c.coviiiiiiiiiiii e
Figure 4-103: Timeline management VIEWciiiiiiiiiiiiiiiiii e ras e aae e
Figure 4-104: Timeline preferenCeS. . ..o e e e
Figure 4-105: Monte Carlo chain in statistical modeccooiiiiiiiiiiciiee,
Figure 4-106: Monte Carlo chain in combined mode.........cocviiiiiiiiiiiiiiiieeene
Figure 4-107: MC with a global parameter ..o
Figure 4-108: Execution prevented due to missing configuration files..................
Figure 4-109: Simulation exeCution Progresscvviveiiieiiiniiiiiieeieaeaaaeens
Figure 4-110: Execution log showing an error messagecoovvvvvviiiiiieieeiennnnennns
Figure 4-111: Simulation execution showing parallel module execution
Figure 4-112: Parallelization option dialogueccooiiiiiiiiiiii e
o U e R G e T [=T o L P
Figure 4-114: Logs liISt VIEW «.eiuiiiii e e e

Figure 4-115: Grouping of simulations for the Time-Driven execution..................

Figure 4-116: Grouping of simulations for the Iteration/Perturbation execution

Figure 4-117: Export from the repository menu........c.cooooiiiiiiiiiiiii e
Figure 4-118: Export from the executions menuUcoooiiiiiiiiiiiiii e
Figure 4-119: Successful execution of the export........cocoviiiiiiiiie
Figure 4-120: Inputs requested for the import........cocoieiiiiiiiiiii e
Figure 4-121: Successful execution of the import..........ccooiiiiiiii
Figure 4-122: Export module from the Simulation Result view.............ccoviininnne.
Figure 4-123: Import module from the Simulation edition viewccoeueiee.
Figure 4-124: Outline of a simulation SCENANO.......ccoeviiiiiiiiiii e
Figure 4-125: Remote machines management WindOWccceieieiiinininininnnnnnes

Figure 4-126: Create new remote maching ... e

© Deimos Space S.L.U. 2021

OPENSF-DMS-TEC-SUMO1

4.3
27/05/2022

18 of 155

DEG-CMS-SUPTR09-SUM-10-E

T .
deimos

elecnor group

Figure 4-127: Remote machine is unreachable
Figure 4-128: Confirm deletion operation
Figure 4-129: System Menu
Figure 4-130: Environment variables
Figure 4-131: System Applications settings
Figure 4-132: Application folders
Figure 4-133 Interpreters definition
Figure 4-134 Built-in interpreter path definition
Figure 4-135 User-defined interpreter definition
Figure 4-136 Interpreter argument definition
Figure 4-137: openSF About View
Figure 4-138: Help documents tree view
Figure 4-139: CPU Core Usage view
Figure 8-1: Outline of a test simulation scenario
Figure 8-2: Product file example
Figure 8-3: E2E tutorial folder structure
Figure 9-1: External components
Figure 9-2: Generated installers (one release and one development build)
Figure 10-1: Simple Dockerfile
Figure 10-2: Simple adapter

Figure 10-3: Example container module configured and running in openSF

Table 2-1: Applicable documents

Table 2-2: Reference documents

Table 2-3: Standards

Table 4-1: openSF information management system

© Deimos Space S.L.U. 2021

openSF

System User Manual

List of Tables

OPENSF-DMS-TEC-SUMO1

4.3
27/05/2022

19 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1
4.3

- &
dEl mOS System User Manual 27/05/2022
elecnor group

1. INTRODUCTION

This document has been produced by DEIMOS within the frame of different openSF contracts and it
represents the System User Manual for the openSF platform.

OpenSF is a software framework aimed at supporting a standardised end-to-end simulation capability (AD-
E2E) allowing the assessment of the science and engineering goals with respect to the mission
requirements. Scientific models and product exploitation tools can be plugged in the system platform with
ease using a well-defined integration process.

OpenSF has been conceived to support concept and feasibility studies for the ESA Earth Observation
Programs (EOP) activities, where the mission performance up to the final data products needs to be
predicted by means of end-to-end (E2E) simulators; in later development phases, openSF becomes a
coherent test bed for L1PP and L2PP, and to support the verification of space segment performance and
associated sensitivity analysis.

Nevertheless, openSF has been designed and developed in a generic way, allowing its use as a simulation
framework for any E2E processing chain in domains different from EO E2E performance simulators.

The openSF framework is released frequently, making updates and bugs fixes available to users multiple
times a year.

1.1. Purpose

This document is aimed at providing a clear description of all the openSF functionalities, and also an
operational guide for developing and integrating an E2E simulation processing chain.

The document has been conceived for four different intended audiences, according to the different possible
user profiles of the application: scientific module developers, E2E processing chains integrators, E2E
performance analysts and E2E performance engineers. For more details please refer to Sec. 3.2.1.

1.2. Scope

This document applies to openSF v4.0 and its contents are organised as follows:
(1 Chapter 1, the present chapter, describes this document and sets the basis for its understanding.
Chapter 2 collects the references to this SUM.
Chapter 3 details the procedures for installing and setting up openSF.
Chapter 4 describes all the different functionalities of openSF.
Appendix A describes the openSF error messages
Appendix B contains some guidelines for module developers.

Appendix C presents a tutorial of the generation of an E2E simulation.

OO0 D0O0OC

Appendix D explains how to build the application.

1.3. Acronyms and Abbreviations

Acronym ‘ Description

AD Applicable Document

API Application Programming Interface

CFI Customer Furnished Item

© Deimos Space S.L.U. 2021 20 of 155

DEG-CMS-SUPTR09-SUM-10-E

e

openSF

- &
dEImOS System User Manual

elecnor group

OPENSF-DMS-TEC-SUMO1
4.3
27/05/2022

Acronym Description

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

DB Database

DBMS Database Management System
DMS DEIMOS Space

E2E End to end simulation

EOP Earth Observation Programmes
ESA European Space Agency

GCF Global Configuration File

GUI Graphical User Interface

HMI Human-Machine Interface

10 Input/Output

ICD Interface Control Document
IDL Interactive Data Language
JRE Java Runtime Environment
L1PP Level 1 Processor Prototype
L2PP Level 2 Processor Prototype
LCF Local Configuration File

MC Monte Carlo

(015 Operating System

OSFI OpenSF Integration Library

RD Reference Document

SEPSO Statistical E2E Performance Simulator for Optical Imaging Sensors
SUM System User Manual

TBC To Be Confirmed

TBD To Be Defined / Decided

TN Technical Note

UML Unified Modelling Language

1.4. Definitions

Definition

Meaning

Batch mode

It is the capability of the simulator to perform consecutive runs without a continuous interaction
with the user. Batch mode assesses between the output of a given module and the input by
the next one in the sequence of the simulation. Several modes of executions can be performed:

L Iteratively, executing one or more simulations

© Deimos Space S.L.U. 2021

21 of 155

DEG-CMS-SUPTR09-SUM-10-E

-, e
deimos

elecnor group

OPENSF-DMS-TEC-SUMO1

4.3
System User Manual 27/05/2022

openSF

Definition Meaning

Q Iteratively, executing the same simulation several times depending on the parameters’
configuration

L same as above but by executing a batch script.
See Section 3.6 for further details.

Configuration File

An XML file that contains parameters necessary to execute a module. A configuration file
instance must comply with the corresponding XML schema defined at module creation time. A
special case is the global configuration file that defines the configuration parameters that may
be common to different modules.

Descriptor

The descriptors define the set of input and output files used to connect modules in simulation
runs. Each module has two descriptors associated, one for the inputs and the other for the
outputs. They define the number and location of each of the IO files. Descriptors are thoroughly
described in Section 4.3.1.

Framework

Software infrastructure designed to support and control the simulation definition and execution.
It includes the GUI, and persistence capabilities that enable to perform all the functionality of
the simulator.

Module

Executable entity that can take part in a simulation. A module can be understood, broadly
speaking, also as an “algorithm”. Basically, it contains the recipe to produce products as a
function of inputs. A module contains also several rules to define the input, output and
associated formats. Furthermore, its behaviour is controlled by one configuration file. Overall,
the architecture of a module consists of:

L The source code and its binary compiled counterpart (or interpretable script)
O A configuration file with its parameters
U An input descriptor that characterizes its inputs (number and their default names)

U An output descriptor that characterizes its outputs
Further details about modules are given in Section 4.3.2.

Parameter

An element of the system whose value characterizes a given aspect of a module, and is given
in the configuration files. Parameters are user-editable, they can represent system constants
or initial values of simulation variables.

Simulation

A simulation is defined as an execution of a set of modules (either a unique execution or an
iterative one with different parameter values). The restriction of how to concatenate these
modules and the order on which they are executed is based on the logic imposed by the relation
between their descriptors. For further details see Section 4.3.3.

Time-Based

The Time-Based scenario execution implements the notion of time driven execution of a
simulation whereby each simulation module is invoked in a sequence of time segments. See

Execution Section 4.4.2.4 for further details.
A tool is an external program that performs a given action taking as input a certain group of

Tool files. openSF can associate tools to a certain file extension. These tools can be automatically
invoked to perform operations taking as input the output of a simulation. Tools are described
in Section 4.3.5.

© Deimos Space S.L.U. 2021 22 of 155

DEG-CMS-SUPTR09-SUM-10-E

OPENSF-DMS-TEC-SUMO1

= y openSF

d . & 4.3
EI mOS System User Manual 27/05/2022
elecnor group

2. RELATED DOCUMENTS

This section details the list of applicable and reference documents used for the generation of this document,
as well as the standards that have been applied. Note that the latest issue and dates of the documents can
be found on the openSF website (http://eop-cfi.esa.int/index.php/opensf).

2.1. Applicable Documents

The following table specifies the applicable documents that were compiled during the project development.
Table 2-1: Applicable documents

Reference Code ‘ Title Issue
[AD-ICD] OPENSF-DMS-ICD-001 openSF Interface Control Document 3.0.1
[AD-ADD] OPENSF-DMS-ADD-001 openSF Architecture Design Document 2.2
[AD-E2E] PE-ID-ESA-GS-464 ESA generic E2E simulator Interface Control Document 1.4.1

2.2. Reference Documents

The following table specifies the reference documents that shall be taken into account during the project
development.

Table 2-2: Reference documents

Reference Code ‘ Title Issue
[RD-OSFI-DM] | OPENSF-DMS-OSFI-DM openSF Integration Libraries Developers Manual 1.20
[RD-OSFEG-DM] | OPENSF-DMS-OSFEG-DM openSF Error Generation Libraries Developers Manual 1.3
[RD-TM] OPENSF-DMS-PMD-HAO-WS1 | openSF Training Workshop 2018 1.0
[RD-PE] OPENSF-DMS-PE-SUM ParameterEditor Software User’s Manual 1.5

2.3. Standards

The following table specifies the standards that shall be complied with during project development.
Table 2-3: Standards

Reference Code ‘ Title Issue
[E40C] ECSS-E-ST-40C Software Engineering Standard 06/03/09
[XML] www.w3.0rg/TR/xml11/ Extensible Markup Language (XML) 1.1

© Deimos Space S.L.U. 2021 23 of 155

DEG-CMS-SUPTR09-SUM-10-E

http://eop-cfi.esa.int/index.php/opensf

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
E| mOS System User Manual 27/05/2022
elecnor group

3. GETTING STARTED

3.1. Introduction

During the concept and feasibility studies for the ESA Earth Observation activities, the mission performance
up to the final scientific products data needs to be predicted by means of end-to-end (E2E) simulators. The
observing system characteristics that impact data quality need to be determined in order to achieve the
scientific goals. On subsequent implementation phases, these mission E2E simulators become a coherent
test bed for L1PP and L2PP and to support the verification of space segment performance and associated
sensitivity analysis.

A mission E2E simulator is able to reproduce all significant processes, design and steps that impact the
mission performance as well as output simulated data products.

Commonalities in the structure of these E2E simulators highlighted the need for a common modular
framework. openSF is an open software framework to support a standardised set of E2E mission simulation
capabilities allowing the assessment of the science goals and engineering requirements with respect to the
mission objectives.

Scientific models and product exploitation tools can be plugged in the system platform with ease using a
well-defined integration process.

For the installation, detailed System Requirements are presented in section 3.4. For a quick installation
strategy, the recommended base system is the following:

U ubuntu 20.04 LTS (or higher), macOS 11 or higher, or Windows 10

3.2. openSF User Profiles and Roles

openSF is designed to accommodate different use cases for different kind of users. This section introduces
the different openSF user profiles according to the intended use of openSF; and how this manual has been
tailored to each of them.

3.2.1. User profiles definition and quick-start guide

Four possible user profiles have been identified for openSF, and for each of them a quick-start guide is
made available. Throughout the manual, specific tags indicate which users is a certain section addressing
to. To increase readability, a tag assigned to a given section applies in cascade to all its sub-sections (if
not differently specified).

The reader, once identified with one of the profiles, has the possibility to:

O Quickly scan through the quick-start guide and jump to the referenced section of interest.
O Read the manual thoroughly, skipping all the sections that do not contain the tag associated to the
profile of interest.

Note that the user is free to read the manual to taste and that the current section only serves as a general
recommendation.

3.2.1.1. Scientific modules developer

The first openSF user identified is the module developer. This user has the objective to develop the
executable scientific processing modules that will compose the E2E processing chain meant to be integrated
into openSF. The module developer is not mainly interested in the functioning of the integration framework
itself, but only in the interfaces between openSF and the module(s) under development.

M

The module developer’s tag used in this manual is:

The sections of this manual tagged for the module developer user are:

Q The manual’s conventions, useful to understand the rest of the manual (Section 3.3)

© Deimos Space S.L.U. 2021 24 of 155

DEG-CMS-SUPTR09-SUM-10-E

E QW openSF

B 4.3
dEl mOS System User Manual 27/05/2022

elecnor group

OPENSF-DMS-TEC-SUMO1

The modules’ pre-requisites in order to run openSF (Section 6.3)
The modules creation process (Sections 4.3.2.2, 4.3.2.3)

The parallelization techniques employed by openSF (Section 4.4.3.1)
The dedicated guide to develop modules for openSF (Section 6)

oOoO0Do

If the module developer wishes to perform tests on the modules created, the reading of the sections
reserved to the E2E performance analyst and processing chain integrator profiles is recommended, with
special attention to the processes to create descriptors (Section 4.3.1) and simulations (Sections 4.3.3.2,
4.3.3.6).

3.2.1.2. E2E processing chains integrator

The End to End processing chain integrator is interested in setting up the simulation environment,
integrating the modules into a simulation and delivering an E2E simulator to the user.

I

The E2E integrator’s tag used in this manual is:

The sections of this manual tagged for the E2E Integrator user are:

The conventions used in this manual and the system requirements (Sections 3.3, 3.4)
The procedure to install and run the framework (Sections 3.5, 3.6)
The general Ul elements of openSF (Section 4.1)
The data structure of openSF (Section 4.2)
The elements composing the core of openSF:
o The descriptors (Section 4.3.1)
o The modules (Section 4.3.2)
o The simulations:
= How to list the available simulations (Section 4.3.3.1)
= How to create a simulation (Sections 4.3.3.2, 4.3.3.6)
= How to modify, copy and delete a simulation (Sections 4.3.3.2, 4.3.3.4 and 4.3.3.3)
= How to access other functionalities for a simulation run (Section 4.4.1)
= How the parallelization of module execution mechanism works (Section 4.4.3.1)
= How to export a simulation and generate a script from it (Sections 4.4.4, 4.4.5)
Q The preferences settings of openSF (Section 4.5)
O Meta-data about openSF:
o The openSF license information (Section 4.6.1)
o The external documents linked to openSF (Section 4.6.2)
Q The tutorial that explains how to generate and run a simulation from scratch (Section 0)
Q How to build the framework (Section 9)
O How the environment variables are exported by openSF to the modules (Section 6.2)

OCoO0O0D

3.2.1.3. E2E performance engineer

The E2E performance engineer is interested in running simulations with openSF like the E2E performance
analyst, but wants to also be able to finely control the simulation, exploiting openSF at its best.

The E2E performance engineer’s tag used in this manual is:

The E2E performance engineer is an extension of the E2E performance analyst, hence the great majority
of the sections of interest are already included in those of the E2E performance analyst.

The sections of this manual tagged for the E2E performance engineer are the same for the E2E performance
analyst (Section 3.2.1.4) plus the following ones:

O The elements composing the core of openSF:
o The simulations:
= How to create a simulation (Sections 4.3.3.2, 4.3.3.6)
= How to modify, copy and delete a simulation (Sections 4.3.3.2, 4.3.3.4 and 4.3.3.3)
= How to apply parameters variation methods to a simulation (Section 4.4.2)
= How to access other functionalities for a simulation run (Section 4.4.1)
= How the parallelization of module execution mechanism works (Section 4.4.3.1)

© Deimos Space S.L.U. 2021 25 of 155

DEG-CMS-SUPTR09-SUM-10-E

G openSF OPENSF-DMS-TEC-SUMO1
4.3

dEl mOS System User Manual 27/05/2022

elecnor group

= How to export a simulation and generate a script from it (Sections 4.4.4, 4.4.5)
o The external tools applicable to openSF’ results (Section 4.3.5)
QO How to perform a multi-node simulation (Section 4.4.6)
QO Meta-data about openSF:
o How to monitor the CPU usage (Section 4.6.3)
Q The tutorial that explains how to generate and run a simulation from scratch (Section 0)
Q How to build the framework (Section 9)
Q How the environment variables are exported by openSF to the modules (Section 6.2)

3.2.1.4. E2E performance analyst

The E2E performance analyst wants to run simulations already integrated in openSF, getting acquainted
with all the steps that this would require.

A

The E2E performance analyst’s tag used in this manual is:

The sections of this manual tagged for the E2E performance analyst are:

Q The conventions used in this manual and the system requirements (Sections 3.3, 3.4)
Q The procedure to install and run the framework (Sections 3.5, 3.6)
Q The general UI elements of openSF (Section 4.1)
Q The data structure of openSF (Section 4.2)
Q The elements composing the core of openSF:
o The descriptors (Section 4.3.1)
o The modules (Section 4.3.2.1)
o The simulations:
* How to list the available simulations (Section 4.3.3.1)
= How to apply parameters variation methods to a simulation (Section 4.4.2)
* How to resume a simulation (Section 4.4.3.2)
= How to read the logs generated by openSF (Section 4.4.3.3)
= How simulations are grouped (Section 4.4.3.4)
o The results (Section 4.3.4)
Q The preferences settings of openSF (Section 4.5)
O Meta-data about openSF:
o The openSF license information (Section 4.6.1)
o The external documents linked to openSF (Section 4.6.2)
Q The error message list (Section 5)

3.2.2. openSF user roles

openSF, as a simulator integration framework, intends to support different types of users whose goals are
clearly distinct. Each such type of user requires a different set of features for their typical use of the tool.

On the one hand, there is the user responsible for the development of the simulator modules and their
integration into openSF to compose the simulator. This user is expected to have a deep understanding of
openSF, its capacities and limitations. Typically, the work of this user unfolds during the development phase
of the simulator, and it is expected that a significant number of modifications to the openSF simulation
elements (i.e. descriptors, modules and simulations) will be needed until a state of maturity is reached and
the simulator can be considered production ready. For these users, openSF provides the features enabled
by “Developer” role. According to the definition of openSF user profiles (Sec. 3.2.1), the “Developer” role
is targeted to the Module Developer and E2E Integrator profile.

On the other hand, there is the user of the E2E simulators integrated in openSF. This user is not expected
to understand openSF in detail, as their goal is to use the fully integrated simulator. This type of user is
typically interested in modifying simulation inputs, executing the pre-defined simulations and collecting the
results. In order to ensure reliable and repeatable results, this type of user should be not required (and
eventually denied) to modify the openSF simulation elements. openSF provides a restricted set of features
for these users, known as “Normal” role. According to the definition of openSF User Roles (Sec. 3.2.1), the
“Normal” role is targeted to both E2E performance analyst and engineer profiles.

© Deimos Space S.L.U. 2021 26 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

By default, openSF is configured in "Normal” role and the user role selection toolbar is hidden. If the user
desires to create or modify any openSF simulation element, the “Enable user role selection” option can be
enabled in the Application Settings (see Section 4.5) to display the user role toolbar, and thus select the
“Developer” role.

@ userRole: Developer ~

@ Developer b
5 Y Normal

| Wi

Figure 3-1: User role selection toolbar

The main differences between these two roles are the following:

1 Developer:
o The user can create new simulation elements (e.g. descriptors, modules, simulations).
o The user can modify previously created simulation elements.
o The user can execute simulations.

o The repeatable production of the results is not guaranteed as simulation elements can be
modified between two simulation executions.

U Normal:
o The user can view the previously created simulation element.
o The user can create, modify and execute simulations.
o The reliable and repeatable production of the results is guaranteed.

In both cases the user can delete the existing simulation elements, potentially resulting in cascading
deletions of any related element which depends on deleted elements (e.g. deleting a descriptor will cause
the deletion of all modules that refer to it, and of all simulations that refers to those deleted modules,
eventually reaching all the results of those simulations).

Therefore, if during the development stage of the simulator, one of its module’s inputs get modified and a
created descriptor is no longer needed but it is desired to keep the rest of the simulator unchanged, the
user cannot directly delete it. Instead, while in “"Developer” role, the affected modules shall be first modified
to remove that descriptor from its inputs/outputs and only then it can be safely removed. As it might be
expected, this kind of practices break the replicability of the results, that's why they can only be performed
in “Developer” role.

openSF applies a simulation fingerprint to keep track of the simulation results whose reliability is not
assured. Unreliable results are displayed in the Executions tab of the Navigation pane with a light red
background. Replicable results are shown on a white background (see Figure 3-2). At the end of the
simulator development stage and before entering in production stage, all the results with an unassured
replicability should be removed.

© Deimos Space S.L.U. 2021 27 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d o 4.3
el mOS System User Manual 27/05/2022
elecnor group

Repository |Executions “._File system AW (+>pl@

~ Simulation results

+* E2E_test_simulation

E2E_test_simulation.20191030T173741d191

E2E test_simulation.20191030T173744d939 ReSI,L”tT) ,‘l’Y'th unassured
E2E_test_simulation.20191030T173746d935 /1 replicability
E2E_test_simulation.20191030T173748d648

E2E_test_simulation.20191030T173750d491
E2E_test_simulation.20191030T173752d515
E2E test simulation.20191030T173824d503

E2E_test_simulation.20191030T173855d927

E2E_test_simulation.20191030T173857d457 Results with assured
EZ2E_test_simulation.20191030T173900d 149 replicability
E2E_test_simulation.20191030T173901d623 /1

+ JavaSimulation
JavaSimulation.20191030T142143d182
JavaSimulation.20191030T142147d361
JavaSimulation.20191030T163526d441

= PythonSimulation
PythonSimulation.20191030T142200d217/exec1.20191030T142200d289
PythonSimulation.20191030T142200d217/exec2.20191030T142200d337
PythonSimulation.20191030T142200d217//exec3.20191030T142200d372

Figure 3-2: Executions tab and color code based on results replicability

A result is considered as potentially not reliable if any of the following criteria applies:
] The result was obtained while in “Developer” role.

U The computed fingerprint of the simulation, or any of its components, at calculation’s time does
not match the current fingerprint of that simulation and its current components.

3.3. Conventions

M I A E

This chapter lists all the conventions used throughout this System User Manual.

3.3.1. <OPENSF_INSTDIR>

The installation directory of openSF is represented by <OPENSF_INSTDIR>. This path is fixed and it is
determined at installation time (See Figure 3-5). In previous versions of the framework, $OPENSF_HOME
was used to signify the installation directory as well as the user work directory. The user work directory is
now represented by $E2E_HOME as detailed in section 3.3.2.

3.3.2. $E2E_HOME

$E2E_HOME is an environment variable that indicates the path to the user work directory, that is, the folder
where the user stores their working files. openSF uses it internally to resolve any relative paths in
descriptors, modules and simulations e.g. to find a configuration or input file. This variable is also exported
to the environment of running modules.

Like other environment variables, its value is set through the system preferences window (see Section
4.5.1). If it is not defined, openSF will use the value of $OPENSF_HOME to maintain backward compatibility.
If $OPENSF_HOME is also undefined, then $E2E_HOME is set to <OPENSF_INSTDIR>. By default, the setup

© Deimos Space S.L.U. 2021 28 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
E| mOS System User Manual 27/05/2022
elecnor group

sets it to the root folder of the openSF installation, which would be similar to this (in a UNIX-like operating
system):

/home/<user>/openSF

The user is recommended to tailor this value to their preferred path in the user’s directory.

Before version 3.9.3, this variable was $OPENSF_HOME. This variable was serving the dual purpose of
installation directory and user’s work folder. $OPENSF_HOME will still be supported for backwards
compatibility but $E2E_HOME should be used, in line with the specification in [AD-E2E].

3.3.3. Data types
The data types supported by openSF configuration files are described in [AD-E2E].

3.4. System Requirements

M 1 A E

The openSF framework is developed and runs on the Eclipse Rich Client Platform (RCP). The current version
of openSF is based on Eclipse 2021-21 (4.21), for which the target platforms officially supported by the
Eclipse project can be found in the Eclipse project plan page.

3.4.1. Hardware requirements

I A E

Hardware must at least fulfil the following requirements:
O x86-64 processor
U 4 GB of RAM memory installed
U 400MB of free space to install.

3.4.2. Operating system requirements
M I A E

Not all the platforms targeted by the Eclipse platform are officially supported by openSF. Binary distributions
are currently provided for the following platforms:

U Linux: any sufficiently recent glibc-based distribution. In particular, openSF has been tested with
Ubuntu 20.04.

U macOs, version 11 or higher.
U windows 10

3.4.3. Framework pre-requisites

I A E

All the openSF software pre-requisites are freely downloadable, the links for them can be found in the
openSF website.

© Deimos Space S.L.U. 2021 29 of 155

DEG-CMS-SUPTR09-SUM-10-E

https://www.eclipse.org/projects/project-plan.php?planurl=http://www.eclipse.org/eclipse/development/plans/eclipse_project_plan_4_21.xml#target_environments
https://eop-cfi.esa.int/index.php/opensf

-, e
deimos

elecnor group

Pre-requisite

openSF

System User Manual

Purpose

Licensing

OPENSF-DMS-TEC-SUMO1

4.3

27/05/2022

Distribution site

For server-based
databases only: MariaDB
server 10.5.2 or newer;
MySQL server 5.7.x or 8.0!

openSF stores information
in this relational database

For server-based
databases only: DB user
with database creation and
modification privileges

openSF needs DB
creation/modification
privileges

GPL or Proprietary License

https://dev.mysql.com/do
wnloads/mysqgl/ (MySQL)
https://mariadb.org/downl

oad/ (MariaDB)

GTK+ v3.22 or higher

openSF uses GTK+ as the
graphics library in Linux

https://www.gtk.org/down

for remote execution

) Note: GTK known bug with | GNU LGPL load/index.php
(Linux only) Table/Tree editing that ’
affects versions < 3.20.
openSF uses this library to .)
mpstat (Linux only) assess the CPU core usage | GNU GPL Tttnris.s/t/alltnux.dle.net/man/
statistics
https://osxfuse.github.io/
is li 0sX
sshfs openSF uses this library GNU GPL (0SX)

https://github.com/libfuse

/sshfs (Linux)

3.4.3.1. MySQL /MariaDB installation

If using server-based databases (versus file-based databases), the current openSF version ensures full
compatibility with MySQL server v5.7.x and MariaDB server 10.5.2 (and higher). MySQL server version 8.0
is tentatively supported, but has not been tested extensively with openSF.

Most common Linux distributions include either MySQL or MariaDB in their default repositories, so it can
normally be installed with the distribution default tools. Windows and macOS users may download either
database server from either project’s webpage. Documentation related to the installation of the database
servers can be found in:

U MariaDB: https://mariadb.com/kb/en/binary-packages/
O MySQL: https://dev.mysql.com/doc/refman/5.7/en/installing.htmi

The configuration of the database server on MySQL and MariaDB must ensure that the server variable
“lower_case_table_names” is never set to 1. Note that this is the default value on Windows, where it must
be set to 2, which is case-preserving but case-insensitive.

Refer to Section 4.2.2 for further details on databases.

3.4.3.2. Remote execution installation

Remote execution in openSF relies on mounting a remote file system through sshfs. To enable this, solution
some pre-requisite software needs to be installed before openSF remote execution orchestration. Note that
the Windows version of openSF does not support remote execution.

3.4.3.2.1. Linux installation

The sshfs installation method in case the Linux distribution provides a software package manager consists
of installing the following packages: sshfs, fuse-utils. In case the Linux distribution does not provide an
online package manager it is suggested to visit sshfs website (https://github.com/libfuse/sshfs) and look
for alternative installation methods.

3.4.3.2.2. macOS installation

1 The DB server can accessed over the network; it does not need to run in the same computer as openSF

© Deimos Space S.L.U. 2021 30 of 155

DEG-CMS-SUPTR09-SUM-10-E

https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://mariadb.org/download/
https://mariadb.org/download/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=548874
https://www.gtk.org/download/index.php
https://www.gtk.org/download/index.php
https://linux.die.net/man/1/mpstat
https://linux.die.net/man/1/mpstat
https://osxfuse.github.io/
https://github.com/libfuse/sshfs
https://github.com/libfuse/sshfs
https://mariadb.com/kb/en/binary-packages/
https://dev.mysql.com/doc/refman/5.7/en/installing.html
https://github.com/libfuse/sshfs

openSF OPENSF-DMS-TEC-SUMO1

. — 4.3
dEI mOS System User Manual 27/05/2022

elecnor group

Sshfs installation package for macOS can be obtained from OXS Fuse official website
(https://osxfuse.qgithub.io/). It is recommended to download the DMG archive. The stable releases of both
OSXFuse and SSHFS should be installed. Installation is based on a GUI installer with default configuration.

3.4.3.2.3. SSH access permission configuration

To ease the access to remote file system through sshfs it is required to enable access by sharing ssh keys
(so that it is not required writing the password every time the connection is established).

The following commands implement the sharing of ssh keys between the participating computers:

~/$> ssh-keygen -t dsa

followed by:

~/$> ssh-copy-id -i .ssh/id rsa.pub <user>@<machine>

For the above configuration the following packages are required: ssh-keygen, ssh-copy-id. Note that ssh-
copy-id is not an officially OSX supported package so either an unofficial installer can be used (e.g. brew)
or the public key needs to be copied manually.

3.5. How to Install the Framework

I A E

Provided that every pre-requisite is fulfilled, users can now proceed to install the application.

The openSF distribution package consists of an installer for each target platform. The installer will be in
charge of the system deployment and the pre-requisites checking.

3.5.1. Installer guide setup

openSF is installed via a multi-platform GUI installer. To download the openSF software and documentation
perform the following steps:

1. If not already done, register as a user on https://eop-cfi.esa.int/ (see “Create an account” link in right
pane). The registration is free;

2. If not already done, register as openSF user at https://eop-cfi.esa.int/index.php/opensf/opensf-
registration (see Figure 3-3);

3. Download the Software at https://eop-cfi.esa.int/index.php/opensf/download-installation-packages

© Deimos Space S.L.U. 2021 31 of 155

DEG-CMS-SUPTR09-SUM-10-E

https://osxfuse.github.io/
https://eop-cfi.esa.int/
https://eop-cfi.esa.int/index.php/opensf/opensf-registration
https://eop-cfi.esa.int/index.php/opensf/opensf-registration
https://eop-cfi.esa.int/index.php/opensf/download-installation-packages

openSF OPENSF-DMS-TEC-SUMO1

d = E— 4.3
E| mOS System User Manual 27/05/2022
elecnor group

C fi [eop-cfi.esa.int/index.php/opensf

P
e
i

HOME MISSION CFl SOFTWARE APPLICATIONS OPENSF DOCS AND MISSION DATA

Home » OpenSF CLOSE INFO
OpenSF Introduction to OpenSF Lagin Farm
Introduction to OpenSF E Hi Rui Mestre,
Release Notes Last Updated on Monday, 02 May 2016 14:21 »Log out
Roadmap During the concept and feasibility studies for the ESA Earth Observation activities, the
mission performance up to the final data products needs to be predicted by means of end- User Menu
System Requirements to-end (E2E) simulators; later on this becomes a coherent the test bed for LIPP and L2PP
Licence and to support the verification of space segment performance and associated sensitivity Edit User Details
analysis
User Registration Show User Details
A mission E2E simulator is able to reproduce all significant processes, design and steps
Documentation that impact the mission performance as well as output simulated data products
Installation Packages 7Ty, Search
9 LD

(o ‘enSF Search...
\\\%

088 seims

Figure 3-3: openSF web page

3.5.1.1. Linux installation

openSF software is available for all the Linux distributions. After downloading the installer corresponding
to the machine architecture, users will execute it (either by double clicking on it or by opening a terminal
window and executing it) and follow the instructions that appear on the screen.

The program first checks if openSF is already installed, offering to update the existing version (Figure 3-4).
Otherwise, the first screen merely contains a welcome message.

Welcome to the openSF Setup Wizard

This will install openSF on your computer.

A previous installation has been detected. Do you wish to update
thatinstallation?

® Yes, update the existing installation @
No, installinto a different directory

Click Next to continue, or Cancel to exit Setup.

Next > Cancel

Figure 3-4: Installation confirmation screen

If an upgrade is possible and the user chooses to update the current installation, the installer will try to
read the existing openSF configuration file, in order to keep the current settings in the updated system.
This is normally automatic and transparent to the user. However, if the configuration cannot be read, a

© Deimos Space S.L.U. 2021 32 of 155

DEG-CMS-SUPTR09-SUM-10-E

~ , a—
deimos

elecnor group

openSF

System User Manual

OPENSF-DMS-TEC-SUMO1
4.3
27/05/2022

dialog warns the user and allows the installation to be cancelled before any changes are made. If the user
nevertheless decides to continue with the upgrade, the new openSF will have default settings.

Once the installer has checked the system pre-requisites the user shall select the destination folder to hold
the openSF software (Figure 3-5). The default installation folder is under the user home, so that the

installation does not require any administrative privileges.

Select Destination Directory
Where should opensF be installed?

Destination directory

/home/caps/opensF/|

116 MB
76,725 MB

Reqguired disk space:
Free disk space:

Select the Folder where you would like openSF to be installed, then click Next.

Y

Browse ...

<Back MNext= | Cancel

Figure 3-5: Installer folder selection window

In the next window users shall check that the information is correct and click next to proceed with the

software installation (Figure 3-6).

Select Additional Tasks
Which additional tasks should be performed?

opensF, then click MNext.

[Create adesktopicon

Select the additional tasks you would like Setup to perform while installing

-y

<Back | Mext> Cancel

Figure 3-6: Installation icon window

If the installation process has been successful an “Install Complete” dialog will appear allowing to
automatically launch the openSF software (Figure 3-7). To launch openSF at a later time, users may either
user the openSF desktop icon?, or open a terminal window, go to the openSF installation folder and run
openSF manually. For further details on launching openSF refer to section 3.6.

2 The openSF desktop icon is only available if the user so chooses during the installation process

© Deimos Space S.L.U. 2021

33 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

. 4.3
deImOS System User Manual :

27/05/2022
elecnor group
r(((_r_f(((_*_“E\\ _

Completing the openSF Setup Wizard

Setup has finished installing opensF on your computer. The
application may be launched by executing the installed start
scripts.

Click Finish to exit Setup.
(% Run opensF

Finish

Figure 3-7: Installation successful screen

3.5.1.2. macOS and Windows installation

The installation package for macOS and Windows is also provided with a GUI installer, which in the case of
macOS is inside a DMG archive. After launching the installer file, the procedure to follow in the installation
is the same as for Linux, described in section 3.5.1.1 just above.

3.5.1.3. Uninstalling openSF

The installation process places an uninstaller application in the application’s root folder, which launches a
GUI uninstaller as shown in Figure 3-8.

Note that the confirmation requested to “delete user data under the installation folder” applies only to user
files inside the <OPENSF_INSTDIR> directory. If selected, both the “simulations” folder and any H2DB files
in the installation directory will be removed. User files elsewhere will not be affected even if the option is
selected. For example if the user moves the “simulations” folder, or creates a new workspace outside the
installation folder, those files will not be affected by the uninstallation.

openSF Uninstall

Are you sure you want to completely remove openSF
and all of its components?

Click Next to continue, or Cancel to exit Setup.

|| Delete user data inside the installation folder e

Next > Cancel

Figure 3-8: Uninstall confirmation screen under Windows

© Deimos Space S.L.U. 2021 34 of 155

DEG-CMS-SUPTR09-SUM-10-E

-, e
deimos

elecnor group

3.5.1.4. Folder structure

openSF
4.3
System User Manual 27/05/2022

This section provides a general description of the openSF folder structure and its contents:

Root

<OPENSF_INSTDIR>

Path Contents
openSF program folder root. After installation, this folder may be read-only. It
contains many files, but the most relevant are:
Q opensF: framework launcher
/ O openSF_updater and uninstall: utility programs
L openSF_defaults.properties: optional configuration file that may contain
default settings for all workspaces. See section 4.2.1.2.
Folder with a template for global configuration files. Inside xml/import folder
/data there are XSLT files intended to transform exported databases from old versions
into current openSF databases.
/features, /plugins, | Folders that contain Eclipse related files with fixed configuration
/p2, /configuration
/ParameterEditor Folder that contains the ParameterEditor executable (see Section 4.3.3.6.3)
/resources Default folder for framework documentation.
/documentation
Folder with example simulations. This folder contains the modules binaries for
running the test simulation.
Q Jib: shared libraries

/test

Q bin: modules binaries
QO data: files used in the examples of the validation database.
o batch: example of configuration file for batch simulations.
o conf: examples of module configuration files.
o database: validation database in XML format.
o perturbations: sample input files of parameters’ perturbations.

o simulations: the configuration and input files used by each of the
simulations provided in the validation database. The files are arranged
in subfolders with the same name as the simulation that uses them.

Q timeline: example timeline scenario file.

<workspace>

The workspace folder, which can be selected from within openSF. It must be
user-writable. If the program installation folder <OPENSF_INSTDIR> is writable,
it is used as the default value. Otherwise, the user will be prompted to select a
workspace folder on first run, see section 4.2.1.

/.metadata

Eclipse configuration applicable for each workspace

/openSF.properties

openSF configuration applicable for each workspace.

$E2E_HOME

Root location for “user” data, including module binaries and configuration/input
files. If unspecified in the configuration/environment, defaults to <workspace>.

Any relative paths specified by the user are composed relative to this location.
As such, it also contains the file-based databases (*.db files).

/simulations

openSF simulations root folder. This folder will contain the output of all executions
run. This path is set by default to $E2E_HOME/simulations, but it is user
configurable (see Sec. 3.3.2).

/simulations/<ID>

Simulation folder. Every simulation, once executed, has one directory structured
as this one. However, if the execution is of type Timeline, Iteration, Perturbation
or Batch, there will be a parent folder with several sub-simulation executions
located under it.

Each normal simulation folder (or timeline/iteration subfolder) contains the input
and configuration files used by the modules and their outputs.

© Deimos Space S.L.U. 2021

35 of 155

DEG-CMS-SUPTR09-SUM-10-E

OPENSF-DMS-TEC-SUMO1

openSF OPENSF-DMS-TEC-SUMO1

v B 4.3
dEImOS System User Manual 27/05/2022

elecnor group

Note that on macOS, all Eclipse related files are not deployed in the root directory; they are in the app's
contents package.

Users can also find useful the guidelines about how to organize the folder structure of a simulation project
integrated in openSF. These guidelines are described in section 8.2.
3.5.2. Licensing scheme

openSF uses a licensing scheme that allows integrating it in any kind of third-party developments. It is
distributed under the terms of the “ESA Software Community Licence Permissive” as published by the
European Space Agency; either version 2.4 of the License, or (at your option) any later version.

A copy of the “"ESA Software Community Licence Permissive - v2.4" is distributed with openSF, or can be
found at https://eop-cfi.esa.int/index.php/docs-and-mission-data/licensing-documents.

3.6. Running openSF

I A E

3.6.1. How to start the application

The openSF system can be launched (under Windows, macOS and Linux) by: (@) double clicking on the
openSF desktop icon3 or (b) using a command line interface and executing the following command.

<OPENSF_INSTDIR>/openSF (Linux)

open -a <OPENSF INSTDIR>/openSF.app (macO0S)

<OPENSF_INSTDIR>\openSF.exe (Windows)

If openSF is launched with no parameters, the GUI will show up normally. This behaviour can be modified
providing the following parameters:

O --execute <simulation_identifier>: The framework will launch the execution of a previously defined
simulation with the stored parameter values. For example, to run in batch mode a simulation named
“Radar”, use the following command arguments:

<OPENSF_INSTDIR>/openSF --execute Radar

This form will execute openSF, find a simulation named “Radar” and execute it, intercepting all the
events and storing the results in the database. Then, the system will stop.

Note that running long simulations via the command-line interface is discouraged, especially over
a remote connection like SSH. In case that running a long simulation over a remote connection is
necessary, a detachable GUI connection like VNC or RDP should be used instead.

U --dbCfg <db_config>: Use the given database settings, in the same format that is stored in the
configuration file4. If absent, openSF will use the connection that was last used successfully.

For example, the following will run openSF with a file-based database named “filedb” directly under
$E2E_HOME:

<OPENSF_INSTDIR>/openSF --dbCfg 'h2$$filedb'

3 The openSF desktop icon is only available if the user so chooses during the installation process

4 Note that the shell syntax may require escaping certain characters in this string, e.g. in Linux or macOS
it may be necessary to escape “$” characters, or quote the entire string.

© Deimos Space S.L.U. 2021 36 of 155

DEG-CMS-SUPTR09-SUM-10-E

https://eop-cfi.esa.int/index.php/docs-and-mission-data/licensing-documents

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

Note that command-line options must use double dashes. Since openSF is built on the Eclipse RCP
technology, options with a single dash may be intercepted by the Eclipse launcher code, not reaching the
openSF application code at all. In particular, Eclipse launcher options that may be used as well include:

L -consoleLog: Sends any log output to the command shell. This can be useful in case of an openSF
misbehavior

1 -noSplash: Prevents the splash screen from being displayed.
1 -data <location>: Sets the workspace location for this session. See Section 4.2.1.1 for details.

Please refer to the Eclipse official website> for the full list of options.

3.6.2. First start-up

The framework needs to be always connected to a valid database in order to function. For this purpose,
when the user first starts the application, or if no “last used database” is defined in the configuration,
openSF is opened in a temporary state that allows the user to quickly create a database with a default
name. This is offered via the first-start welcome dialog depicted in Figure 3-9.

Welcome to openSF

openSF needs an active database to work, but none is
defined in the configuration.

(O Create a local data storage (empty)

@ Create a local data storage (with example contents)

() Use custom settings or initial contents

Continue Cancel

Figure 3-9: First start dialog

The first two options create the described default database, directly under $E2E_HOME, either fully empty
or using an example dataset with predefined modules and simulations. The last option instead opens the
“databases” dialog, allowing the full range of settings (name, location, initial dataset) to be used. See
section 4.2.2 for more details on the advanced procedure.

3.6.3. Check for updates

openSF performs an automatic check for new versions by connecting to a remote server. In case a new
version is identified the user is given the choice of downloading the software. Afterwards the user can
upgrade the software version following the standard installation procedure for openSF software.

Note that for versions of openSF before 3.10, this will erase the contents of the program folder, so any
simulation data stored there may be lost.

5

https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%
2Fmisc%2Fruntime-options.html

© Deimos Space S.L.U. 2021 37 of 155

DEG-CMS-SUPTR09-SUM-10-E

https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fmisc%2Fruntime-options.html
https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fmisc%2Fruntime-options.html

. &
deimos

elecnor group

openSF

System User Manual

o Check for Updates X

A new version is available for openSF - Open Simulation Framework
Current version: 3.11.0.qualifier

New version: 3.11.0.202111170939

Download URL: fittps://eop-cfl.esaint/updates/application/openSF winb4 3.11.0.202111170939.exd

i ~
See the full release notes online.

openSF 3.11 new and noteworthy

= Java runtime is now bundled with the proaram. no separate

Figure 3-10: Dialog shown when an update is available

3.6.4. Exit the system

OPENSF-DMS-TEC-SUMO1
4.3
27/05/2022

Upon the selection of this function, openSF will inform the user whenever a simulation is executing. Upon

user confirmation, openSF will stop every internal process (including on-going external modules) and will
end its execution. This is the recommended way of ending the application.

© Deimos Space S.L.U. 2021

38 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

4. REFERENCE MANUAL

M 1 A E

This section provides a detailed description of all the elements that conforms the openSF graphical user-
interaction.

4.1. HMI Description

I A E

In this section the look-and-feel, operational behaviour and design features of openSF HMI are presented.

4.1.1. Main window

The HMI accepts inputs via devices such as the computer keyboard and mouse and provides articulated
graphical output on the display. The HMI has been designed to be flexible, to let users organize the layout
of the information as desired, showing only relevant windows and in the way users want. The layout consists
of a main container that can host inside several internal frames. These internal frames are intended to
present independent modules of openSF. For example, each time the user wishes to perform operations
with the list of modules in the repository, a module manager frame will pop-up inside the bounds of the
main window listing the list of modules currently available within openSF.

& openSF - Open Simulation Framework — a X
System Edit View Toolsg_Help
bad User Role: Developer

Navigation Lkt Editor/! Executions

Repository | Executions File system

v Repository ~
v Descriptors
InputGeneric
InputScene

Menu bar Tool bar

Input_Geometry
Input_lonosphere Working area
Input L1b
OutputGeneric
Product_Geometry
Product_lonosphere
Product_L1b
Product 12
Product 0SS
Product_Scene Slde bar

~ Modules
GeometryModule (1.0)
GeometryModule (2.0)
lonosphereModule (1.0)
JavaModule (1.0)
L1bGenerator (1.0)
L2Retrieval (1.0} 1
MatlabFailModule (1.0) AUXIIIary panel
MatlabMadule (1.0)
0SSModule (1.0)

PythonModule (1.0)
SceneGenerator (1.0)

~ Simulations

Breakpoints test L

Database: H2 file-based database ‘debug’ at C\Users\ncrnm\Documéntsh\openSF\DBs Workspace: (program folder) 54M of 80M
Figure 4-1: Main window appearance

All the windows have common operations to help their usability: main window, internal frames or dialogues
can be closed, resized, maximized or minimized to fit the user’s needs.

This main window shown in Figure 4-1 includes a menu bar to provide keyboard and mouse access to the
simulator main functions as well as functions regarding frames management and application basis.

Occupying the central and main region there is a working area. This area is where all internal frames are
going to be created and the main interaction with the user is held. On its side, this working area implements
a “scrollable” panel in order to easily navigate through frames surpassing its bounds.

© Deimos Space S.L.U. 2021 39 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

At the left side of the working area there is the system objects navigator, a “side bar” aiming to provide a
quick access handler to every item defined in the system: repository of descriptors, modules and
simulations, the list of simulation execution results and also a file system browser to navigate through the
contents of the application’s directory. Section 4.1.1.1 deeply describes this part.

The main window'’s footer area shows application status information.
The HMI provides a menu bar (Figure 4-3) at the upper side of the main frame to show some capabilities

of the system. Below the menu bar there is also a toolbar to quick access critical functionalities (Figure
4-2).

Systern Edit View TJools Help
B9, TWkeo:
Figure 4-2: Detail of main menu bar

System Edit View Tools Help
Preferences...
Databases...

Remote...
Quit openSF Ctrl+Q

Figure 4-3: Detail of a menu, showing menu items

Figure 4-3 shows that a menu item is composed of the name of the function and a quick access key
combination. Users can quickly access this functionality pressing this key combination or the first letter in
the function name while the menu is rolled down.

There are also some contextual or pop-up menus that users can access by clicking the right button of the
mouse while over certain controls®. These pop-up menus have the same appearance of the menus rolling
down from the menu bar. Here, icons are added at the left of the function names that graphically describe
them.

1y Edit...
B Runsimulation
#{ Generate script
% Export

i Delete
[copy...

Figure 4-4: Detail of a contextual menu

It can be seen in Figure 4-4 that a pop-up menu acts exactly like a menu at the main frame. They also
provide mouse and keyboard access to certain capabilities.

6 In macOS the contextual menu behaviour may depend on setting the correct gesture for Bluetooth
mouse and track pad: the "Secondary click" gesture (e.g. "Click with two fingers" in track pad or 'Click on
right side" in Bluetooth mouse) should be applied to allow using the options in the contextual menus.

© Deimos Space S.L.U. 2021 40 of 155

DEG-CMS-SUPTR09-SUM-10-E

deimos

elecnor group

4.1.1.1. Side bar

openSF

System User Manual

OPENSF-DMS-TEC-SUMO1
4.3
27/05/2022

On the left side of the main frame there is the side bar, grouping different views of the openSF areas:

Repository, Executions, and File system.

As can be seen at the right-upper corner of Figure 4-5, standard buttons are available to minimize or
maximize the side bar. The side bar can also be dragged to dynamically change its width.

The repository will show only the elements
containing a given substring of characters written in
this text box.

Elements are structured into the repository by
element type (descriptors, modules and
simulations).

\

= =
-

Find: |

F H e

&

Repository . Executions | File system

v Descriptors
Input_Geometry
Input_lonosphere
Input_L1b
InputGeneric
InputScene
OutputGeneric
Produck_Geometry
Produck_lonosphere
Produckt_L1b
Produck_L2
Product_0OSS
Product_Scene

— ¥ Modules
GeometryModule (1.0)
GeomekryModule (2.0)
lonosphereModule (1.0)
JavaModule (1.0)
L1bGenerator (1.0)
L2Retrieval (1.0)
MatlabFailModule (1.0)
MatlabModule (1.0)
0ssModule (1.0)
PythonModule (1.0)
SceneGeneraktor (1.0)

+ Simulations
Breakpoints_test_simulation
E2E_test simulation
Javasimulation

ranblabradl back clemadablon

Figure 4-5: Side bar

Into the Repository tab of the side bar, users can find a tree-like structure containing all the known modules,

descriptors and simulations.

This tree-like structure can be collapsed or expanded by clicking in the arrow-shaped icon.

© Deimos Space S.L.U. 2021

41 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

Repository . Executions | File system

~ Repository
Tree node

—~ Descriptors

arrow Input_Geometry

Input_lonosphere
Input_L1b
InputGeneric

InputScene

Lt OutputGeneric

Element Product_Geometry
instance Product_lonosphere
Product_L1b

Produck_L2
Product_OSS
Product_Scene

—_ | .
— Modules

Element GeometryModule (1.0)

definition GeometryModule (2.0)
lonospheremModule (1.0)
JavaModule (1.0)

Figure 4-6: Repository view

Every row marked with an arrow-shaped icon represents and element definition of the repository. Every
row without icon represents an element instance. Right-clicking over both of them, a menu pops up
containing some associated commands. These menus are context-sensitive, meaning that different types
of elements have their own associated commands. These commands are going to be explained in detail in
each element’s section (Sections 4.3.1, 4.3.2, 4.3.3).

A left double click over the elements will activate the first associated command of the menu (typically,
editing).

The last tab in the side-bar (i.e. File system) is a browser to easily access both the folder structure under
the openSF installation directory and the simulations execution directory.

Organized in the tree-like structure, the user can easily locate every needed file. This structure is refreshed
every time an operation involving files is performed or when the user presses the “refresh” button.

The contents displayed in the File System tree change depending whether the simulations executions
directory is located inside the openSF installation directory (default behaviour after a clean installation) or
outside of it (custom defined by the user from the preferences page, see Section 4.5).

In the first case, the openSF workspace is added as root node of the File System tree and the selection and
focus is set to the location of the simulations directory, expanding as many nodes as required to do so. In
the second case, both the openSF workspace and the custom location of the simulations executions
directory are added to a dummy "“File System” node, expanding and focusing the simulations node as done
before. See Figure 4-7.

The File System tree uses a colour code to ease finding the resulting files of the executions. Therefore, if a
tree node represents a folder containing the results of an execution which is also present in the currently
selected database, that node, its parents and all its children are rendered in black.

By contrast, if a tree node represents either a file or a folder which is not part of an execution result, or
which has been computed while connected to a different database than the currently selected one, the tree
node is rendered in light grey.

© Deimos Space S.L.U. 2021 42 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

- -

d 4.3
elmos System User Manual 27/05/2022
elecnor group

Repository (Executions (File system Repository {Executions (File system
~ openSF_390_Betad ~ File System
» »
» » Python_test.20191125T113955d630
» Python_test.20191125T113958d833
» » Python_test.20191125T114001d371
» » Python_test.20191125T114004d008
» »
»
»
»
»
» E2E_test.20191125T113320d798
» E2E_test.20191125T113323d255
» E2E_test.20191125T113325d062
» E2E_test.20191125T113328d057
» E2E_test.20191125T113331d637
»
»
»

Figure 4-7: File system view with the simulations directory inside (left) and outside (right) of the the
openSF installation directory

4.1.2. Frame management

Accessing the “View” menu of the main menu bar the user can find all the functionality provided for the
frame management. Option ‘Reset Views’ allows restoring the original window properties (as defined when
installing openSF)

View Tools Help

Log...

Reset Views |

Figure 4-8: Frame management menu

Other frame management functionalities can be found in the header of every main frame (hence not in
dialogues).

© Deimos Space S.L.U. 2021 43 of 155

DEG-CMS-SUPTR09-SUM-10-E

. &
deimos

elecnor group

System User Manual

openSF

Editor/Control

Executions

Simulation 'E2E_test' 5]

| Definitiun] 5etup| F'arameter5| Execution

Figure 4-9: Internal frame header

OPENSF-DMS-TEC-SUMO1
4.3
27/05/2022

Note the two little icons at the right border of the header (Figure 4-9), to "minimize” and “maximize” the

frame.

If the user minimizes a frame, it disappears from the working area but it can be restored from the “available
frames toolbar” visible at the side of the main frame.

4.1.3. Generic functionalities, dialogues and displays

This section is meant to describe the design of HMI generic functionalities, dialogs and displays.

There are some functionalities of the HMI that show a “file chooser” dialog as shown in Figure 4-10.

[l Documents
< Downloads
dd Music

[Pictures

'l Videos

[VM _Shared Data

+ Other Locations

Cancel Choose timeline File Q E
© Recent 4| [opt openSF openSF 3.8.2 test data timeline | »
ar Home ~ Size Modified
[Desktop

xml (*.xml) =

Figure 4-10: File chooser dialog

This dialog allows the user to browse the system directory to select a certain file or list of files. It provides
sorting, filtering and file operations.

Throughout the openSF HMI some functionalities may show information to the user and might ask for some
input in response to a specific question. The HMI will present modal dialogs that will get the system focus
until the user provides an answer. These modal dialogs will block the input to other areas of the application

until a response is given.

© Deimos Space S.L.U. 2021

44 of 155

DEG-CMS-SUPTR09-SUM-10-E

e OPENSF-DMS-TEC-SUMO01

. T openSF
4.3
dEl mOS System User Manual 27/05/2022
elecnor group
Cannot modify module ®

- Validation error. Identifier cannot be void
0 Please choose a different Identifier

Figure 4-11: Dialog example

These dialogs will typically provide a message with an "OK” button or give a yes-or-no question, or another
question with different options. The dialogs will provide information with a clear description of the event.

4.2. Data Structure

I A E

Most information systems must store information in a persistent way. openSF trusts a relational database
to store structural information and the file system to store the input/output/configuration files. The
following table shows which openSF elements are stored in the database and which into the file system.

Table 4-1: openSF information management system

Element Storage

System.Configuration File system. <workspace_root>/openSF.properties
System.Tools Database
Repository.Descriptors Database
Repository.Modules Database
Repository.Simulations Database

File system. <simulations_folder>/<sim_id> /<name>.sh, where the

Repository.Simulation script simulations folder is that defined in 4.5.3.

Executions.Results Database

File system: <simulations_folder>/openSF.log (global)

File system: <simulations_folder>/<sim_id>/log/simulation.log (for
Executions.Logs each simulation)

File system: <simulations_folder>/<sim_id>/log/MODULE.log (for
each simulation and module, only if enabled in application settings)

Execution.Dumped log simulation File system

File system

E ion.I fi ion fil
xecution. Input/output/configuration files <simulations_folder>/<sim_id>/<filename>

The folder structure of openSF has already been presented in Section 3.5.1.4.

In the openSF database, the following string types are used:

e Short string: 25 characters
e Normal string: 75 characters
e Medium string: 255 characters

4.2.1. Workspaces

Since the framework may be installed on a shared folder that is not writable by the user, openSF stores its
configuration under the <workspace> folder (see section 3.5.1.4). The main window shows the current
database and workspace in the status bar at the bottom:

© Deimos Space S.L.U. 2021 45 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1
4.3

- &
dEl mOS System User Manual 27/05/2022
elecnor group

Database: H2 file-based database 'defDb" at (E2ZE_HOME) Workspace: (program folder) A7M of 99M [in)

Figure 4-12: Current database and workspace indication

If the program installation folder <OPENSF_INSTDIR> is writable for the user, it is used as the default
value of <workspace> without prompting the user. This replicates the behaviour of earlier openSF versions,
where the workspace concept did not exist. However, this default can be changed when switching to a new
workspace see section 4.2.1.1.

If the default workspace is not writable, the user will be prompted to select a new workspace on startup.

4.2.1.1. Switching workspaces

The user may change the workspace folder from within openSF by using the menu item “System » Switch
workspace”. This action invokes the workspace selection dialog (as shown in Figure 4-13), which offers a
selection of folders recently used as a workspace. If a new workspace folder is selected, openSF restarts
immediately using the new <workspace> setting.

Select workspace folder

Choose a writable folder to use as the workspace.

The workspace folder contains the configuration for openSF.
It is also the default value for the E2E_HOME variable, the
location of the simulations folder, and the logs.

/home/user/openSF/v3.11-b2 ~ | Browse...

Store and do not ask again

Figure 4-13: Select workspace dialog

If the selected folder does not exist, the dialog will offer to create it. If the user enables the “store and do
not ask again”, the new default workspace is persisted in a special configuration file outside of any
workspace (see section 4.2.1.2), so openSF will use the same folder until the setting is changed again.

In addition to using the dialog, openSF can be started with a specific workspace folder by using the “-data”
command line option, as follows:

<OPENSF_INSTDIR>/openSF -data /path/to/writable/workspace/folder

4.2.1.2. Confiquration persisted across workspaces

The framework stores the workspace selection settings in a file “workspace.properties” under the path
“$XDG_CONFIG_HOME/openSF”. If this variable is undefined, the default value of this cross-workspace
configuration path varies per platform:

Q In Linux: “$HOME/.config/openSF”
O In macOS: “$HOME/Library/Application Support/openSF”

© Deimos Space S.L.U. 2021 46 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

Q In Windows: “%LOCALAPPDATA%\openSF”, if it is defined. Otherwise, an equivalent to the path
used in Linux: “%USERPROFILE%\.config\openSF”.

This location contains only the recent/default workspace configuration. It is shared by all openSF
installations in the system, although the data in the file is keyed to each specific installation. Thus, even
though the file is shared, openSF installations in different folders (e.g. simulators from different projects)
each have their own different default workspace.

In addition to this cross-workspace file, there may be a file “openSF_defaults.properties” inside the program
installation folder <OPENSF_INSTDIR>. If it exists, it is used to provide default values for the configurations
stored in the respective “openSF.properties” files in each workspace. This may be used, for example, by
an integrator in order to ensure that any new workspace created has suitable settings, see section 7.4.

4.2.2. Databases

Within each workspace, openSF has the ability of working with multiple repositories. This implies that users
can create different databases, so that all of them are independent. Users can work with different input
data by selecting only the corresponding database in the repository. If the user changes e.g. the modules
that make up a simulation, only the database that is loaded in that moment is modified, as all databases
are independent. Thus, openSF can hold more than one database in one single instance.

Databases may be either server-based or file-based.

When the user selects the “"Databases” option from the menu “System”, the window presented in Figure
4-14 will show up.

Databases

Databases

Database name Location Engine

testDB CA\Users\ncmm\Documents\openSFitest_file.. H2 file-based
debug 'localhost’ as user ‘root’ MariaDB/MySQL
opensf 'localhost’ as user ‘root’ MariaDB/MySQL

Connected to: | H2 file-based database 'testDB' at C:\Users\ncnm\Documents\openSFitest_files\file_based_DBs

Connect New... Delete... Import... Export... Refresh

Figure 4-14: Database management window

At the bottom of the window there are seven buttons, which allow users to perform different actions over
the databases. Users can connect to an existing database, create a new database, delete an existing
database, import database definitions specified in XML format, export database definitions in the same
format or add databases residing in the same server/folder to the list.

The central area of the window shows a list with the stored databases. Along with the database name, this
area shows the database location and engine. The location could be either a system path (in case of a file-
based database) or a set of address and user (in case of a server-based database).

The bottom of the window shows a label with the database currently in use by openSF. In this case, the
application is connected to the ‘testDB’ database, so all configuration associated with its descriptors,
modules and simulations is loaded by the system.

Finally, there is a “"Close” button to return to the main window of the application.

4.2.2.1. Connect to a database

Users can switch between the different databases located in the DB server. For this, the user has to select
a database from the list, and click on the “Connect” button. Automatically the system is connected to it,

© Deimos Space S.L.U. 2021 47 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

Ol 4.3
dEI mOS System User Manual '

27/05/2022
elecnor group

and then, the name of the selected database is shown beside the label “Connected to”. An example of this
procedure is shown below:

Databases

Databases

Database name Location Engine

testDB C\Users\ncmm\Documents\openSRtest_file.. H2 file-based
debug localhost' as user 'root’ MariaDB/MySQL
i opensf ‘localhost' as user 'root’ MariaDB/MySQL

Connected to: H2 file-based database 'testDB' at C:\Users\ncmm\Documents\openSF\test_files\file_based_DBs

Connect New... Delete... Import... Export.. Refresh

Figure 4-15: Connect to a database

The window shows that the system is connected to the “testDB” database. If the user selects the “opensf”
database from the list, and clicks on the “Connect” button, the system automatically connects to this
database, as it is shown in the corresponding label. If an error occurs during the procedure and the
connection cannot be performed, openSF shows a message reporting the error.

4.2.2.2. Create a new database

If the user wants to create a new database, he has to click on the *New’ button, and a dialog will be shown
by the application, as it can be seen in Figure 4-16.

New DBView

Database Name ‘ ‘

Database Connection
(®)iServer-based (MariaDB/MySQL) (O File-based (H2)

User ‘ openSF ‘

Password ‘ sssese ‘

Address ‘ localhost ‘

Database initial content
(®) Create an empty database () Create an example database () Import a database

Script Browse...

0K Cancel

Figure 4-16: Create new database

The user can now choose the database name and type. Depending on the type, the user shall fill the
remaining fields. For a server-based database (as shown in Figure 4-16) the fields are:

U User and password: Credentials for the user that connects to the databases server (requires
privileges to create a database);

U Address: Hostname (and optionally port) where the database server is located;

For a file-based database, the only field is:

U Folder: The system folder in which the database file is going to be saved. Folders located inside
E2E_HOME will be stored as relative to it.

Some fields are presented with a default value e.qg. if the system is currently connected to a server-based
database, the default is to create a new server-based database using the same server and credentials.

All fields are mandatory except the server-based password, which may be empty.

© Deimos Space S.L.U. 2021 48 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d . & 4.3
EI mOS System User Manual 27/05/2022
elecnor group

In the lower part of the window, the user can choose the initial contents of the database:
U Empty database: no elements, just the basic structure
U Example database: containing example modules and simulations
U Importing another database XML representation

When the user enters all the information correctly and clicks on the ‘OK’ button, the new database is
created, and openSF is automatically connected to it.

In case some field has been entered incorrectly (as for example an already existing database name, or the
user or password to connect with the server are incorrect) openSF shows a message reporting the error as
shown in Figure 4-17, and force the user to enter the correct information.

' b

Choose another database name x

- This database name already exists in the database server
0 Please, choose another one

Figure 4-17: DB creation error message (wrong name)

If the user clicks on the ‘Cancel’ button on the new database window, no action is performed.

4.2.2.3. Delete a database

To remove a database from the databases server, the user has to select the database to remove from the
list, and click on the ‘Delete’ button, as shown in Figure 4-18.

Databases

Databases

opensF opensF localhost

Connected to: | openSF

Connect New... Delete... b Backup... Import... Export... Refresh

Figure 4-18: Delete a database

A new dialog is shown to confirm the action. If the user clicks on ‘OK’, the database is deleted.

© Deimos Space S.L.U. 2021 49 of 155

DEG-CMS-SUPTR09-SUM-10-E

A - - -
openSF OPENSF-DMS-TEC-SUMO1

d = gl 4.3
e | m OS System User Manual 27/05/2022
elecnor group
Delete database x

This operation will erase the database from the server.
Areyousure?

Cancel ‘ OK

Figure 4-19: Confirm deletion operation

openSF needs to be always connected to an existing database. Thus, the user cannot delete the connected
database otherwise the system will send an error message. Therefore, the user must connect to another
database to delete the current one.

4.2.2.4. Import and Export a database

The capability to import and export elements definition specified using XML (refer to [AD-ICD] for the
definition of the expected XML format) is accessible from the Database Management window, presented in
Section 4.2.2.

To import a database, the user shall click on the “Import” button appearing at the bottom of the window
and select the XML file containing the database definitions.

‘ Cancel ‘ Database XML File |?|

© Recent |< | |§|‘ opt ‘ openSF | opensF_3.8.2 | test | data | database | » |

4t Home Name -~ Size Modified
b Desk B opensrdbvalidation.xml 174.3kB 19.Jul

Desktop
[l Documents
~ Downloads
dd Music

&1 Pictures

' Videos

| xml (*.xml) |

Figure 4-20: Database import

The outcome of the operation is that the elements included in the XML file are introduced in the currently
selected DB.

To export a database, the user shall select a database from the list and press on the “Export” button. The
user can now select the desired file path and confirm. If the exported database contains non-portable paths
a warning message will show up. Such paths might cause problems if the user wants to use the exported
database on other machines. Examples of non-portable paths are absolute paths, or paths that contain
characters that might be invalid in other platforms.

4.2.2.5. Refresh database list

The database management dialog provides the capability to refresh the list of openSF databases available
in the server or folder to which openSF is connected to. This functionality identifies among the available
databases the ones that are compatible with openSF. This capability is applicable in situations as manual
migration of openSF database or automatic database upgrade, both occurring typically when upgrading to
a more recent version of openSF.

© Deimos Space S.L.U. 2021 50 of 155

DEG-CMS-SUPTR09-SUM-10-E

.-

[

— opensF OPENSF-DMS-TEC-SUMO1

. g 4.3
dEl mO System User Manual 27/05/2022
elecnor group

4.2.2.6. Database maintenance

Currently, openSF can connect to a local or remote server. If the last database to which openSF was
connected is not accessible during openSF initialization, openSF will start in a temporary state described in
Section 3.6.2 that will allow the user to connect to a valid database.

The user (or the database server administrator) is responsible to regularly back up, de-fragment, clean
and perform similar maintenance operations to guarantee the database integrity. In case of a MySQL or
MariaDB database, users can execute the following script to perform a manual backup of the openSF
database, which can later be restored using the same utilities:

~/openSF$ mysgldump --user=USER --password=PASS DB NAME > openSFdb.bk.sql

4.2.3. Simulation Results Naming Conventions

openSF naming convention for simulation execution directories, as well as their relative supporting files,
involves the use of names with a timestamp. The use of a timestamp is meant to ensure a unique
identification of the simulation folder and files.

In case of a nominal simulation (single execution) the execution result (whether it was successful or not)
is stored in a <simulations> folder, named as “<simulation_id>.<starting_time>". Starting time is coded
as “YYYYMMDDTHHmMmMSSdsss"” in local time - see the format in Figure 4-21.

In case of timeline-based and iteration/perturbation-based simulations, openSF groups related simulations
execution results into separate output folders (since these two types of executions can end up to hundreds
of simulations). Also, in these two cases, in order to uniquely identify the executions, a timestamp is
appended to the execution identifier, as shown in Figure 4-21.

Note that the prefix “exec#” is used for each iteration folder as a way of facilitating the user’s distinction
between Timeline and Iteration/Perturbation executions.

Summarising, the naming scheme for simulation result folders is as follows:
U Nominal simulation (single execution)
o <sSimulation_id>.<start_time>, where
= simulation_id is the simulation name (as seen in the “Repository” view)
= start_time is the simulation execution start time, formatted as YYYYMMDDTHHmMmMSSdsss
U Iteration/perturbation-based simulation (multiple executions, based on the specification)
o <simulation_id><start_time>/exec#.<start_time2>, where
» simulation_id is the parent simulation name (as seen in the “Repository” view)
= start_time is the simulation execution start time, formatted as YYYYMMDDTHHmMmMSSdsss
» #is an incremental integer defining the order of execution of the multiple executions
= start_time2 is the iterated execution start time, formatted as YYYYMMDDTHHmMmMSSdsss
U Timeline-based simulation (multiple executions, based on time segments specified)
o <simulation_id><start_time>/<time_segment_start>.<start_time2>
» simulation_id is the parent simulation name (as seen in the “Repository” view)
= start_time is the simulation execution start time, formatted as YYYYMMDDTHHmMmMSSdsss
» time_segment_start is the time segment start time (as defined by the user)

= start_timeZ2 is the time segment execution start time, formatted as
YYYYMMDDTHHmMmMSSdsss

7 “sss” denotes milliseconds

© Deimos Space S.L.U. 2021 51 of 155

DEG-CMS-SUPTR09-SUM-10-E

|] y
dellmos
eliechor group

_

openSF

System User Manual

—_—

Repository (Executions (File system

Repository (Executions (File system

+ simulations

» E2E_test_simulation.20191029T173727d772
» E2E_test_simulation.20191030T111432d444
+ E2E_test_simulation.20191030T162254d059
» exec1.20191030T162254d295
exec2.20191030T162254d537
exec3.20191030T162255d172
exec4.20191030T162255d615
exec5.20191030T162255d716

+ simulations

»

»

» E2E test simulation.20191029T173727d772

v E2E_test_simulation.20191030T111432d444
» 20180615T154902927.20191030T111432d634
» 20180615T155002927.20191030T111432d688
» 20180615T155502927.20191030T111432d872
» 20180615T155602927.20191030T111433d066
» 20180615T160102927.20191030T111433d207

» E2E_test_simulation.20191030T162254d059

Figure 4-21: Grouping of iteration/perturbation (left) and timeline (right) simulations

OPENSF-DMS-TEC-SUMO1

4.3

27/05/2022

In order to simplify simulation results directory names, symbolic links are used. Each time a simulation is
executed a symbolic link is generated in the file system with the name of the simulation being executed
(appended by “.last”) and pointing to the corresponding simulation execution directory. Each time a
simulation is re-run the symbolic link is re-generated pointing to the latest simulation execution (the one
with the latest timestamp). Please note that these symbolic links are not generated in Windows. Therefore,
a warning is not thrown when the symbolic link is not generated. The contents of openSF installation
directory and the simulation execution ones can be reviewed in the File System tab of the side bar, see

Section 4.1.1.1.

Repository [Exe(utions (File system

» E2E_test_simulation.20191029T173727d772
» E2E_test_simulation.20191030T111432d444
» E2E_test_simulation.20191030T162254d059

Figure 4-22: File system in the side bar, including symbolic link to last simulation

© Deimos Space S.L.U. 2021

52 of 155

DEG-CMS-SUPTR09-SUM-10-E

. &
deimos

elecnor group

4.3. Framework Elements

M 1 A

In this section the elements at the base of openSF are described. They are collectively called the “domain

elements of openSF.

4.3.1. Descriptors

M I A

openSF

System User Manual

OPENSF-DMS-TEC-SUMO1
4.3
27/05/2022

”

openSF has the possibility to define the set of input and output files (called descriptors) used to connect

different modules in simulation runs.

Users can access the list of nhominal descriptors (those provided in the default distribution) inside the
repository view of the side bar, as seen in Figure 4-23.

Accessing the corresponding menu of the main menu bar (Edit > Elements > Descriptors... or Edit > New
Elements - Descriptors...) or the context-menu of the side bar, users can activate the following

functionalities:

O List - presents the list of existing descriptors;

O 00O

Creation - creates a new descriptor into the system;
View - displays the contents of an existing descriptor
Modification - edits an existing descriptor to enter changes;

Deletion - deletes a descriptor from the system;

U Copy - creates a copy of an existing descriptor.

The options availability depends on the active user role as explained in Section 3.2.2.

Repository . Executions | File system

* Repository

~ Descriptors

Input_Geometry
Input_lonosphere
Input_L1b
InputGeneric
InputScene
QutputGeneric
Product_Geometry
Product_lonosphere
Product_L1b
Product_L2
Product_0SS
Product_Scene

» Modules

» Simulations

Figure 4-23: Descriptors in the side bar

Users can access operations in the menu bar of the main window (Edit > Elements - Descriptors... or Edit
- New Elements - Descriptors...) or through the corresponding context-menu of the repository view.

© Deimos Space S.L.U. 2021

53 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d o 4.3
el mOS System User Manual 27/05/2022
elecnor group

4.3.1.1. Descriptor list
I A E

Users can access to a window that provides a tree-like structure with the list of descriptors known by the
system, just as in the side bar but with the additional information of its description and the number of
associated files.

Descriptors x

Descriptors List View

put_ y P! y y .
Input_lonosphere Input used by the lonosphere Module to compute the lonosphere product.
Input_L1b Input for the L1b Product Generation Module, composed by the scene file, ionosphere description file and instruments file.
InputGeneric Generic input for Python, Java and Matlab tests.

InputScene Input used by the Scene Generator Module, composed by Geometry product file, instruments description file and Maps&
OutputGeneric Generic output For Python, Java and Matlab tests.

1
3
4
3
4
1
1
1
1

Product_Geometry Result from the Geometry Module computation.

Product_lonosphere lonosphere Module results. Every descri pto r defines
Product_L1b L1b Product. a set of files

Product_L2 Level 2 Retrieval product.

View. Edit Delete Copy Close

Figure 4-24: Descriptors list view

4.3.1.2. Descriptor creation

M I

Users can define new descriptors in case they want to accommodate third-party modules that cannot make
use of any of the nominal descriptors. The frame shown in Figure 4-25 is responsible to define the
descriptor’s characteristics.

The attributes that identify the descriptor and that shall be set by the user are the following:
Attribute name Format ‘ Purpose Example

Identifier Short string Descriptor’s unique name. LIDAR In

A brief description of its composition or the | Orbit information and

Description Medium string purpose of the set of files. radiative transfer information

It is possible to alter the set of files that integrates the descriptor. Users can edit, add or remove files. Each
individual file must be described by these two parameters:

Attribute name Format ‘ Purpose Sample
The default location and name of the file.
Default file Medium string Thls. Is the file that IS going to I:_)e_ s_uggested orbit.xml
during the simulation definition (see
section 4.3.3).
Brief description of the file’'s composition,) . .
Description Medium string its purpose or its type (XML, TIFF, NETCDF, XI::“‘ f_|Ie with Orbital
etc.). information
© Deimos Space S.L.U. 2021 54 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

Editor/Control | Executions = 0

Creating a new |/0 descriptor &3

|dentifier |dentifier

Description

“Add” and “remove” buttons. A
descriptor must have a
minimum of one file.

—

Files \

-

Mumber of files 2 P =

Files List

Default file Description
File1 *
File2 -

.

“Up” and “down” buttons.
Users can alter the order of
the files as they wish.

right-clicking here, a file
browser dialog will
appear. Users can now
select the default file
name.

Save Cancel

Figure 4-25: Create a new descriptor

It is important to note that the default file nhame is the way to know if two modules are compatible and to
connect them in the simulation definition. A descriptor could also have zero files. Multiple descriptors with
zero files could be created, but they are all equivalent to openSF.

The order that the files occupy in the descriptor list is significant. The order must fulfil the directives of the
command line specification of the simulation module because the way in which the files are arranged will
define the order of the input and output files in the command line of the module execution (see [AD ICD]).
This order can be altered with the “up” and “down” buttons.

Upon creating a descriptor its default file field is considered as a template name, i.e., this definition may
be used as-is during simulation execution or it can be changed in the simulation edition window. When
changing the actual file descriptor in simulation edition the file location can be set to any path, either
absolute or relative one. By default, the descriptor is considered as a relative path. It may be relative to
(a) the user’s work folder (as per $E2E_HOME), or (b) the simulation execution folder:

(a) It will be relative to the user’s work folder when the descriptor is used for input only (e.g. the input
descriptor of the first module of a processing chain).

(b) It will be relative to the simulation folder when the descriptor is used both as input descriptor and
output descriptor (e.g. a folder generated by one module and later used as input to another).

© Deimos Space S.L.U. 2021 55 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - i 4.3
el mOS System User Manual 27/05/2022
elecnor group

4.3.1.3. Descriptor modification

I

Users can select a certain descriptor and choose the option to edit it. Note that any modifications performed
on the descriptor will also affect all the modules and simulations that use it.

4.3.1.4. Descriptor deletion
I

Users can also select a descriptor and delete it. Once users confirm the operation the descriptor is erased
from the repository. Note that for consistency purposes, every module or simulation (and its
results) that make use of this descriptor will also be deleted from the system.

4.3.1.5. Descriptor copy
I

Users can select a certain descriptor and choose the option to copy it. The user needs to specify a new
name for the descriptor, unique with respect to the existing descriptors.

Descriptors

Descriptors List View

Descriptor identifier Description Number of Files
Descriptors
Input_Geometry Input file read by the Geometry Module. 1
Input_lonosphere Input used by the lonosphere Module to compute the lonosphere product. 1
Input_L1b Input for the L1b Product Generation Module, composed by the scenr = B - - - .
InputGeneric Generic input for Python, Java and Matlab tests. "
InputScene - Input |:|sed by the Scene Generator Module, composed by Geometry p USSR S o
OutputGeneric Generic output For Python, Java and Matlab tests.
Product Geometry Result from the Geometry Module computation. Input_Geometry_Modified|
Product_lonosphere lonosphere Module results.
Product_L1b L1b Product.

l‘.'l.‘ o Ec : :]el canCEl ﬁ

Figure 4-26: Copy of a descriptor

4.3.2. Modules
M I A E

According to the definition given in Section 1.4, a module is an executable entity that can take part in a
simulation. Users are able to manage all modules that take part in openSF simulations. The operations
upon modules, which vary depending on the active user role (see Section 3.2.2), are:

O List - present the list of existing modules;

Creation - capability to create a new module into the system;
View - displays the contents of an existing descriptor

New version — create a new version of an existing module;
Modification - edit an existing module to enter changes;

Deletion - delete a module from the system;

O00D0Do

Copy - creates a copy of an existing module.

© Deimos Space S.L.U. 2021 56 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d = E— 4.3
E| mOS System User Manual 27/05/2022
elecnor group

Repnsitnrﬁ [Executions File system

~ Repository
» Descriptors
| - Modules |
GeometryModule (1.0)
GeometryModule (2.0)
lonosphereModule (1.0)
JavaModule (1.0)
L1bGenerator (1.0)
L2Retrieval (1.0)
MatlabFailModule (1.0)
MatlabModule (1.0)
0ssModule (1.0)
PythonModule (1.0)
SceneGenerator (1.0)
» Simulations

Figure 4-27: Repository view: modules

Systern Edit VWiew Tools Help

St i Elements » Descriptors...
— Mew Elements > Modules...
Mavigati .
Product Tools... Simulations...

Reposit Executions ¥

Figure 4-28: Repository menu

Users can access some of these operations at the modules” menu in the menu bar of the main window or
in the correspondent context-menu of the repository view.

4y Edit...

4y New module version...

H copy...

i Delete...

Figure 4-29: Module pop-up menu

4.3.2.1. Module list
I A E

Accessing to this functionality from the main menu or from the repository, the system will show a list of
modules known by the system. Figure 4-30 shows an example of the window that appears upon its
selection. Users can select a certain version of a module and perform the operations in the toolbar.

Data attributes shown in this tree-table are module ID, version number, description and the name of the
author.

© Deimos Space S.L.U. 2021 57 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d = gl 4.3
el mOS System User Manual 27/05/2022
elecnor group
Modules x

Modules List View

Module identifier Description Author

GeometryModule (1.0) Geometry computation module dms
GeometryModule (2.0) Geometry computation module dms
lonospheremModule (1.0) lonosphere computation module dms
JavaModule (1.0) Java test module DMS
L1bGenerator (1.0) Level 1b product generation module dms
L2Retrieval (1.0) Level 2 Retrieval module dms
MatlabFailModule (1.0) dms
MatlabModule (1.0) Matlab module dms
0SSModule (1.0) Observing System Simulator module dms
PythonModule (1.0) Python test module DMS
SceneGenerator (1.0) Scene Generator module dms

Edit New module version Delete Copy Close

Figure 4-30: Module list view

4.3.2.2. Module creation
M I

Users can add a new module accessing this functionality from the main menu or alternatively clicking over
the “New” button in the module manager.

This frame contains the components needed to introduce all data to define a new module in the system.
These data (module attributes) are grouped with the following structure:

1 General
U Configuration
Q Input/ Output

Each category is analysed in the following sub-sections.

4.3.2.2.1. General data

In this group (Figure 4-31) users must define general information about the module to create.The fields to

be defined are the following:
Attribute Name Format ‘ Purpose Example

Identifier Short string Unique module identification. LIDAR

Module version Float In. a new module this field will be filled 1.0
with a default value.

Descriotion Medium strin Free writing area where to briefly | State-of-the-art LIDAR
P 9 | describe the module. instrument module
Author Short string Text field for the author’s name. DMS

- . - -
Source file Medium string Optional fleld for a file® representing the modules/LIDAR/src/lidar.f90

source code of the module.
5 £ . .

Executable Medium string The executable” file (either a binary or module/LIDAR/bin/lidar

script) to be invoked in a simulation.

8 Non-trivial modules in general will have several routines, so the “source” is likely to be an archive (e.g.
module-src.tar.gz). This field is merely informative and has no effect on execution.

9 The compilation of the modules is a process outside the scope of openSF.

© Deimos Space S.L.U. 2021 58 of 155

DEG-CMS-SUPTR09-SUM-10-E

| | y
dellmos
eliechor group

openSF

System User Manual

OPENSF-DMS-TEC-SUMO1
4.3
27/05/2022

Creating a new module 22]

General Configuration| Input / Output

Medule description

Identifier | lonosphereModule
Module version | 1.0

Description lonosphere module
Author DM5

Medule algorithm

Source file |

| Browse...

Executable | test\bin\lonosphereModule.exe

| Browse...

Save

Cancel

Figure 4-31: Module general data

4.3.2.2.2. Configuration

Selecting the “Configuration” tab (Figure 4-32), users can select the XML configuration file using file-
browser dialogues. The text area is also provided to preview the XML code.

Editor/Control Executions
Module ‘GeometryModule (1.0)' *
General Configuration Input / Output
XML configuration file

Default file | test/data/cont/geoContxml

Browse...

<2aml version="1.0" encoding="UTF-8" standalone="no"?>
<GeometryModule_Local Configuration version="04.15.33">
<parameter description="text" name="lterations" type="INTEGER">50</parameter>
<ModuleExecutionModes>
<Nominal>
<parameter description="text" name="Nbands" type="INTEGER">13<
</Nominal>

parameter>

<Maneuver>

<parameter descrip
<parameter descript
</Maneuver>
</ModuleExecutionModes >
</GeometryModule_Local Configuration>

ext” name="acceleration” type="FLOAT" units="m/s*2">0.03 </parameter>
uration” name="duration” type="INTEGER" units="s">

1</parameter>

Al

This area is only
meant to preview
XML code.

Visibility rules

Browse.

th

[}

Figure 4-32: Module configuration

In this tab it is also possible to select a visibility file for the configuration parameters. This file will dictate
which parameter is visible in the openSF GUI (see Section 4.3.3.6.5) without affecting the module run in
any way. The visibility file is a text file that follows the following rules:

© Deimos Space S.L.U. 2021

59 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

Every line starting with “#” is ignored
Every line containing a parameter or group name, hides that element
Every line containing a parameter or group name starting with “!” makes the element visible

The lines are executed sequentially from the first/top to the last/bottom line in the file; lines
appearing later in the file (i.e. closer to the bottom of the file) override preceding ones.

oooo

For example, on a filter file containing “group” followed by “!group.parameter.a”, the first entry hides all
parameters related to “group”, while the second entry overrides the first by making the parameter
“group.parameter.a” visible. Another parameter “group.parameter.b” would remain hidden, due to the first
filter rule.

4.3.2.2.3. I0 descriptors

The “Input/Output” tab (Figure 4-33) in the Module properties window enables users to specify,
respectively, the contents of the input files expected for the module, and the output files the module
produces as output. Thus, within this tab users can select the input and output descriptors for this module.
The default file identifiers of the 10 descriptors allow the module connections to be made automatically
when defining simulations.

Each IO descriptor has an identifier that uniquely identifies the descriptor among the system. It may happen
that an IO descriptor for a new module may exist already in the system, that is, this module uses the same
type of files and file contents as another module. Therefore, a combo-box component is presented with the
list of known IO descriptors in case the user desires to select an existing one.

Creating a new module 2

General | Configuration | Input / Output

Input descriptor InputGeneric -
input1 Genericinput1
input2 Generic input2
input3 Genericinput3
input4 Genericinput4 It is suggested to have every
descriptor already defined when
Output descriptor | OutputGeneric - Creatmg a module.
output1 Generic output1
output2 Generic output2 Users can consult the
outputs Generic output3 files that this module will
output4 Generic output4 request and generate

Figure 4-33: Module input/output specification

© Deimos Space S.L.U. 2021 60 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d o 4.3
el mOS System User Manual 27/05/2022
elecnor group

4.3.2.3. Module modification
M I E

When editing a module from the repository view or from the modules list, openSF will present the same
window as in the previous section with all known data already filled. The window presents in write-mode
only the data fields that are susceptible to be modified. If users want to change more attributes of a certain
module, other operations must be used (“module creation” or “new module version”).

This frame is intended to let users modify data of a certain module. Once they have finished with the
editing, they can accept or cancel the changes made with the buttons at the bottom-side toolbar.
4.3.2.3.1. Module upgrade - New version

A new version of a module represents an upgrade of the implementation of a given module. This means
that users can define a new module by altering any of the elements defined in the module creation, like for
example the executable file of the module, the configuration file or the input and output files.

Users can create a new module version selecting the correspondent action from the context-menu of the
repository view or alternatively clicking over the "New module version” button in the module list.

The system will automatically perform a “minor version upgrade” (for example, from 1.0 to 1.1), but this
numbering can be manually modified by the user.

This way, users can have two versions of the same module with modifications between them.

4.3.2.4. Module deletion
I

Users can select a certain module and choose the option to delete it. Once users confirm the operation the
module is erased from the repository and the file system. Note that also every simulation (and its results)
that uses this module will be erased from the system for consistency purposes.

4.3.2.5. Module copy
I

Users can select a certain module and choose the option to copy it. The user needs to specify a new name
for the module, unique with respect to the existing modules. All module definitions are thus copied to the
new module instance.

Modules

Modules List View

Module identifier Description Author
Modules
GeometryModule (1.0) Geometry computation module dms
GeometryModule (2.0) Geomektry computation module dms
lonosphereModule (1.0) x dms
JavaModule (1.0) DMS
L1bGenerator (1.0) Please insert the new element identifier dms
L2Retrieval (1.0) GenericGeometryModule| dms
MatlabFailModule (1.0) dms
MatlabModule (1.0) dms
0ssMeodule (1.0) dms

PythonModule (1.0) DMS

SceneGenerator (1.0) Cancel dms
Edit New module version, Delete Copy. “

Figure 4-34: Module copy

© Deimos Space S.L.U. 2021 61 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

4.3.3. Simulations

1 A E

According to Section 1.4, a simulation is defined as either an execution of a set of modules (possibly
obtained from the ordered set of modules of a simulation) or an iterative execution of a set of modules
with different parameter values.

Users can access to the list of simulations existing in the system in the “repository view” (Figure 4-6) of
the side bar or via the “repository menu” (Figure 4-28) from the main menu.

4y Edit...
P Runsimulation
Generate script
% Export

1 Delete
H copy...

Figure 4-35: Simulations pop-up menu
Operations involving simulations include the following:
O List - present the list of existing simulations;
Creation - capability to create a new simulation into the system;
Modification - edit an existing simulation to enter changes;
Deletion - delete a simulation from the system;

Run - Starts a new simulation execution;

O000D

Script generation - creates and stores a script describing the simulation;
Exportation — Exports the entire simulation definition;

U Copy - Creates a copy of an existing simulation.

4.3.3.1. Simulation list
Users can access the simulation list via the menu bar “Edit"=>"Elements”->"Simulations”.

Figure 4-36 shows an example of the simulation list window that is presented upon selection. Below the
table including the simulations existing in the system, there is a tool-bar with buttons to access the different
functions listed previously. Users can thus select a certain simulation and perform the operations shown in
the toolbar.

Data attributes shown in the simulation list table are simulation ID, description and the name of the author
that created the simulation.

© Deimos Space S.L.U. 2021 62 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - gl 4.3
el mOS System User Manual 27/05/2022
elecnor group
Sessions x

Sessions List View

Simulation identifier Description Author
- simtotions
Breakpoints_test_simulation simulation for testing the openSF breakpoints system. dms
E2E_test_simulation E2E validation simulation. dms
JavaSimulation Java Test Simulation. DMS
MatlabFail_test_simulation Matlab Fail simulation. dms
MatlabSimulation Matlab simulation. dms
Paramlteration_test_simulation Simulation for testing the parameter iteration feature. dms
Pythonsimulation Python Test Simulation. DMS

Edit Runsimulation Generate script Export Delete Copy Close

Figure 4-36: Simulation list view

4.3.3.2. Simulation creation

Users can create a new simulation definition by clicking on the corresponding action from the Simulation
menu in the menu bar (Edit > New Elements - Simulation...) or by right clicking on the “Simulations” node
in the repository side bar. The user is then guided through the steps of creating a simulation. These steps
are described in Section 4.3.3.6.

4.3.3.3. Simulation deletion

Users can select a certain simulation and choose the option to delete it. Once the operation is confirmed
the simulation is deleted from the repository and the file system. It is to be noticed that for consistency
reasons, the simulation deletion causes the removal of all results generated from that simulation
from the system.

4.3.3.4. Simulation copy

Users can select a certain simulation and choose the option to copy it. The user needs to specify a new
name for the simulation, unique with respect to the existing simulations. All simulation definitions thus
copied to a new simulation instance.

Repository . Executions| File system

Repository
Descriptors
Modules
Simulations

Please insert the new element identifier
Breakpoints_test_simulation

E2E test simulation E2E_test simulation_copyl -
Javasimulation
MatlabFail_test_simulation
Matlabsimulation

Paramlteration_test simulation Cancel ﬁ

PythonSimulation

Figure 4-37: Simulation copy

4.3.3.5. Simulation modification

It is possible to edit a given simulation and create a different one altering the information previously stored.
Consequently, changes made to the simulation will not alter the previous one but will create another
simulation.

© Deimos Space S.L.U. 2021 63 of 155

DEG-CMS-SUPTR09-SUM-10-E

OPENSF-DMS-TEC-SUMO1

4 y openSF

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

When editing a simulation, the system will show the same window as shown in the simulation creation. But
this time, all the information concerning this simulation will fill every data field.

Once finished, the user can cancel the changes or execute this new simulation pressing the “"Run” button.

4.3.3.6. Settings in a simulation

When a simulation is created, a number of properties have to be specified. These properties are grouped
into different tabbed panels. Note that in order to fully define a simulation the running settings have also
to be specified. These are described throughout Section 4.4.

4.3.3.6.1. Simulation definition

Figure 4-38 shows a blank simulation creation window.

Creating a new simulati... *

Definition| Setup Parameters| Execution

General Properties

Identifier Author

Description

Modules Set

GeometryModule (1.0) v |Add Module, Zoom: I Fit to view Default

Cancel Save

Figure 4-38: Simulation general properties

First thing, the user must fill the following general properties:

Attribute name Format Purpose Example
Medium string. ; : . L .

Identifier g Unl_qL_ngy _|dent|f|es this simulation E2E
No blank spaces allowed. definition into the system.

Brief remarks about the goals and This is a full end-to-end

Description Medium string - - - simulation for the
characteristics of the simulation .
EarthCARE mission
Name of person or group
Author Normal string responsible of the simulation | DMS

definition

Then, modules to be executed need to be included by selecting them from the dropdown list of available
modules. Once the desired module is selected, the user must press “Add Module” to add the module to the
simulation.

The diagram below shows the simulation components and their relationships (see Figure 4-39). Every
module is represented by a rectangle identified by the name of the module, with inputs or outputs displayed
as square connectors on the side of the respective module. Input files are always shown on the left side of
the module, while output files are shown on the right side of the module (e.g. visually the data flows from

© Deimos Space S.L.U. 2021 64 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

Ol 4.3
dEI mOS System User Manual '

27/05/2022
elecnor group

left to right). Data flow and dependencies between the modules are represented by arrows linking output
to input connectors.

Modules Set

GeometryModule (1.0) ~ Add Module Zoom: I Default

OSSModule (1.0}

lonosphereModule
(1.0}

L2Retrieval (1.0)

Figure 4-39 Simulation diagram

The diagram can be scrolled, panned and zoomed with the mouse wheel and by holding CTRL and using
the wheel. The buttons at the top can also be used to zoom the diagram, fit it to the view or reset the zoom
level to the default.

The colour of the connectors indicates whether the file is: available (black); pending (blue); or, missing
(red). Hovering the mouse on top of a connector displays the related file location as a tooltip.

A user can link two connectors, indicating that the output of a module should become the input of another
one, by clicking on two connectors sequentially. In particular, the input file location is set to the output file
location.

Editing the settings of a module can be done by double clicking it. A side area will open as shown in Figure
4-40, allowing the user to edit the input, output and configuration file location.

Modules Set
GeometryModule (1.0) ~ Add Module, Zoom: I Fit to view Default
Editing SceneGenerator (1.0)
Inputs Configuration Outputs
A
GeometryModule (1.0) 0SSModule (1.0} SceneGenerator (1.0)
0 Mapsxml

test/data/simulations/E2E_test/input/Maps.xml Browse...

lonosphereModule
(1.0)
Instruments.xml

Close

Figure 4-40 Module editor side area
Users can remove a desired module from a simulation by right clicking on it and selecting “"Delete Module”.

Finally, right-clicking on an arrow, it is possible to edit a connection between two modules. The context
menu displays three options:

L Rename file: It allows to rename the file without breaking the links between modules. In fact, every
file that previously had the same name will be renamed as well.

L Rename source: It allows to rename the source output file. This will break the connection between
the two modules.

© Deimos Space S.L.U. 2021 65 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - gl 4.3
el mOS System User Manual 27/05/2022
elecnor group

1 Rename target: It allows to rename the target input file. This will break the connection between
the two modules.

The file(s) can be renamed through the side area that gets displayed upon selection one of the options (see
Figure 4-41).

Modules Set
GeometryModule (1.0) ~ | Add Module Zoom: I Fit to view Default
Connection Source A
Module: 0SSModule (1.0)
Default name: Instruments.xml
GeometryModule (1.0) 055Module (1.0) L1bGenerator (1.0}
Connection Target
Module: SceneGenerator (1.0)

Default name: Instruments.xml
lonosphereModule)
(1.0) New Location

Instruments.xml Browse...

Accept Discard

Figure 4-41 File edition side area

4.3.3.6.2. Input files

Selecting the first tab under the simulation setup (Figure 4-42), the system will ask for the location of the
input file list needed to start the simulation.

Definition | Setup | Parameters | Execution| Timeline

Input Configuration | Output | Tools

Input Files list

Defaulk file File instance Status

+ lonospheremodule (1.0)

Inputlonos.xml test/data/input/Inputionos.xml Available
v GeometryModule (1.0)
InputGeo.xml test/data/input/InputGeo.xml Available

~ 0SSModule (1.0)

~ SceneGeneraktor (1.0)
Maps.xml test/data/input/Maps.xml Available

~ L1bGenerator (1.0)

Figure 4-42: Simulation inputs definition

Double-clicking on the “file instance” column gives the possibility of writing the file path. Note that at the
time of defining the modules (see Section 4.3.2.2.3), input files are defined in an abstract way (i.e.
specifying that the given module shall require a certain input file). It is in this step where the user can
select the instance of each file (i.e. selecting in the file system the instance of the file specified at descriptor
level).

© Deimos Space S.L.U. 2021 66 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d . & 4.3
EI mOS System User Manual 27/05/2022
elecnor group

The “Status” column will show one of three different options for each file:

O Available (green) - the file instance is present, so the file is ready to be used for the module
executions;

O Pending (blue) - the file is not present but it will be generated for the module executions before
needed;

U Missing (red) - the file is not present and is not scheduled to be generated before needed. Edit the
file instance and change it so that it appears as an existing file.

File instance locations can be specified using absolute paths or relative to $E2E_HOME.

4.3.3.6.3. Configuration files

As it is done in the “Input” tab, the simulation needs to be provided with the location of configuration files
needed by all the modules involved in the simulation (Figure 4-43). An extra configuration file is needed
for this step, called global configuration file. This contains the general parameters characterizing a
simulation, not bounded to a specific module.

Input | Configuration | Output | Tools
Configuration Files list:
To avoid overriding user modified parameters, the configuration files are only loaded once when opening the session editor. /ﬂ: ParameterEditor || %5
To update the configuration, please click on the reload button (on the right). . =
ParameterEditor start button (
~ Configuration Refresh
globalConfig.xml 01.00.00 test/data/conf/GlobalConfiguration.xml configuraﬂeiﬁtﬁqes
+ lonosphereModule (1.0)
test/data/conffionosp 1.0 test/data/conffionosphereConf.xml Available
¥ GeometryModule (1.0)
test/data/conf/geoCol 04.15.33 test/data/conf/geoConf.xml Available
» 055Module (1.0)
test/data/conf/ossCor 1.0 test/data/conffossConf.xml Available
~ SceneGenerator (1.0)
test/data/conffsceneC 04.15.33 test/data/conffsceneConf.xml Available
* L1bGenerator (1.0)
test/data/conf/l1bPro 1.0 test/data/conffl1bProductConf.xml Available
w L2Retrieval (1.0)
test/data/conf/l2RetC 1.0 test/data/conf/|2RetConf.xml Available

Figure 4-43: Configuration files definition

This window will present the list of modules present in the simulation and will ask for the location of each
needed configuration file. At this stage, the modules cannot be changed nor deleted.

Double-right-clicking on a file row, the system will show a file browser to locate a specific configuration file.
Providing an existing file will update the status to “Available”.

The configuration file panel has two buttons providing the following capabilities:

O ParameterEditor button - located at the top of the configuration files list launches the
ParameterEditor application with the selected configuration files already loaded. See [RD-PE].

U Refresh button - reloads all configuration files, reading them from the file system and updating the
simulation parameters. It is recommended to do this after editing configuration files with another
tool. Caution: All changes in parameter values made from openSF interface will be lost.

Note that the configuration files for all active modules, plus the global configuration file for the simulation,
must be available in order for a simulation to run.

© Deimos Space S.L.U. 2021 67 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

As it has been seen in the previous section about input files, it is possible to provide the location of
configuration files. With the same action it is possible to specify where the global configuration file is
located. Global configuration file location can be edited every time the user creates a new simulation and
can be found in the “Configuration” tab of the “Simulation Setup” panel.

4.3.3.6.4. Output files

Users can change the name and location of the output files that will be generated by execution of modules.
Selecting the “Output” tab, the system will show a list of output files grouped by modules, and following
the execution order.

By default, these files will have a "Pending” status, meaning that they will be produced by the action of the
module’s execution. Once a simulation has been executed and output files generated, file instance column
will show the absolute path of the generated file and the status will be “Available”.

Note that no pair of output files in a simulation can share the same location, since they would be conflicting.

Definition | Setup | Parameters | Execution

Input Configuration Output Tools
Output files generated

Default file File instance Status
w Output
v lonosphereMadule (1.0)

£

GeometryModule (1.0)

£

055Module (1.0)

w SceneGenerator (1.0)

<

L1bGenerator (1.0)

<

L2Retrieval (1.0)

Figure 4-44: Simulation output definition

4.3.3.6.5. Parameters configuration

In this tab, the user is able to alter the contents of the configuration files to change the behaviour of the
module. Assuming that the module has been correctly integrated into the system and a valid configuration
file is reported, this tab shown in Figure 4-45 will present the list of module parameter (and values) grouped
by modules (sorted in execution order).

© Deimos Space S.L.U. 2021 68 of 155

DEG-CMS-SUPTR09-SUM-10-E

. &
deimos

elecnor group

openSF

System User Manual

OPENSF-DMS-TEC-SUMO1
4.3
27/05/2022

Definition | Setup | Parameters| Execution
&5 | | Visibility... | | lterati Perturbati Timeli Batch FElfEEE
ISINITY ... eration... EMuUroatcn.. IMEINE. AlChNu. .
<| operations buttons
Parameter identifier Complex Type Dimensions Units Values Type Validity ~
w Parameters
w Global
PayloadType SCALAR C STRIMNG oK
altitude SCALAR km 760 FLOAT oK
w lonosphereModule (1.0)
lterations SCALAR 47 INTEGER oK
Nbands SCALAR 13 INTEGER oK
w GeometryModule (1.0)
Iterations SCALAR 50 INTEGER oK
+~ ModuleExecutionMades
w Maneuver
acceleration SCALAR m/s"2 0.03 FLOAT QK
duration SCALAR s 1 INTEGER oK
+ Mominal
Nbands SCALAR 13 INTEGER oK
v 055Medule (1.0) .
Figure 4-45: Simulation parameters definition
Users can consult the following list of attributes:
AL Format Purpose Sample
name
Complete name of the parameter. A
Parameter Medium strin parameter identifier is formed by its arameters.execution mode
identifier 9 path into the file structure (dot P ' -
separated) and its parameter name.
_— . . Brief description of the parameter .
Description Medium string purposes and values USER or CFI orbit
Options: INTEGER, Parameter values type. Used to present
FLOAT, STRING, - . e
Type different editor when editing the | STRING
BOOLEAN, FILE, TIME arameter value. See AD-E2E
and FOLDER P : :
Values (Different types) Parameter valug. A unique value for CFI
each parameter is needed
. . Parameter structured type. Used to
Complex Type Options: SCALAR, indicate the multidimensional type of the | ARRAY
ARRAY, MATRIX
parameter. See AD-E2E.
Dimensions [cols x rows x layers] S.'ZG of th? dlme_n5|ons. Layers are only [3x2x3]
displayed if applicable.
Units Short string Phys_lcal units of measurements if m/s
applicable.
Options:
OK, Unknown, Status of the parameter value integrity.
Validity TypeMismatch, openSF checks the parameter validity | OK

OutOfRange.

DimsMismatch,

anytime its value is updated.

© Deimos Space S.L.U. 2021

69 of 155

DEG-CMS-SUPTR09-SUM-10-E

OPENSF-DMS-TEC-SUMO1

= y openSF

d . & 4.3
EI mOS System User Manual 27/05/2022
elecnor group

Only the “values” column is editable to the user, the others just present useful information describing each
parameter. openSF checks the parameter validity anytime a run simulation is initiated, if any parameter is
not valid the system shows a warning message.

Simulation execution ®

simulation definition has invalid parameter values. Simulation could Fail.

Do you wank to continue or to cancel the execution?

Figure 4-46: Simulation execution warning message

Note that changing the value of these variables will not affect the “template” configuration files specified
in the “Configuration” tab. The variables involved in a simulation definition are stored in the database with
the chosen values, meaning that the simulation will use them during the execution.

The specific format used for the single-line representation is the same as in ParameterEditor. The current
representation (for non-scalars) is designed to be copied into Python. The same operation can occur in the
other direction, from Python to the application, as long as the following conditions hold:

Q All elements are literals. For example, [1, 2, 3] works but [1, sum(range(1,3))] does not
Q Elements are homogeneous. Thus, ["a", 2, True] is not valid input for a parameter.

O ARRAY parameters may have staggered dimensions. ARRAYs support fully empty rows and layers
but not fully empty columns. By extension, fully empty ARRAYs are not valid.

In addition, for scalar parameters that can be represented as a python string, the explicit string format is
not needed, and a fully literal string is accepted. In other words, the string does not have to be between
quotes, if it does not begin with a quote or a square bracket.

Note that this representation may change in future versions, and interoperability with Python (or any
specific version or library) is not guaranteed in general.

The user can filter the parameters that are displayed in the HMI and modified for a simulation execution.
The 'Parameter Visibility’ functionality allows marking each parameter as visible or not. In this way, those
parameters that are configured seldom can be hidden to present to the user a leaner list of input
configuration items, avoiding an overcrowded parameters tab. This setting can be triggered at parameter
level, at module level or at the whole simulation level. To do so, the user can open the Visibility view
through the dedicated button and toggle the visibility of each parameter with a double left-click over it or
by selecting the desired option from the context menu that can be opened with right-click. Green
parameters are visible, red ones are not.

Parameter Visibility

Visibility

~ Global

altitude 760
~ lonosphereModule (1.0)

Nbands 13
» GeometryModule (1.0)

~ OssModule (1.0)

~ SceneGenerator (1.0)

Figure 4-47: Parameter visibility view

© Deimos Space S.L.U. 2021 70 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

Once the parameter visibility has been set it can be switched on/off through the ‘eye’ icon in the simulation
- Parameters tab (see Figure 4-45).

Through this functionality it is never possible to see parameters already hidden by the visibility file
presented in Section 4.3.2.2.2.

4.3.4. Results
A E

Once a simulation has run, its results and settings are stored in the file system. A series of operations can
now be performed, ranging from reviewing the simulations to post-processing the results. These operations
are presented in this section.

4.3.4.1. Result view

Users can inspect the results view of any executed simulation by opening it and selecting the “Results” tab.
This view is similar to the simulation editor but including more information (see Figure 4-49). Accessing
this functionality, users can consult the result of a simulation execution.

In the “Definition” tab the user can see which modules run to completion and which files were generated
(see Figure 4-48). The completed modules are highlighted in green, while the uncompleted ones are
displayed in blue. Moreover, generated files are represented by black connectors, while missing ones are
indicated as blue connectors.
Simulation 'E2E_test.20220506T090304d007" x

Definition| Setup| Parameters| Execution| Results

General Properties

Identifier E2E test.20220506T090304d007 Author | dms

Description |[E2E validation simulation.

Modules Set

Zoom: I Default

GeometryModule (1.0) ‘ ‘0OS5Module (1.0) ‘I SceneGenerator (1.0) L1bGenerator (1.0) L2Retrieval (1.0}
[]

lonosphereModule

(1.0)

Cancel Re-Run Simulation

Figure 4-48 Execution results, definition tab

Some simulation data is presented in a “general properties” area (upper part of the tab) showing these
attributes:

U Date / Time - this is the local computer date and time of when the execution began. This date and
time can also be part of the simulation identifier to distinguish this simulation execution from
others;

© Deimos Space S.L.U. 2021 71 of 155

DEG-CMS-SUPTR09-SUM-10-E

. G
deimos

elecnor group

OPENSF-DMS-TEC-SUMO1
4.3
27/05/2022

openSF

System User Manual

O Duration - the time (in minutes and seconds) elapsed from the starting time until the execution
was finished or interrupted;

0 Status - the overall status of the execution. The possible values are “Failed, “Successful” and
“Aborted”;

Below this area, the Results tab reports the log messages generated by the simulation execution. Users
can access all these messages to check its performance.

Simulation 'E2E_test.20220506T090142d173" X}

Definition‘ Selup‘ Parameters Execution[Results‘

Simulation Results

Date / Time 06-05-2022 09:01:42:173

/@

Modules time view

Duration 21s72ms

Status Successful

Show Log

~

List of log messages

Source

¥ Type

Date and time Message

2022-05-06T09:01:43.780
2022-05-06T09:01:43.782

Info

Info

Initializing Geometry Module

GeometryModule:Starting global and local parameters rea...

2022-05-06T09:01:43.775 Debug OSFI:CLP=parseFiles. Parsing C:\Users\ncrnm\Documents\o... Module: GeometryModule (1.0)
2022-05-06T09:01:43.777 Debug OSFI:CLP::parseFiles. Parsing C:\Users\ncmm\Documents\o... Module: GeometryModule (1.0)
2022-05-06T09:01:43.778 Debug OSFI:CLP=parseFiles. Parsing C:\Users\ncrnm\Documents\o... Module: GeometryModule (1.0)

Module: GeometryModule (1.0)
Module: GeometryModule (1.0)

Cancel ‘ |EefRun Simulation ‘

Figure 4-49: Execution results, results tab

Executions represent the dynamic view of the system. Here the executed simulations are stored with their
input and output data. Users can consult their results and log messages generated, as well as re-run
simulations as needed.

The list of all the executed simulations stored in the database can be accessed through the executions view
of the side bar or via the “Executions - Manage” menu (Figure 4-50) from the main menu.

Edit View Tools Help
Elements r @ ES ES OB
New Elements ’ AR =

Product Tools... _
Executions » Manage... N |
Import Simulation... H

Figure 4-50: Results menu

© Deimos Space S.L.U. 2021 72 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - gl 4.3
EI mOS System User Manual 27/05/2022
elecnor group
O View

I Re-Runsimulation
S Generate report
% Export

|| Go tofiles

i Delete

Figure 4-51: Results pop-up menu

The Executions tab of the side view uses a colour code to provide information about the differences between
the connected database and the File System. If a result is present in the system, the execution is displayed
in black, whereas if the result is present in the database but not in the system the item is displayed in light
grey (Figure 4-52).

Repository | Executions . File system AW+ pl i |

E2E_test_simulation
E2E_test_simulation.20191029T173727d772
E2E_test_simulation.20191029T174835d407
E2E_test_simulation.20191030T111319d621/exec01.20191030T111319d963
E2E_test_simulation.20191030T111319d621/exec02.20191030T111320d121
E2E_test_simulation.20191030T111319d621/exec03.20191030T111320d158

E2E_test_simulation.20191030T111432d444/20180615T154902927.20191030T111432d634
E2E_test_simulation.20191030T111432d444/20180615T155002927.20191030T111432d688
E2E_test_simulation.20191030T111432d444/20180615T155502927.20191030T111432d872
E2E_test_simulation.20191030T111432d444/20180615T155602927.20191030T111433d066
E2E_test_simulation.20191030T111432d444/20180615T160102927.20191030T111433d207
E2E_test_simulation.20191030T111432d444/20180615T161102927.20191030T111433d324
+ JavaSimulation
JavaSimulation.20191030T142143d182
JavaSimulation.20191030T142147d361
+ PythonSimulation
PythonSimulation.20191030T142200d217/exec1.20191030T142200d289
PythonSimulation.20191030T142200d217/exec2.20191030T142200d337
PythonSimulation.20191030T142200d217/exec3.20191030T142200d372

Figure 4-52: Executions view in the side bar

For each of the results of the “"Executions” tree, a number of operations can be performed. These operations
can be performed for a single result or for multiple ones simultaneously, by selecting more than one result
with the Ctrl or Shift keys. Operations involving results include the following:

O List - present the list of existing execution results;
O View - consult the data of an existing execution result;

O Re-run - starts a new simulation execution. This new simulation is a replica of the former, but it is
created in a new simulation folder.

O Report generation - shows a text report describing the execution.

© Deimos Space S.L.U. 2021 73 of 155

DEG-CMS-SUPTR09-SUM-10-E

. S
dEImOS System User Manual

a
a
a

openSF

elecnor group

Exportation - exports the entire execution definition;

OPENSF-DMS-TEC-SUMO1
4.3

27/05/2022

Go to files - show the files of the selected execution in the File System tree of the side bar.

Deletion - delete an execution result from the system. A dialog is prompt to the user to confirm
the execution deletion from the database and, if desired, also from the file system.

4.3.4.1.1. Modules execution time

In Figure 4-49 the simulation results view is presented. Within this panel there is a clock icon button in the
mid-right side that presents the time consumed by each module involved in a simulation run.

Module execution time is presented in a new window with three tabs:

Q
Q

Module Times tab: presents the module execution time in a bar chart graph10. See Figure 4-53.

Time Statistics tab: shows a pie with the simulation time percentage consumed by each module.
In case there is more than one Simulation involving one Module, time is divided by the number of
module repetitions. See Figure 4-54.

Module Times Table tab: shows the same information that the bar chart graph but in a table. See
Figure 4-55.

Modules

1-lonosphereModule (1.0)

2-GeometryModule (1.0)

Time Analysis

Module Times | Time Statistics| Module Times Table

Simulation:: E2E_test_simulation.20191030T164141d936

Modules Execution Time analysis chart

Time

OmODs OmODs OmOOs OmOls OmOls OmOls OmD2Zs Omd2s OmO2s OmO2s OmO2s OmO3s OmO3s OmO3s OmO4s OmO4s OmOds

3-055Module (1.0) 25792ms

S-LlbGenerator (1.0)

1s790ms

|

Figure 4-53: Bar graph showing module times

10 Users can zoom within bar chart graph in order to better visualize module times

© Deimos Space S.L.U. 2021

74 of 155

DEG-CMS-SUPTR09-SUM-10-E

_ —m

- a openSF OPENSF-DMS-TEC-SUMO01

I I I 4.3

del oS System User Manual 27/05/2022
elecnor group

—_— _ - T _____‘_‘___‘—; I

Time Analysis

Module Times | Time Statistics| Module Times Table|

Simulation:: E2E_test_simulation.20191030T164141d936

Time is chart
|GeometryModule (1.0) 11%] — - — Hlﬁnospheremdule (1.0) 11%)
—
SceneGenerator (1.0) 13%]—
——{L2Retrieval (1.0) 20%|
—— - y
OSSModule (1.0) 27%} ——— ~__l

® lonosphereModule (1.0) @ L2Retrieval (1.0) @ L1bGenerator {1.0) © O55Module (1.0) ® SceneGenerator (1.0) @ GeometryModule (1.0)

Figure 4-54: Pie chart showing the percentage of time

Time Analysis

Module Times | Time Statistics | Module Times Table|

Module Times Table-
Module I1d Duration
GeometryModule (1.0)
ossModule (1.0)
SceneGenerator (1.0)
L1bGenerator (1.0)
L2Retrieval (1.0)

Cancel OK

Figure 4-55: Table showing module times

4.3.4.2. Continuing or repeating the execution of an existing simulation

Accessing the “re-run” functionality, users can repeat the execution of a previously executed simulation. If
the simulation execution was successful, the system just creates another execution (changing the starting
date and time) but, if the previous execution was aborted or failed, the system will inform the user with
the dialog shown below.

s ~

Simulation execution ®

This simulation has been already executed, but it had a failure or was aborted.
@ Do you want to restart or resume it starting from the last valid module?

Figure 4-56: Result. Re-run

Users can now choose to restart the execution from the beginning or try to resume the execution, that is,
to continue the execution from the last valid module. So, the execution will continue provided that the
outer conditions that made the previous run fail have been corrected.

© Deimos Space S.L.U. 2021

75 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d . & 4.3
EI mOS System User Manual 27/05/2022
elecnor group

4.3.4.3. Report generation

Clicking on the “Generate report” option from the “"Executions” context menu accesses this functionality. A
window similar to the one shown in Figure 4-57 is presented to the user.

Report View

kimulation 'E2E_test_simulation.20191030T163649d666' report

-Author: dms

- Description: E2E validation simulation.

-Started: 20191030T163649d666

- Global Configuration Parameters :

—-10 PayloadType. text(). STRING [1, 1] C

—-11 altitude. text(). FLOAT[1, 1] 760

- Modules:

— Module: 0 lonosphereModule. lonosphere computation module

— Input:

— 00 Input Inputlonos.xml. Input lonosphere. /home/caps/openSF/opensf_workspace/opensf/platform/simulations/E2E_test_simulation.20191030T163649d666/
Inputlonos.xml. Available

— Configuration Parameters: 0 0 Configuration test/data/conf/ionosphereConf.xml. E2E validation simulation.. /home/caps/opensF/opensf workspace/opensf/
platform/simulations/E2E_test_simulation.20191030T163649d666/ionosphereConf.xml. Available

— 00 lterations. text(). INTEGER [1, 1] 47

— 01 Nbands. text(). INTEGER [1, 1] 13

— Qutput:

— 00 Output lonosphere.xml. Product_lonosphere. /home/caps/openSF/opensf_workspace/opensf/platform/simulations/E2E_test_simulation.

Figure 4-57: Execution report

This execution report consists in a textual description of the same data that users can access with the
“Result View"” functionality. The only difference resides in that this textual information can be copied and
pasted into another application outside the openSF system.

4.3.4.4. Result deletion

Users can select a certain execution result and choose the option to delete it. Once users confirm the
operation the execution result is erased from the repository and the file system. Log messages associated
with this simulation execution result will also be erased.

Confirm deletion ®

@ Are you sure you want to permanently remove this result?

[] Leave execution results in the File system.

Figure 4-58: Confirmation dialog to delete execution(s) from database and file system

4.3.5. Product tools
E

As explained in Section 1.4, a tool is an external program that performs a given action to a certain group
of files. Used as part of the openSF framework and associated to a certain file extension, these tools can
be called to perform a posteriori operations to products involved in simulations.

Tools are classified as “internal”, if they are part of the openSF distribution and are located in the tools’
directory, or “external” in other cases. Currently openSF distribution package does not include any tool so
all the product tools considered within this document are external and consequently there is no tools
directory in the openSF installation directory.

To access this functionality, the user can use the toolbar or the menu bar (under Edit - Product Tools...).

© Deimos Space S.L.U. 2021 76 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d o 4.3
el mOS System User Manual 27/05/2022
elecnor group

Tools ®
Tools List View
Product tool identifier Tool Executable Parameters
~ Product tools
XML editor XML edit gedit -f SFile1

Edit... New tool... Delete... copy...

Figure 4-59: Tools list view

A list of tools, showing its identifier, action, executable and parameters is given. Tools are definable by the
user. Thus, new tools can be added by clicking the “"New tool” button.

4.3.5.1. New tool
Accessing to this functionality, a new window appears to let the user create a new tool, see Figure 4-60.

Users can define the following attributes:

Attribute name @ Format Purpose Sample

Identifier Normal string This is a unique identifier of the tool. post-pro tool

What the tool is going to do. It is expected
Action Normal string to be an encoded representation of what | save to PNG
the parameters do.

The type of files that this tool is going to

Extension Short string be applied to

.n¢, .jpg

Location of the executable file that is

Executable Medium string going to be called to execute the product.

python3

The list of parameters that will follow the
Parameters Medium string | executable. No variables can be passed
from the HMI.

-m repe_postpro -f $1 -0 . --
format=png

A brief description of what this tool will do | Save data and launches plot
Description Medium string | and need. It is a longer explanation than | directly to PNG files in the
the “Action” representation. same folder

Tools have to be a unique combination of “Identifier”, “"Action” and “Extension(s)” fields. Therefore, no two
tools may have the same values for all those fields, even if they have a different description or binary file.
For example, a different tool could have the same ID but a different “Action”, with different parameters to
perform the described action accordingly.

The “Extension” field states the type of files fed to the tool. Several extensions can be defined, in such a
case they must be separated by comma.

© Deimos Space S.L.U. 2021 77 of 155

DEG-CMS-SUPTR09-SUM-10-E

. &
deimos

elecnor group

4.3.5.2. Edit tool

openSF

System User Manual

¥ Tool Editor View X

Tool Editor

Identifier || |

Action | ‘

Extension | ‘

Executable l:l Browse...

Parameters | ‘

Description

Cancel

Figure 4-60: Tool editor view

OPENSF-DMS-TEC-SUMO1
4.3
27/05/2022

Selecting this functionality, the user can access and edit all the attributes of the selected tool.

4.3.5.3. Delete tool

Selecting this functionality, the user can delete the selected tool.

4.3.5.4. Tool execution

The process to execute an external data exploitation application can be triggered in three different ways:

U Tool execution from the file system view (see below).

U Tool execution from the simulation edit view and execution results view (see Figure 4-61). The
execution view is the same as the simulation view with two particularities, ‘Results’ tab is enabled
and the status is completed (successfully or not). Note that in the execution view the status of the
output files is shown as Available if the simulation chain has been successfully executed while in
the simulation editing the status is shown as Pending (see Section 4.3.3.6.2).

0 Scheduled execution over simulation data products, Section 4.3.5.6.

Editor/Control | Executions

Simulation 'E2E_test' &7

Input Configuration

Input files list

Default file
v Input
~ lonosphereModule (1.0
Inputlonosxml
~ GeometryModule (1.0)
InputGeo.ml
w 055Medule (1.0)

w SceneGenerator (1.0)
Mapsaml

v LibGenerator (1.0)

Output

Q

Save as...

Definition | Setup | Parameters | Execution

Tools

File instance Status X

et fdnim eyt E2E test/input/Inputiono: ilabl

Execute

XML editer ()

ations/E26 i=|NStanttool execution

Schedule

XML editor ()

/E2E_test/input/Maps.xml Available

Schedule tool execution

Run simulation Cancel Save

Figure 4-61: Tool Execution/Schedule from Simulation Edition View

© Deimos Space S.L.U. 2021

78 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
E| mOS System User Manual 27/05/2022
elecnor group

To execute a tool from the file system view, the user has to right-click over a file name whose extension is
associated to one or several product tools, a menu showing some actions will pop-up.

Execute

e gedit)

Figure 4-62: IO file pop-up menu

Once the desired action is selected, a dialog will show up asking the user for completing the executable
command line. openSF HMI presents the location of the selected file. It presents the absolute path for
“external” tools and path relative to $OPENSF_HOME if it is an “internal” tool.

Users can accept the default parameters or can add extra ones. Users can also make use of the environment
variables supported by openSF (described in section 4.5.1), writing the dollar symbol and its name.

Once accepted, the parameters, the tool program will be executed in a separate thread (so the openSF
operations are not interrupted).

For a real example of product tool execution see Section 8.3.

4.3.5.5. Popular product tools

During the integration of openSF in E2E simulation projects the development team has identified a set of
product tools widely used and that are freely available on the web. For every listed tool the operating
system compatibility is also specified (Linux, Multi-platform...).

Image processing tools

Below these lines are listed a set of tools for viewing and editing image files. The applications listed support
a large number of image formats.

Image Viewers

Q IrfanView - Multiformat Image Viewer - Microsoft Windows
QO Eye of Ghome - Gnome Image Viewer - Linux (GNOME)

O Gwenview - KDE Image Viewer - Linux (KDE)

O Okular - KDE Document and Image Viewer - Linux (KDE)

Image Editors

Q GIMP - The free Adobe Photoshop alternative - Multi-platform
O Inkscape - Image editor with vector graphics support - Multi-platform

Text editors

O Notepad
O Emacs - GNU Editor - Multi-platform
O Notepad++ - Full-featured - Microsoft Windows

Scientific data formats
NetCDF

Network Common Data Form is a set of interfaces for array-oriented data access and a freely-distributed
collection of data access libraries for C, Fortran, C++, Java, and other languages.

Q Panoply - NetCDF data plotting - Multi-platform
O ncBrowse - NetCDF file browser - Multi-platform

HDF

Hierarchical Data Format, commonly abbreviated HDF, HDF4, or HDF5S is the name of a set of file formats
and libraries designed to store and organize large amounts of humerical data.

Q HDFView - HDF File viewer (images, tables...) - Multi-platform

© Deimos Space S.L.U. 2021 79 of 155

DEG-CMS-SUPTR09-SUM-10-E

OPENSF-DMS-TEC-SUMO1

= y openSF
4.3

- &
dEI mOS System User Manual 27/05/2022
elecnor group

Browsers
A web browser is a software application for retrieving, presenting, and traversing information resources on

the World Wide Web.

-a ¢ () fle:/ifCsthome Projects/workspace OSFEG festycap/repor thiml 7] Pl -=8
|] files/ [[C:home/Pr...t [cppfreporthtml - -
-~
Exponential distribution —
1600 ¢
i
1400- l
1200 \
Exponential distribution 10 !
\
Az 800 §
Flzs) = Ae =20, R
0 , =<0 600 \
400 - 4
200 | ‘\
N
0a 08 08 1 e
s 0
Gamma distribution 7< —
/
700 .
I
600 / \
|
500 / |
Ganma distribution s | \
400 o Il \
ho1_eb / L
) 0) = 2 /
200 Y
4’ A
100- | \
/ \
% 02 04 05 08 | \»\
o f 1
Normal distribution 004 7
600 ! \\\
o
500 / \
/ \
Normal distribution 400 [\
. 0.2 / \
amp)? 300 /
; 2y = _L e =7 / 4
f(IyH-U)*ﬁe 2 = / \
200 / !
/ \
100 / kY
/ \ v

Figure 4-63: Web browser as openSF product tool
Example: Figure 4-63 shows the use of an Internet browser (Mozilla Firefox) for graphing the results of
testing a random number generator. It uses Octave graphing capabilities and Google Charts API.

Q Mozilla Firefox — Multi-platform
O Google Chrome - Multi-platform
QO Opera - Multi-platform

Other tools
L GNU Octave - If GIMP is the free photoshop-like choice, this is the equivalent for MATLAB - Multi-

platform
U GNU Plot - GNU software that gives plotting capabilities through a command line interface - Multi-

platform

4.3.5.6. Specification of final product tools

It is possible to add a list of product tools as post-processing operations, that is, a series of executables to
be called upon the execution completion. This is done while creating a simulation (Figure 4-64).

© Deimos Space S.L.U. 2021 80 of 155
DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

Definition | Setup | Parameters| Execution| Timeline
Input Configuration | Output | Tools

Post-processing tools

Figure 4-64: Product tools specification

There are two ways to add tools to this list:

U Selecting a file from the input, configuration or output files list. Users can right-click on a file marked
as Available or Pending and a pop-up menu will appear. This menu will show a list of tools that can
be applied to that certain file!!. These tools can be executed instantly (if the file is already Available
or scheduled to be at end of the execution process). Users can change the default parameters for
the tool execution. Figure 4-65 shows the contextual menu that pops up when the user right-clicks
on a file from the Simulation Creation/Edition view.

Execute
L geditd

Schedule
(@ oedito

Figure 4-65: File contextual menu.

When scheduling actions to certain files, openSF uses, instead of the actual file name and location, a
reference to the file’s foreseen location as an environment variable. These variables are named starting
with the dollar symbol, then “I0”, the simulation nhumber and its identifier with no blanks, underscores or
dots. For example, $I00orbitxml denotes the orbital file to be generated in the proper folder by the
execution process and $I01radaroutputnc, the NetCDF file generated by the radar module of a given
simulation.

In case the selected tool is an “external” tool (as described in Section 4.3.5) the HMI will prefix the
$E2E_HOME variable to form the absolute path of the file. Following the previous example, if users want
to view the contents of the orbit XML file with an external viewer, HMI will present
$E2E_HOME/$1000orbitxml. If users want to plot the radar output (using an internal tool) HMI will present
only $I01radaroutputnc.

In the same way, users can include references to the rest of openSF environment variables like
$E2E_HOME.

U Clicking on the “add tool to simulation” button. Upon a selection of this action, users can choose
one tool from the appearing list of defined tools. Users can change the default parameters for the
tool execution.

11 Tools defined in the system have an action associated to a file extension.

© Deimos Space S.L.U. 2021 81 of 155

DEG-CMS-SUPTR09-SUM-10-E

OPENSF-DMS-TEC-SUMO1

a y openSF

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

Users can also select a certain tool and remove it from the list and, alternatively, change the order of
execution of the tools with the arrow buttons besides. In any case product tools are always executed at
the end of the executing simulation.

Usage Example:

A simple simulation involving only one module execution. The scenario is composed by:
Simulation name: simulationTest

Module name: moduleTest

Input for the module: inputTest.txt located in $E2E_HOME folder

Output generated: outputTest.txt

Module configuration: globalConfig.xml and localConfig.xml

$E2E_HOME variable points to /home/tester/openSF/

O00000O0

The simulation folder is /home/tester/openSF/simulations/

U

Tool defined associated to txt extension: meld

It is desired to compare the input and output files with a visual diff like application named meld
(http://meldmerge.org/). In this case the syntax for the tool would be:

O For the input file user can use the original location or the foreseen location where openSF copies
that file: /home/tester/openSF/inputTest.txt or $I00inputTesttxt

O Foreseen location for output file: $I00outputTesttxt

O As explained before there are different mechanisms to schedule the execution of the tool. The one
recommended in this case is to right click on the output file whose status is pending and click on
the “meld” tool under the schedule title. A pop-up window appears with a text field presenting the
variable for the output file location $I00outputTesttxt. The user shall complete the syntax for the
tool appending the location of the input file (/home/tester/openSF/inputTest.txt or
$I00inputTesttxt).

) O mput © ®]

IE Flease, insert the auxiliar parameter for executing the tool
|$OPENSF_HOME,.-'$IOOOutputGem{ml ,.-'hnme,.-'tester,.-‘npen5|

(0] 14 Cancel

Figure 4-66: Tool parameters specification

U The value of the other simulation related variables would be:

e $E2E_EXECUTION_HOME = /home/tester/openSF/simulations/simulationTest<DATE>/, where
<DATE> represents the date when the simulation was executed

© Deimos Space S.L.U. 2021 82 of 155

DEG-CMS-SUPTR09-SUM-10-E

http://meldmerge.org/

. &
deimos

elecnor group

openSF

System User Manual

4.4. Executing a Simulation

M I A E

OPENSF-DMS-TEC-SUMO1

Once a simulation has been defined, it is time to run it. This section describes this phase.

4.4.1. Execution settings

I E

This section describes all the execution settings available in openSF.

4.4.1.1. Switch module version

4.3
27/05/2022

This functionality allows the selection of a specific module version for a simulation execution (Figure 4-67).

Model A

version 1 | A

version 2

version 3

Model A

version 2

Model C

version 1 | C

- Model B

version 2

e

Model C

version 1

Figure 4-67: Module chain with different module versions

From the openSF HMI, the switch module version operation can be invoked from the simulation execution
window by navigating down to the module the user wishes to alter the version of. Next, right-clicking over
it. Whenever the module has more than one version available the “"Switch module version” option appears
for selection. This is illustrated in Figure 4-68 below.

Category

Module execution categorization

Modules

~ Categories
~ lonosphereModule (1.0)
Category

~ GeometryModule (1.0)
Category

~ OSSModule (1.0)
Category

« SceneGenerator (1.0)
Category

« L1bGenerator (1.0)

Fabannn.

Category

Processing
Switch Module Version
¥ Bypass/switch-off module
W Runfrom here
< Import
& Setas Simulakion

© Setas Simulation from here

Figure 4-68: Switch module version

© Deimos Space S.L.U. 2021

83 of 155

DEG-CMS-SUPTR09-SUM-10-E

- & openSF OPENSF-DMS-TEC-SUMO01

I l l‘ , 4.3

del S System User Manual 27/05/2022
elecnor group

4.4.1.2. Bypass/Switch-off module execution

This functionality enables users to switch off certain modules when running simulations.

From the openSF HMI, the bypass/switch-off module operation can be invoked from the simulation
execution window by navigating down to the module that the user wishes to bypass. Next, right-clicking
over the “"Bypass/Switch-off module” option, as illustrated in Figure 4-69 below. This choice is persistent,
if the simulation is saved to the database.

Category

Module execution categorization

Modules Category
~ Categories
+ lonosphereModule (1.0)

Category Processing
Category Pre Switch Module Version
~ 0ssModule (1.0) # GeometryModule (2.0)
Category Pr T Bypass/Switch-off module
 SceneGenerator (1.0) B Run from here
Category Pry © Import
v L1bGenerator (1.0)
Fabanno o) 0> Setas Simulation

0> Set as Simulation from here

Figure 4-69: Bypass/Switch-off module

As a result, openSF will inform the user of the change in the list of data files needed to be provided due to
the omission of modules and their corresponding outputs. Some inputs will no longer be needed, but other
files may become “missing” instead of “pending” if a module that was going to generate them as its output
becomes inactive.

Input | Configuration ‘ Output | Tools |

Input Files list

Default File File instance Status
+ lonosphereModule (1.0)
Inputionos.xml test/data/input/Inputionos.xml Available
GeometryModule (1.0)
~ 0SSModule (1.0)

Geometry.xml Geometry.xml Missing
~ SceneGenerator (1.0)

Maps.xml test/data/input/Maps.xml Awvailable

Geometry.xml Geometry.xml Missing

~ L1bGenerator (1.0)

~ L2Retrieval (1.0)

Figure 4-70: Bypass/Switch-off module missing files

The user can revert the bypassed module and switch it back on by navigating down to the module that the
user wishes to re-activate. Next, right-clicking over the “Switch-on module” option that appears for
selection.

© Deimos Space S.L.U. 2021 84 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - gl 4.3
el mOS System User Manual 27/05/2022
elecnor group

Input Configuration | Output | Tools

Input Files list

Default File File instance Status
~ Input
= lonosphereModule (1.0)
Inputlonos.xml test/data/input/Inputionos.xml Available
GeometryModule (1.0) —_—
~ ossModule (1.0) " Switchon module N
Geometry.xml W Runfrom here Missing
~ SceneGenerator (1.0)
Maps.xml test/data/input/Maps.xml Available
Geomektry.xml Geometry.xml Missing

~ L1bGenerator (1.0)

« L2Retrieval (1.0)

Figure 4-71: Switch-on module

4.4.1.3. Run from a given point in the module chain

The idea is to allow users to skip modules at the beginning of the simulations, and therefore start
simulations from a certain point. However, the data from non-executed modules is needed for the
execution. Before running the simulation, the user needs to define the data files needed.

The Figure 4-72 shows a simple example. Modules A, B and C constitute the simulation. If we want to rerun
it starting from B, we need to provide the output of Module A from a previous run (or by other means).

7]

Al MOMEIA Model B

From the openSF HMI, the run from a given point capability can be invoked from the simulation execution
window of a completed simulation by navigating down, either in the "“Setup/Input” tab or in the
“Execution/Category” one, to the module that the user wishes to start the execution from. Next, right-
clicking over the “"Run from here” option that appears for selection. This is illustrated in Figure 4-73 below.

Figure 4-72: Run simulation from Module B

© Deimos Space S.L.U. 2021 85 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d = E— 4.3
eImOS System User Manual 27/05/2022
elecnor group
[— - - ——————_______;_;_ R
Category

Module execution categorization

Modules Category
~ Categories
= lonosphereModule (1.0)
Category Processing
GeometryModule (1.0)

¥ 0SSModule (1.0)

Category Proced ¥ Bypass/Switch-off module

* SceneGenerator (1.0) " Runfrom here X
Category Proce: % Import

+ LibGenerator (1.0)

40} Set as Simulation
Category Proces

= L2Retrieval (1.0)

40} setas simulation from here

Figure 4-73: Run simulation from a given module

The result of this action is similar to bypass/switch-off each module previous to the point where the
execution should start.

4.4.1.3.1. Run from a given module using previous data

The option to run a simulation from a given module is available both for a new simulation definition as well
as for re-running a simulation execution. In this latter case, the user can use the input data from the
original simulation execution or use the input data produced in the simulation execution.

The user can revert the input and configuration data to the one originally used in the simulation definition
by navigating down, either in the “Setup/Input” tab or in the “Execution/Category” one, to the module that
the user wishes to reset the IO descriptors. Next, after right-clicking over it, the “Reset setup” option
appears in a context menu for selection.

Default File File instance Status
* Input
+ lonosphereModule (1.0)
Inputlonos.xml /home/caps/opensF/opensf_workspace/opensf/platform/ Available
¥ GeometryModule (1.0)
InputGeo.xml /home/caps/opensF/opensf_workspace/opensf/platform/ Available
¥ 0SSModule (1.0)
Geometry.xml /home/caps/opensF/opensf_workspace/opensf/platform/ Available

+ SceneGenerator (1.0)
¥ Bypass/switch-off module

Maps.xml /home/caps/opensF/opensf_workspz

Instruments.xml /home/caps/opensF/opensf_workspz B Runfrom here

Geometry.xml /home/caps/openSF/opensf_workspa T Reset Setup N
¥ L1bGenerator (1.0) « Use previous data

Scene.xml /home/caps/opensFfopensf_workspz # Export

Instruments.xml /home/caps/opensFfopensf_workspz

lonosphere.xml /home/caps/opensSFfopensf_workspz < Import

40} setas simulation

0 setas simulation from here

Figure 4-74: Reset 10 descriptor option

As a result, the simulation’s original definitions are now re-established.

© Deimos Space S.L.U. 2021 86 of 155

DEG-CMS-SUPTR09-SUM-10-E

. .—/ openSF
delmOS System User Manual

elecnor group

OPENSF-DMS-TEC-SUMO1

4.3
27/05/2022

Default File File instance Status
~ Input
+ lonosphereModule (1.0)
Inputlonos.xml /home/caps/opensF/opensf_workspace/opensf/platform/ Available
~ GeometryModule (1.0)
InputGeo.xml /home/caps/opensF/opensf_workspace/opensf/platform/ Available
+ 0SSModule (1.0)
Geometry.xml /home/caps/opensFfopensf_workspace/opensf/platform/ Available
+ SceneGenerator (1.0)
Maps.xml test/data/input/Maps.xml Available

~ L1bGenerator (1.0)

scene.xml /home/caps/opensFfopensf_workspace/opensf/platform/ Available
Instrumenkts.xml /home/caps/opensF/opensf_workspace/opensf/platform/ Available
lonosphere.xml /home/caps/opensF/opensf_workspace/opensf/platform/ Available

Figure 4-75: Reset IO descriptor setup

Furthermore, the user can revert to the data produced in the simulation execution for an individual 10
descriptor by navigating down to the descriptor that the user wishes to restore. Next, right-clicking over it

the “Use previous data” option that appears for selection.

e
= L1ibGenerator (1.0) e ResetSetup

Figure 4-76: Use previous setup IO descriptor options

4.4.1.4. Removal of intermediate output files

Defaulk File File instance Status
~ Input
« lonosphereModule (1.0)
Inputionos.xml /home/caps/openSF/opensf workspace/opensf/platform/ Available
* GeometryModule (1.0)
InputGeo.xml /home/caps/openSF/opensf workspace/opensf/platform/ Available
* 0SSModule (1.0)
Geometry.xml /home/caps/openSF/opensf workspace/opensf/platform/ Available
+ SceneGenerator (1.0)
Maps.xml test/data/input/Maps.xml Available
Geometry.xml Geometry.xml Pending

Scene.xml fhomefcapsfopenSFfopemf Available
Instruments.xml /home/caps/openSF/opensf_workspace/opensf/platform/ Available

lonosphere.xml /home/caps/openSF/opensf_workspace/opensf/platform/ Available

As shown in Figure 4-77, the user has the option of removing intermediate output files. By activating this
option, a simulation executing will remove from the simulation directory any output file not generated by
the last module of a simulation execution and that correspond to intermediate data of a step in the module

chain.

4.4.1.5. Breakpoint scheduling

Users are able to schedule breakpoints during the simulation execution. A breakpoint is a point where the
simulation execution shall stop in a controlled manner, due to system architecture constraints it is only

© Deimos Space S.L.U. 2021

87 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

possible to interrupt the execution when a determined module has finished the computation and has written
the corresponding output.

The user interface for breakpoints addition can be found in the “Execution” tab.

Simulation ‘Breakpoints_test' &3

Definition | Setup | Parameters | Execution

Breakpoint at O55Module (1.0)

[] Remove Intermediate Data

Remote Execution @localhost

Select Breakpoint 0SSModule (1.0) HE

Figure 4-77: Breakpoint scheduling interface

In order to schedule a breakpoint before a module, users shall select its identifier in the “Select Breakpoint”
drop-down list box. To remove previously defined breakpoints the user shall select the option "Remove
Breakpoint” from the same widget.

Once a simulation execution is interrupted with the breakpoint scheduling system it is possible to resume
the paused simulation and continue with the simulation chain keeping the same settings as the previous
run (see Section 4.4.3.2).

4.4.1.6. Remote execution

When executing a simulation, the user can select a remote machine where to execute it. This configuration
can be applied:

(a) to the whole simulation: selecting a remote machine (previously configured) in the “Remote
Machine” drop down list box of the simulation execution window;

(b) on a module by module case: selecting for each module a remote machine from the contextual
menu obtained when right-clicking over the module listed in the simulation setup pane of the
simulation execution window.

If both mechanisms are used, the system assumes that the last configuration selected overrides the
previous one. Therefore, selecting a machine for the whole simulation overrides previously configured
machines per module; as well, configuring a remote machine module by module after configuring the whole
simulation may allow a finer configuration with possibly less configuration effort.

See Section 4.4.6 for remote machine configuration details.

4.4.2. Series of simulations with parameters variation

A E

From the parameter’s configuration tab, a series of simulations can be implicitly defined by specifying
parameters sequences. openSF provides 3 different mechanisms to do this:

e Iterations
e Batch

e Perturbation

© Deimos Space S.L.U. 2021 88 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

. S 4.3
dEI mOS System User Manual :

27/05/2022
elecnor group

These modes are mutually exclusive in a configuration!?, so configurations cannot have 2 different types
of parameter sequencing set.

4.4.2.1. Parameters iteration

Users can assemble iterative simulations. This is a powerful feature that helps to run a large number of

simulations by changing values of the parameters. Users can alter any parameter’s value to fine-tune the
behaviour of a module for a particular simulation run.

From the “Parameters” tab of a simulation view, selecting one or many parameters and pressing on the

“Iteration...” button will open the dialog shown in Figure 4-78. In this example two float parameters from
two different modules are being iterated.

@~ New parameters iteration X

Parameters to Iterate

Parameter name Values
v Parameters
v Global
altitude 760
v GeometryModule (0.0)
v ModuleExecutionModes
v Maneuver

acceleration 0.03

Figure 4-78: Iterating parameters

This figure shows the initial state of the dialog. The list of the selected parameters is shown in a tree
configuration

Accessing to the “values” column of the table, users can input a list of valid values separated by commas
and wrapped by square brackets (for example [3, 4, 5]).

By selecting a parameter and clicking the cogwheel icon, or by double-clicking (left or right button,
depending on the OS) on a parameter, the user can open the following numeric sequence generator dialog
for an advanced customization of the iteration values:

Editing numeric paramekters x
Type FLOAT
values [760
Numeric sequence
Start 760 End 760
(®) Step () Division 1 k
This is the step/division

Figure 4-79: Editing numeric sequences

12 In the special case of Statistical perturbations, the exclusivity is not currently enforced since it does not
affect the other modes. Combinations perturbations are strictly exclusive with the other modes.

© Deimos Space S.L.U. 2021 89 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

This dialog lets the user define a numerical sequence of values (of the selected type: FLOAT or INTEGER)
in three different ways:

U User input. Users can introduce their own values using the “Values” text field.

O Numeric sequence by step. Once defined the starting (x1) and ending (x,) values of the sequence,
users can input the value of the step (s) in the step/division text field. The generated arithmetical
sequence following this rule:

{X,, X, +8,% +25,...}

Numeric values will never be greater than the upper limit. For example, a numeric sequence starting
from 1 to 10 with a step of 5 will generate a series of [1, 6].

O Numeric sequence by division. Once defined the starting (xi1) and ending (xn») values of the
sequence, users can input the number of divisions (d) in the step/division text field. The generated
arithmetical sequence following this rule:

(Xn B Xl)

d

Numeric values will never be equal or greater than the upper limit. For example, a numeric sequence
starting from 0 to 10 with five divisions will generate a series of [0, 2, 4, 6, 8].

{X,, X, +8,X, +25,...},s =

Users can now accept or cancel the numerical sequence.

Note that parameters not involved in the iteration will remain fixed to a value but they can be manually
changed as seen in Section 4.3.3.6.5.

The iterated parameters will be highlighted in the simulation parameters’ tab as shown in Figure 4-80 and
iterate view can be opened again for more customization with a double-click on an iterated parameter.

Note that pressing again on the “Iteration...” button will override the previously configured iterations (if the
“OK” button is then pressed).

Definition | Setup | Parameters | Execution

@ | [visibiliy... Perturbation... | | Timeline...| [Batch...

Parameter identifier Complex Type Dimensions Units Values Type Validity
~ Parameters
v Global
PayloadType SCALAR C STRING oK
altitude SCALAR km ITERATED... FLOAT oK
w lonosphereModule (1.0)
lterations SCALAR 47 INTEGER oK
Mbands SCALAR 13 INTEGER oK
~ GeometryModule (1.0)
lterations SCALAR 50 INTEGER oK

v ModuleExecutionModes
~ Maneuver

acceleration SCALAR m/s"2 0.03 FLOAT oK
duration SCALAR s 1 INTEGER oK
v Mominal
MNbands SCALAR ITERATED... INTEGER oK
~ 055Module (1.0)
lterations SCALAR 132 INTEGER oK
~ SceneGenerator (1.0) w

Figure 4-80: Simulation with iterated parameters

Readers must be aware that the openSF system provides a functionality to filter redundant modules out of
an execution process (i.e. whenever they would generate the same outputs because they are set up to run
with the same inputs and configuration files). For more details, please refer to Section 4.4.3.

© Deimos Space S.L.U. 2021 90 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

4.4.2.1.1. Saving parameter iteration definitions

Upon defining an iterative configuration, the user can save this definition in a parameter iteration definition
file. This is accomplished by using the “Save” button in the dialog shown in Figure 4-78. Additionally, the
user can load a previously defined iteration configuration from file (using the “Load” button).

The format of the files used to store the iteration configuration definitions is compliant with the configuration
parameter file format as specified in [AD-E2E].

4.4.2.2. Batch simulation

In cases where the user needs to run multiple instances of a simulation with a variation of the parameters’
values not covered by the mechanism described in the previous section (Sec. 4.4.2.1), openSF enables the
definition of a batch execution. This ability aims at providing fine grained control over the number of
executed variations of the original simulation and the parameter values that are customized for each of
them.

The configuration of a batch simulation requires the creation of a batch simulation configuration file. The
syntax and format of this type of file is described in [AD-E2E]. This file can be loaded through the "Batch”
button available in the simulation’s parameters tab.

Upon loading the file, openSF checks the format to guarantee its validity and imports the contents. The
simulation will be successfully configured and a confirmation message will be displayed with the total
number of simulation executions after the simulation template spawning together with the ID and module
names of the overridden parameters (see Figure 4-81).

Success in batch execution configuration X

for 3 different executions.
The affected parameters are the Following:
-Model: Global —> Parameter: altitude
- Model: GeometryModule (1.0) —> Parameter: Iterations
-Model: GeometryModule (1.0) —> Parameter:
ModuleExecutionModes.Mominal.Nbands
-Model: SceneGenerator (1.0) —= Parameter: Mbands
-Model: SceneGenerator (1.0) —= Parameter:
ModuleExecutionModes.DryDesert.surface_emissivity

0 The bakch execution For the current session has been successFfully configured

Figure 4-81: Successful batch configurated simulation message

As it was the case with the overridden parameter values configured through the “Iterate” option, the
overridden parameters are highlighted in the simulation’s parameters tab as shown in Figure 4-82. A “Clear
Batch” button will appear in the tab which allows the user to reset the parameters to their previous values.

© Deimos Space S.L.U. 2021 91 of 155

DEG-CMS-SUPTR09-SUM-10-E

4 y openSF

. S
dEImOS System User Manual

elecnor group

OPENSF-DMS-TEC-SUMO1
4.3
27/05/2022

Definition | Setup | Parameters| Execution

& | | Visibility... | | lteration... | Perturbation...| |Timeline... Batch...

Parameter identifier Complex Type Dirmensions Units

w Parameters

w Global
PayloadType SCALAR
altitude SCALAR km
w lonosphereModule (1.0)
lterations SCALAR
Nbands SCALAR
w GeometryModule (1.0)
lterations SCALAR
v ModuleExecutionModes
v Maneuver
acceleration SCALAR mfs"2
duration SCALAR 5
w MNominal
Nbands SCALAR
w 055Madule (1.0)
lterations SCALAR

w SceneGenerator (1.0)

Values

BATCH...

47
13

BATCH...

0.03

BATCH...

132

Type
STRING
FLOAT

INTEGER
INTEGER

INTEGER
FLOAT

INTEGER
INTEGER

INTEGER

Validity

QK
oK

oK
oK

oK

oK

oK

oK

oK

Clear Batch

Ll

Figure 4-82: Simulation with overridden parameters through the batch option

To ease the use of this feature, together with the examples of the validation database, an example of a
"batch simulation configuration file” for the "E2E_test_simulation” is provided and can be found in the

following path: $INSTALL_DIR/test/data/batch/E2E_test simulation_batch.xml.

4.4.2.3. Parameter perturbations

The simulation perturbation system brings to the users the following functionalities:

U Independently define perturbation functions for configuration parameters, for each module involved

in a simulation.

U Combine different functions for generating parameter values. An example would be a parameter
taking values drawn from A sin (wt) where A is itself a random variable with a Gaussian distribution,
while w is a constant and t is an independent variable running linearly between two values.

O Two different execution schemes, Statistical and Combined modes

4.4.2.3.1. Parameter perturbation interface

The module perturbation interface is composed by the following panels:

U A tab that shows for each module the “Perturbation Function Tree”. This tree presents the module
parameters and the perturbation function applied to them.

U An info panel where perturbation parameters can be modified:

- Number of shots (integer format). This determines the number of executions of the module,
with each execution generating new values for the selected parameters according to the desired

combination of random and analytic functions.

- Independent variable (called “time” by convention) min and max for analytical perturbations
(real format). Values of this variable will be drawn linearly in this [min, max] interval according
to the number of shots. For example, with N=5 and an interval [0, 1], the five values would be

0, 0.25, 0.5, 0.75 and 1.

- Perturbation file where function definition is stored (XML format)

O Execution summary panel where simulation execution is outlined prior saving/running it.

O A button bar for adding new functions to a parameter in the module.

© Deimos Space S.L.U. 2021

92 of 155

DEG-CMS-SUPTR09-SUM-10-E

_ —m openSF OPENSF-DMS-TEC-SUMO1
. G 4.3
del mos System User Manual 27/05/2022

elecnor group
Parameter Perturbation B
lonosphereModaule (1.0) | Execution Summary
= ¢ Identifi Module identifier Description
ement identifier
~ Simulation Preview
~ Parameter Perturbation \ hereModule Shots1
v Nbands [saveFile onosphereModule Shots=
No Perturbati Plot GeometryModule Shots=1-No perturbation
o Perturbation 5
o 0ssModule Shots=1-No perturbation
i Close SceneGenerator Shots=1-No perturbation
L1bGenerator Shots=1-No perturbation
L2Retrieval Shots=1-No perturbation

Perturbation Info
Number of Shots 1
Time min 0.0
Time max 0.0

Perturbation file /home/caps/opensF/opensf_workspace/opensf/platform/simulations/E2E_test_simulation-lonosphereModule-1.0-Err¢

Cancel L] — Preview OK

Figure 4-83: Perturbation system main window

4.4.2.3.2. Defining a new perturbation
This section describes the steps that an user shall follow in order to add a new perturbation to a simulation.

1. Select from Simulation Creation/Edition interface the desired INTEGER/FLOAT parameters. The user
may select multiple parameters using the Ctrl key. Global configuration parameters cannot be
perturbed. If no valid parameters are selected, the message in Figure 4-84 will appear.

" Y

Parameter Perturbation %

@ Mo valid parameter selected.

Figure 4-84: No valid parameters selected

Definition | Setup | Parameters | Execution |

& | | Visibility... | hteration.. | Perturbation... | Timeline..| Batch..

Parameter identifier Complex Type Dimensions Units Values Type Validity A
+ GeometryModule (1.0)
lterations SCALAR 50 INTEGER oK
~ ModuleExecutionhModes
~ Maneuver

acceleration SCALAR mist2 003 FLOAT oK
duration SCALAR s 1 INTEGER oK
~ Nominal
Nbands SCALAR 13 INTEGER oK
+ 0SSModule (1.0)
lterations SCALAR 132 INTEGER oK
~ ScencGenerator (1.0)
lterations SCALAR &5 INTEGER oK
Nbands SCALAR 13 INTEGER oK
pol_factor SCALAR 01 FLOAT oK
toa_factor SCALAR 2 FLOAT oK
~ ModuleExecutionhModes
~ DryDesert
surface_emissivity SCALAR Wimh2 24 FLOAT oK v

Figure 4-85: Selection of parameters for perturbation
2. Launch parameter perturbation system using the button in the top part of the “Parameters” tab

3. Select a Perturbation Tree leaf and click on the “+” button from the button bar at the bottom. This
action will pop-up the “Select Function” frame.

© Deimos Space S.L.U. 2021 93 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d = E— 4.3
EImOS System User Manual 27/05/2022
elecnor group

- Remember that functions can be nested so “+” button is also used for creating complex
functions.

- If the user wants to setup another perturbation function for a parameter remember to
previously delete it selecting the node and pressing the “-" button from the button bar.

Add Perturbation x

Select Perturbation

Seleck Perturbation Type: Random -

normal -

Perturbation Properties

Element identifier

Add Point Delete Point

Cancel Add

Figure 4-86: Adding a perturbation function to a module parameter

4. Inthe “Add Perturbation” window insert the function parameters checking that table frame changes
to white colour (e.g. Random - normal function must have a sigma greater than 0, second operand
of BinaryOperations - Root must be positive)

Parameter Perturbation &

GeometryModule (1.0) |SceneGenerator (1.0) \ Execution Summary

Module identifier Description

Element identifier

~ Simulation Preview
~ Parameter Perturbation

lonosphereModule Shots=1-No perturbation
~ pol_factor GeometryModule Shots=1
~ normal 0ssModule Shots=1-No perturbation
seed-Value=0.0 SceneGenerator Shots=1
rr.1u-Value=3.0 L1bGenerator shots=1-No perturbation
sigma-Value =1.0 L2Retrieval Shots=1-No perturbation
~ toa_factor

No Perturbation

Perturbation Info
Number of Shots 1
Time min 0.0
Time max 0.0

Perturbationfile /home/ca

fopenSF/opensf_workspace/opensf/

test_simulation-SceneGenerator-1.0-Error.xml

Cancel &+ = Preview 0K

Figure 4-87: Complex perturbation function

© Deimos Space S.L.U. 2021 94 of 155

DEG-CMS-SUPTR09-SUM-10-E

_ —

. &
deimos

elecnor group

© N o w

openSF

System User Manual

OPENSF-DMS-TEC-SUMO1
4.3
27/05/2022

Add Perturbation

Select Perturbation

Select Perturbation Type: Random -

normal -

Perturbation Properties

Element identifier

seed - Value =0.0
mu-Value=3.0
sigma - Value =1.0

Add Point Delete Point

Cancel Add

Figure 4-88: Random perturbation properties

Click on “Add” button to update the Perturbation Function Tree

Change number of shots, min/max time as desired

Accept the simulation perturbation, adding it to the simulation

Preview execution, selecting the desired perturbed execution scheme.

Parameter Perturbation

Element identifier

~ pol_factor
~ normal
seed -Value =0.0
mu-Value=3.0
sigma-Value=1.0
~ toa_factor
~ normal
seed -Value =0.0
mu-Value=0.0
sigma-Value=0.5

Perturbation Info
Number of Shots 2
Time min 0.0
Time max 0.0

GeometryModule (1.0) |SceneGenerator (1.0) \

v Parameter Perturbation

Perturbation file /home/caps/opensF/opensf workspace/opensf/platform/si

Execution Summary

Module identifier

~ Simulation Preview

mulations/E2E_test simulation-SceneGenerator-1.0-Error.xm

Cancel + - Preview OK

Description

IlonosphereModule Shots=1-No perturbation
GeometryModule Shots=10

0ssMedule Shots=1-No perturbation
SceneGenerator Shots=2

LibGenerator Shots=1-No perturbation
L2Retrieval Shots=1-No perturbation

Figure 4-89:

Additional operations that can be performed are:

Preview of statistical mode execution scheme

U Clear module perturbation: Right click on module tab and select “Close”

U Save perturbation into selected file: Dumps Perturbation Function Tree into an XML file. Right click
on module tab and select “"Save”

© Deimos Space S.L.U. 2021

95 of 155

DEG-CMS-SUPTR09-SUM-10-E

A - - -
openSF OPENSF-DMS-TEC-SUMO1
4.3

- [
deImOS System User Manual 27/05/2022
elecnor group

O Plot perturbation: Right click on the desired tab and select “Plot”. A new window will appear showing
the time series and histogram for each perturbed parameter. Following figures Figure 4-91 and
Figure 4-92 show how a parameter perturbation can be plotted from HMI.

U Load an external XML file with errors definition for a set of module parameters (Figure 4-93). Only
errors matching with a module parameter name will be loaded within the system.

O Perturbations can be combined to obtain more complex perturbations by adding perturbations to
the same parameter. This is illustrated in Figure 4-90.

[GeometryModule (1.0)

? 0 Parameters Perturbation
¢ [iterations
¢ 4 normal
[seed-value =10
9 -:Q mu - affine

[y x0-value=1.0
[y x1-value=1.0

D sigma-Value=02

Perturbation Info

MNumber of shots | 10000
Time min |0 Time max |1

Perturbation File sessions/E2E_test session-0-GeometryModule-1.0-Error.xml III

Figure 4-90: Complex perturbation for a parameter

Perturbation Plot View

Parameter identifier Value Line Plot Histngram‘
~ Parameters ModuleExecutionModes.Maneuver.acceleration - Line chart
acceleration 0.03

Value

o 1,000 2,000 3,000 4,000 5000 6000 7,000 8000 9000 10,000
iteration/time

OK

Figure 4-91: Time series line for a parameter perturbation

© Deimos Space S.L.U. 2021 96 of 155

DEG-CMS-SUPTR09-SUM-10-E

/Q—/ openSF OPENSF-DMS-TEC-SUMO1
I 4.3
dEImOS System User Manual 27/05/2022

elecnor group
Perturbation Plot View x
Parameter identifier Value Line Plot |Histogram
~ Parameters ModuleExecutionModes.Maneuver.acceleration - Histogram

acceleration 340

Figure 4-92: Histogram chart for a random parameter perturbation

Perturbation Info
Number of Shots 10000

Time min 0.0
Time max 0.0

Perturbation file /home/caps/opensF/opensf_workspace/opensf/platform/simulations/E2E_teskt_simulation-GeometryModule-1.0-Error.xml

L

Figure 4-93: Loading an external error file

U Functions with a variable number of properties (such as sampling functions, custom probability
density function, etc.). Users are able to add/delete points through “+” and “-" buttons of the
“Select Function” interface.

Add Perturbation x

Select Perturbati

Select Perturbation Type: CustomFunction

] iy

Perturbation Properti

Element identifier

v linearsampling
xMin-Value =0.0
XMax -Value =2.0
step-value=1.0
points - Value =0.0
points - Value =5.0
points - Value = 10.0

Figure 4-94: Function with variable number of properties (points)

© Deimos Space S.L.U. 2021 97 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - i 4.3
el mOS System User Manual 27/05/2022
elecnor group

O Additionally, users can change the value of a leaf item by double clicking on the Perturbation
Function Tree

Parameter Perturbation

GeometryModule (1.0)

Element identifier
~ Parameter Perturbation
+ acceleration
+ linearSampling

xMin-Value =0.0
xMax -Value =2.0
step-Value=1.0
points - Value = 0.0

[0

points - Value = 10.0

Figure 4-95: Editing a value of the Perturbation Tree

4.4.2.3.3. Statistical and combined perturbed execution modes

openSF iteration of parameters (Sec. 4.4.2.1) is based on the combination of all possible values that the
affected parameters can assume. This approach results in an exponential increase of the executions
number, depending on the number of parameters being iterated and the number of values. For example,
the iteration of two parameters with 10 different values each one ends up to 100 executions.

The above-mentioned approach can be not the most efficient one in some specific cases, e.g. for statistical
modules, for modules that need to run in different modes for each simulation, or for modules that need to
be executed more than one time depending on a parameter value. In order to cope with the variable needs
of such casuistry, two additional mechanisms have been implemented to handle the iteration/perturbation
of parameters or batch runs.

B (1)

B (2)

B (n)

| S —

Figure 4-96: Statistical mode execution scheme

© Deimos Space S.L.U. 2021 98 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

. 4.3
deImOS System User Manual :

27/05/2022
elecnor group

Thanks to the first additional mode of execution (Statistical mode), any module can be configured with
different parameter perturbations/iterations and, without the necessity to setup any extra simulation
configuration, the simulation framework introduces a loop executing just the selected module “N” times.

Note that in the “statistical” mode, the output files/folders of each module will be named in principle in the
same way at each execution, and consequently it is the responsibility of the module developer to
handle this issue to avoid overwriting the output data.

The other execution mode (Combined mode) provides the possibility of setting up a number of simulations
equal to the number of shots configured for the perturbations of each module. This approach imposes the
constraint that all modules shall be set-up with the same number of shots, thus every module including the
unperturbed ones will be re-run with the same parameters.

~

J

(N\ (

A B

J
A
J

B (1)

B (2)

B (3)

W - |

J

Figure 4-97: Combined mode execution scheme

Perturbation Scheme
()1, Statistical Execution Mode (N module executions)
() 2. Combined Execution Mode (N module chain executions)

Cancel (0] 4

Figure 4-98: Execution mode selector

Some important considerations about this two additional execution modes are the following:

U 1In Statistical mode, it is modules responsibility to handle output files as openSF specifies always
the same filename for each shot.

U In order to make the Statistical mode repeatable by script, openSF creates a set of configuration
files, one per shot specified, using as name convention “File_N.xml” where N is the iteration
number. This is not needed in Combined mode as configuration files are stored in different
simulation folders.

© Deimos Space S.L.U. 2021 99 of 155

DEG-CMS-SUPTR09-SUM-10-E

A - - -
openSF OPENSF-DMS-TEC-SUMO1

d = E— 4.3
e | m OS System User Manual 27/05/2022
elecnor group

U Combined mode simulations are handled openSF as any other simulation, while in Statistical mode
openSF adds a new log message specifying the module iteration number.

Log Messages}

Date and time Type Message Simulation identifier Source

2019-10-30T19:03:47.282 Warning Different OSFI versions (openSF supports 3.3; GeometryModule (1.0) uses E2E_test_simulation.20191030T Module: GeometryModule (1.0)

2019-10-30T19:03:47.225 Info Finishing model execution E2E_test_simulation.20191030T Module: GeometryModule (1.0)
2019-10-30T19:03:47.223 Info GeometryModule::GeometryModule simulation done successfully E2E_test_simulation.20191030T Module: GeometryModule (1.0)
2019-10-30T19:03:47.219 Info Productwriter:Writing XML::Product Geometry in file: fhome/caps/open! E2E_test_simulation.20191030T Module: GeometryModule (1.0)
2019-10-30T19:03:46.208 Info GeometryModule::Input file reading done successFully E2E_test_simulation.20191030T Module: GeometryModule (1.0)
2019-10-30T19:03:46.206 Info ProductReader::readinputGeo Succesful reading of InputGeo Product E2E_test_simulation.20191030T Module: GeometryModule (1.0)
2019-10-30T19:03:46.204 Info GeomeryModule::Starting input file reading E2E_test_simulation.20191030T Module: GeometryModule (1.0)

Figure 4-99: Statistical mode iterations log message

4.4.2.3.4. Perturbations functions

In this section all the available perturbation functions are presented. The independent variable is
represented by t.

4.4.2.3.4.1. Deterministic functions

Deterministic functions are those whose value is known in all the time domain.

0 Affine

Calculates the perturbation as an affine value. An affine transformation consists in a linear transformation
and a translation.

e error=a; +ap*t

Q Bias

Calculates the perturbation as a constant value.
QO Linear

Calculates the perturbation as a linear value:
e p=a*t
This is a particular case of affine transformation when translation variable is equals to 0.

QO Parabolic

Calculates the perturbation as a parabolic value.
e p=ap+ar*t+a;*t?
O Polynomial

Calculates the perturbation as a generic polynomial value. This function has as many float parameters as
degrees of the desired polynomial plus one.

Q Step
© Deimos Space S.L.U. 2021 100 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1
4.3

- &
dEl mOS System User Manual 27/05/2022
elecnor group

Calculates the perturbation as step function.

o ft<Tstep 2 p=ao
o ft>Tstep 2 p=ai

Q Sinusoidal

Calculates the perturbation as sinusoidal function

p =a *sin(2 * pi * f * t + phi)
f(Hz)

phi(deg)

t(secs)

O Tangent
Calculates the perturbation as tangent function

p =a*tan(2 * pi * f * t + phi)
f(Hz)

phi(deg)

t(secs)

Remember that the tangent function has singularities when the angle evaluated is £n*pi/2.

4.4.2.3.4.2. Sampling functions

The openSF error generation plugin implements three interpolation methods, linear, polynomial and spline
sampling.

In order to define the points of the interpolation there is a common set of variables that are listed below.

O Linear Sampling
This function makes an interpolation with the given points assuming it follows a linear rule.

O Polynomial Sampling

This interpolation method builds a polynomial grade n, n being the number of specified points. This
interpolation minimizes the Least Square Error. Ref: Neville Method.

QO Spline Sampling

Interpolate the given “n” points with Cubic Splines Method.
How to use the sampling functions

The sampling functions are useful for cases where the perturbation is a function known at discrete instants.
That is, F = {yj, xj}, j=1, ..n. In such a case, openSF provides with the functionality of interpolating
according different methods: for a given time xt calculate the corresponding perturbation in the discrete
series {yj, xj} such that yt = F(xt)

The xj vector assumes equidistant point and as such it is only defined using by
® XxMin: Min value of abscise axis
e xMax: Max value of abscise axis

e step: Increment between abscise values

The number of points must be:

© Deimos Space S.L.U. 2021 101 of 155

DEG-CMS-SUPTR09-SUM-10-E

/&gﬁ@) _ _ _
openSF OPENSF-DMS-TEC-SUMO1

[
= 4.3
dEl mOS System User Manual 27/05/2022
elecnor group

xMax — xMin
step

=nValues

The sampling functions configuration has to include nValues y values to match the number of x values.
e The "linear sampling" method uses a linear interpolation between points
® The "polynomial sampling" method interpolates using a Neville polynomial

® The "spline sampling" method interpolates with splines

Summarizing, these functions are useful in those cases where the perturbation values for example come
from measurements whose underlying module is not fully known or cannot be represented by an analytical
equation (a gauss distribution, a beta distribution, a combination of gaussian and linear function and so
on).

4.4.2.3.4.3. Non-deterministic functions

Common random function implementation with seed management for testing purposes. If seed is set to
zero openSF initializes pseudo-randomly the seed (e.g. used for non-repeatable executions). All the
functions are common statistical probability density functions:

Beta Distribution

Gamma Distribution

Exponential Distribution

Normal Distribution

Uniform Distribution

Poisson Distribution

Truncated Gaussian Distribution

Uniform Discrete Distribution

Distribution with custom Probability Density Function

cooopoodoOoO

The latter returns the value of a random variable generated with a custom pdf given. It is only
recommended to use it by expert developers/scientists.

4.4.2.3.4.4. Binary and composite operations

The simulation perturbation system implements some basic mathematical operations in binary mode. The
operations implemented are:

Addition
Subtraction
Multiplication
Division
Exponentiation
Root

[Wy Wy

4.4.2.4. Time-based scenario orchestration

This section provides details regarding openSF time-based scenario orchestration, which is an enhanced
ability to customize simulation iteration (Section 4.4.2.1).

The time-based scenario orchestration allows the user to launch a series of simulations varying the
parameters values using the simulation time as trigger. The modules may have different execution modes
that are triggered by the simulation time, and in each module mode the modules parameters can be

© Deimos Space S.L.U. 2021 102 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
E| mOS System User Manual 27/05/2022
elecnor group

initialised with different values. An example of a scenario of instrument operational modes is shown in
Figure 4-100.

Time
Module A Module A Module A
* Mode On * Mode Off * Mode On
Module B Module B Module B
* Mode Summer * Mode Autumn * Mode Winter
Module C Module C Module C
* Mode Nominal * Mode Maneuver | | * Mode Maneuver

[l Y

Simulation 1 Simulation 2 Simulation 3

Figure 4-100: Example instrument operational mode scenario

The different values of the parameters associated to a given module mode are stored in the module
configuration files. Every module can have multiple execution modes, and for each mode not only the
standard parameters values can be customised, but also additional parameters can be added to the default
ones.

The simulations are organized in a time sequence that represents the mission sequence. The time sequence
does not admit gaps or overlaps.

Every simulation has its starting time and duration, which must correspond to the mission time segment
that the simulation is simulating. For every time segment, for every module that has execution modes
configured, a mode can be selected.

The default initial epoch and duration of a time-based scenario are stored in the openSF preferences. Once
a new timeline is created, the initial epoch is stored in the timeline file. When a timeline is created, the
initial epoch is used to set the starting time of the first time-segment (however this can be edited). When
a new time segment is created, its initial time is set to the initial time of the previous time segment plus
its duration. The default duration of a time segment is taken from the value set in the openSF preferences.
The starting time of each segment is stored in the timeline file.

When a simulation is launched, the initial epoch is copied from the timeline file to the global configuration
file. The initial time of every time segment is copied from the timeline file to every module (that has
execution modes) configuration file of every time segment.

Note that the initial epoch stored in the global configuration file might hence not correspond to the initial
time of the first time-segment.

Each time segment can be activated/disabled. A disabled time segment is not run when the simulation is
launched in time-driven mode.

The modules within a simulation can be set in Processing and Simulation mode. Modules in Processing
mode are bypassed when a simulation is run in Time-driven mode.

Note that the time segments can be possibly run in parallel, so the order of execution does not necessarily
follow the timeline sequence.

For more details on the concepts and definitions supporting the time-based orchestration, please refer to
[AD-E2E].

4.4.2.4.1. Time-based orchestration interface

© Deimos Space S.L.U. 2021 103 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d . & 4.3
EI mOS System User Manual 27/05/2022
elecnor group

In a simulation editing window, each specific module time mode is rendered as a node in the tree of
parameters - see Figure 4-101. This is only for display purposes, i.e. when rendering the parameters in
the simulation editing window parameters tree, so it is not reflected in the repository.

Definition | Setup | Parameters| Execution

% | Visibility... | lteration... | Perturbation.. | Timeline.. Batch..

Parameter identifier Complex Type Dimensicns Units Values Type Validity 2
~ Parameters
~ Global
PayloadType SCALAR C STRING oK
altitude SCALAR km 760 FLOAT OK
+ lonosphereModule (1.0)
Iterations SCALAR 47 INTEGER OK
Nbands SCALAR 13 INTEGER. OK
v GeometryModule (1.0)
Iterations SCALAR 50 INTEGER OK

v ModuleExecutionModes
~ Maneuver

acceleration SCALAR m/s*2 0.03 FLOAT OK
duration SCALAR s 1 INTEGER OK
~ Nominal
Nbands SCALAR 13 INTEGER. OK
~ 055Medule (1.0)
Iterations SCALAR 132 INTEGER OK v

Figure 4-101: Module parameters folder organization on a per-mode basis

In the execution tab (Figure 4-102), classification of each module in the processing chain according to
Simulation/Processing categories is done (using the context menu) through the Execution pane in the
simulation edit window.

Definition | Setup | Parameters | Execution

Execution

[1Remove Intermediate Data

Remote Execution @localhost ~
Select Breakpoint --Remove Breakpoints--
Category

Module execution categorization

Modules Category =
~ Categories
v lenosphereModule (1.0)
Category Processing
~ GeometryModule (1.0)
Category Procest Switch Module Version
v 055Module (1.0) A GeometryModule (2.0)
Category Proces:
~ SceneGenerator (1.0) * Bypass/Switch-off module
Category Proces: » Run from here
~ L1bGenerator (1.0)
Category Process ¥ Import
s | IDbrimneal F1M — V
(o Setas Simulation
O Set as Simulation from here

Figure 4-102: Module categorization by Mode

The interface for editing the timeline definition is available upon pressing the ‘Timeline’ button in the
“Parameters” tab in the Simulation Editing window - see Figure 4-103. This panel allows to define and
enable the global timeline parameters and the actual list of time segments to be executed.

© Deimos Space S.L.U. 2021 104 of 155

DEG-CMS-SUPTR09-SUM-10-E

e

OPENSF-DMS-TEC-SUMO1

. | openSF
deimos
System User Manual 27/05/2022
elecnor group
B Timeline View x
Timeline Parameters
Initial Epoch: 2018-06-15T15:49:02.927
Default Duratien: 200
Timeline Scenario: | test/data/simulations/Timeline_test/timeline/timeline_scenarioxml Browse...
Timeline Segments
Start Time Duration Active GeometryMod... SceneGenerator Conflict %E ramd|
2018-06-15T15:49:02.927 60 true Maneuver Off MNone
2018-06-15T15:50:02.927 300 false Mominal Mominal MNone *E =
2018-06-15T15:55:02.927 60 true Maneuver Off MNone
2018-06-15T15:56:02.927 300 true Mominal DryDesert Mone g;:, T
2018-06-15T16:01:02.927 600 false Mominal SummerForest Mone
2018-06-15T16:11:02.927 300 true Maneuver Off MNone
2018-06-15T16:16:02.927 300 false Mominal Mominal MNone
2018-06-15T16:21:02.927 300 false Maneuver Off MNone
2018-06-15T16:26:02.927 6000 true Mominal SummerForest MNone
2018-06-15T18:06:02.927 60 true Maneuver Off MNone
Cizable Timeline | Activate Timeline | | Load Timeline...

Figure 4-103: Timeline management view

The global timeline parameters are: (a) the Initial Epoch, (b) the timeline definition file and (c) the default
time segment duration. Timeline segment are displayed below as rows in a table where each column
corresponds to the time segments attributes.

It should be noted that the initial epoch parameter is stored in the global configuration file, so this file must
have been defined prior to the simulation’s Timeline definition. If no previous timeline parameters are
present on the global configuration file, openSF will initialize them to the default values. However, they are
only saved to the global configuration if the user actually Activates the timeline.

To define a Time-Driven simulation, the user can load a previously configured timeline scenario through
the Load Timeline button, or manually configure one. The timeline scenario file must be compliant with the
structure described in [AD-E2E], and the modes referred by the scenario file must match the ones specified
in the local configuration files of the relevant modules.

If the user chooses to manually configure a custom scenario, a valid file path shall be provided for the
global TimelineFile parameter. The user can define as many timeline segments as desired, saving the
modifications when he is satisfied with the result.

Regardless of whether the scenario file is loaded or generated, it has to be activated with the Activate
Timeline button before the simulation can be run. The button also saves the timeline to the selected file. It
shall be noted that the timeline activation not only configures the simulation as Time-Driven but it also
stores the initial epoch timeline parameter in the simulation’s Global Configuration File, so it affects all the
simulations that share the same GCF. If, after the timeline scenario activation, any modification is done,
the file has to be activated again.

For editing the timeline segments the interface has a set of buttons to add, remove or duplicate a time
segment row. These three actions can be performed either accommodating the existing segments (e.g.
add-shift) or without affecting the existing segments. Accommodation is accomplished by adjusting the
start times of the segments so that there are neither time segment overlaps nor gaps in the timeline. The
buttons have been arranged in a rectangle, where the left column buttons shift the time segments, while
the right ones don't.

© Deimos Space S.L.U. 2021 105 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

The addition of each time segment uses default values from the global timeline parameters defined above.
Within the timeline table on each row, it is possible to select the mode (active true or false) for each module
to be executed during each time segment.

The default representation of time segments in the timeline table can be configured via the System
preferences - Application Setting - Timeline visual. This allows using: duration, number of steps or end
epoch as time segment identifier (first column).

B Preferences O b4

type filter text Application Settings (=T v
Application Folders

Application Settings
Environment Variables Maximum Execution Threads | 2 |

These settings modify general aspects of the functioning of the framewaork,

Interpreters Definiton Maximum Directory Copy Depth | 3 |

Tirmeline Segment Definition
(®) Duration () Number of Steps () End Epoch

Default Time Segment Duration | 300 |

Initial Time Segment Epech [2020-11-13T13:38:16.672 |

Default Execution Strategy
(® Data-Driven () Time-Driven

Check for Updates URL | http://eop-cfi.esa.int/updates/updates_opensfaml |
Synchrenize Navigation Tabs]
Store raw logs for each module executed [[]
Validate LCFs against schema on writing | Skip validation ~
Enable user role selection
Override Parameter Dimensions O
Symlink handling mode Copy File ~

Apply and Close Cancel

Figure 4-104: Timeline preferences

Each timeline segment time definition shall then be introduced by the user with (a) a start time, and (b)
one of the following: duration, number of steps or end epoch. If then the user inputs duration, the system
can compute the other two alternative values from the start time (and so on for any other selection). Then
in the timeline configuration file all the four time-related values will be written for each segment. Therefore,
when the user switches preference in the global definitions it's simply changing the "view" over the time
data. Being a global configuration, it actually represents the specific user preference for viewing one of the
three alternative values. If the simulation is changed or if a given timeline configuration file is supplied
(which shall be self-contained) to another user then the displayed column shall be the one corresponding
to the users’ preference.

The user can press on the “Disable Timeline” button to disable the timeline, and return to a Data-driven
simulation.

4.4.2.5. Monte Carlo simulations

This section provides guidelines to implement a Monte Carlo (MC) simulation in openSF, taking into account
current openSF limitations.

Full support for MC studies is intended in the future, as the current implementation is known to have
limitations. With the current status of openSF, MC analysis can be simplified by taking some precautions
when developing simulation modules.

Three different approaches are suggested to implement a MC analysis. The best approach depends on the
specific constraints of the project and the implementation of the module on which it is desired to perform
the MC analysis. These different approaches originate from the fact that, although openSF can perform

© Deimos Space S.L.U. 2021 106 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

iterations (parametric analyses) both in local and global parameters, it can only introduce perturbations
(Monte Carlo analyses) in the LCFs.

4.4.2.5.1. One module MC with local parameter

The first option to implement a MC analysis in openSF considers that only one module needs to be executed
multiple times. The parameter to be perturbed only needs to be injected in a single MC module. The layout
of this approach is shown in Figure 4-105.

/7 C1)
—- __
GLOBAL
CHAIN OF COMMON \
CONFIG. FILE MODULES /T c2) R
. — —-
e Ty —_
/ CHAIN OF POSTPROCESSING RESULTS
SF /T 3] OR RESULTS MERGING MODULES FILES
_— Q —l = | =
LOCAL CONFIG. PERTURBED SINGLE MONTE
FILE WITH THE PARAMETER CARLO MODULE
VARYING PARAMETER BY OPENSF

Figure 4-105: Monte Carlo chain in statistical mode

In the most generic version of this approach, the module on which the Monte Carlo will be performed is
preceded by a chain of modules and generates results that will feed into another set of modules. These
post-processing modules can be used to merge the multiple results of the MC.

The parameter(s) on which the MC is applied must be defined as part of the module’s local configuration,
with the perturbation specified in openSF through the “Perturbation” menu - see details on how to configure
the desired number of shots and use the Statistical execution mode at Section 4.4.2.3.

In the chain shown in Figure 4-105, the modules A through B are only executed once, and the same
happens with the modules D through E.

Notice that openSF only initiates the execution of a module when all expected inputs are available.
Therefore, to build a sequential execution the chain needs to define the inputs of a module as the outputs
of the previous one.

To use this approach, the developer must consider the following points. Alternative approaches should be
considered in case the following points don't apply to the problem at hand.

Q The value of the varying parameter can only be defined in the local configuration file of the MC
module.

O openSF passes the same input and output files/folders to all the executions of the MC module. This
implies that the MC module knows the varying parameter and dynamically modifies the name of
output files to avoid overwriting them.

Q To correctly process the results of the MC module, downstream modules must be able to read and
understand those results. Some degree of agreement is necessary between the MC module and the
downstream modules, either by sharing the naming convention used to generate output files and
recognise from the names the varying parameter, or by reading the result files and obtaining that
information from its contents.

Q Considering that openSF initiates the execution of a module when all inputs are available, it is not
possible to simply specify a folder as output of the MC module to pass results to downstream modules.
After the first MC module terminates, the presence of the folder indicated to openSF that the following
module can be started.

© Deimos Space S.L.U. 2021 107 of 155

DEG-CMS-SUPTR09-SUM-10-E

OPENSF-DMS-TEC-SUMO1

4 y openSF
4.3

- &
dEl mOS System User Manual 27/05/2022
elecnor group

Possible alternative solutions are listed below, knowing that the most applicable depends on the
design of the simulator.

o Pass the number of shots to the MC module, and at the end of execution generate a
“MC_Completed” flag file in case the expected number of output files is available (i.e. all shots
have finished). The "MC_Completed” flag file is essentially used to trigger the execution of
downstream modules.

o Pass the number of shots to the first post-processing module. This module is launched as soon
as openSF verifies that a results folder exists, and enters an active polling loop until it finds
the expected number of files is available.

o In case the modules design/implementation cannot accommodate the above approaches,
divide the whole Monte Carlo study in two completely independent simulations. The first
simulation executes the modules up to the MC modules, without any post-processing modules;
then the second, executes the remaining post-processing modules, manually configured and
launched by the user after the completion of the first one.

The options discussed above do not consider handling of errors in MC modules. In those cases,
either the modules need to implement error-checking mechanisms, or the user needs to check the
correct execution of all shots to ensure reliable results.

4.4.2.5.2. Multiple modules MC with local parameter(s)

Another approach has to be used when more than one module is executed with perturbed parameters for
each of the Monte Carlo shots. The chain presented in Figure 4-106 shows two main disadvantages: all the
modules are executed for each of the MC shots, with the consequent increase in the computation time, and
it is not possible to combine all results generated by the MC modules.

/T A1 1_*4||31 T ¢ci » /T D1 AE .. AdF R1
— | ., = , =11 e =l 4 |l=]| —
j— jr— —— jr— — fr— f— f—
/£|A21:*£|BZ Acy) 1.+ A0D2 Aez) .. AF2 R2
—_— pr— — — —_—TN— jr— . — —_— — — — —
— — [— — — — —_— —_—
GLOBAL \
CONFIG. FILE /T A3 1 /T B3 ¢33 1.+ D3 AE3 .. AF3 R3
| - | == — == A =] — | == — | = | —
— — — — | — — —
CHAIN OF COMMON CHAIN OF MONTE CHAIN OF POSTPROCESSING RESULTS
MODULES GARLO MODULES OR RESULTS MERGING MODULES FILES

XML o

PERTURBED
PARAMETERS
BY OPENSF

LOCAL CONFIG.
FILES WITH THE
VARYING PARAMETERS

Figure 4-106: Monte Carlo chain in combined mode
In the most generic version of this approach, a chain of modules on which the Monte Carlo will be performed
is preceded and followed by a set of normal modules.

As in the previous approach, the parameter(s) affected by the MC must be defined in the local configuration
file, with the perturbation specified in openSF through the “Perturbation” menu - see details in the Section
4.4.2.3 on how to configure the number of shots and use the Combined execution mode.

This approach relies in assembling an independent simulation for each perturbation shot. Each shot is
considered independently, rerunning common modules, and storing the results in a different simulation

© Deimos Space S.L.U. 2021 108 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

folder. In this case, the MC module is not obliged to provide a different name for the result files, although
it might be desired in order to gather all the results in a common folder.

The use of the same value of a perturbed parameter in more than one module is supported by simply
defining the desired parameter in the local configuration files of the affected modules, and in openSF define
the exact same perturbation for all of those parameters.

To keep the simulations executions coherent, all parameter perturbations of the MC modules need to have
the same number of shots. The non-perturbed modules will be re-run with the same configuration
parameters and the inputs produced by the previous modules of its simulation.

4.4.2.5.3. Multiple modules MC with global parameter

In case none of the previous approaches is applicable, or the parameter to vary is not local but global,
there is still one additional approach that can be used to implement a Monte Carlo analysis in openSF.

As this approach relies on an external tool to generate the perturbed parameter values, it should only be
used when the varying parameter needs to be injected into multiple modules and, either the varying
parameter must be defined in the global configuration file, or else no perturbation capabilities are needed.

The typical chain for this approach is shown in Figure 4-107. To setup this approach, create a normal
simulation in openSF without taking into account MC. Use the “Iteration” features, as described in Section
4.4.2.1, to customize the global parameter to be perturbed. The perturbed parameter values can be
introduced manually, or by providing a file containing the values - this file is typically generated by an
external tool. Consider also using a “batch simulation configurator file” as explained in Section 4.4.2.2.
Executing the simulation essentially results in a parallel execution for each of the values of the varying
parameter.

pe A, .. B 4 I A I AEN, .. JF R1
- : —_—] - =] — = | == — | =] - | = | =
GLOBAL CONFIG |TERATED PARAMETER
FILE WITH THE BY OPENSF OVER THE A 1) - /T B2) Ac2 - /] o2 /T E2 g% /T F2) R2
VARYING PARAMETER PROVIDED VALUES —_ || =»> | | — || = | | —— || = | —=——]| —
| | A3, .. B3 Ac3 . .03 AE3), .. AF3 R3
@j L, | = | - | == = L= |=] 5 | = —.
|_x._EI — —] —] — — —
EXTERNALLY GENERATED
VALUES FOR THE CHAIN OF COMMON CHAIN OF MONTE CHAIN OF POSTPROCESSING RESULTS
VARYING PARAMETER MODULES CARLO MODULES OR RESULTS MERGING MODULES FILES

Figure 4-107: MC with a global parameter

As the varying parameter is global, all the modules can access it and decide according to its value. As with
the previous approach, each shot of the MC is executed as an independent simulation implying that all the
common modules are executed repeatedly and that there is supported way to gather/aggregate all the
results.

This last limitation could be bypassed by implementing post-processing modules considering the following:
1. Define the total number of shots of the MC in the global configuration file.

2. Considering that all the simulations files are stored as subfolders within the main simulation folder,
at the beginning of the module execution, retrieve the simulation folder path and go one level up.

3. Index all the existing folders and their contents.

4. Count the number of MC results and if it is lower than the expected number of shots, end the
execution of the post-processing module.

5. When the number of existing results is the same as the expected shots (i.e. when executing the last
simulation) perform the post-processing over all the indexed results.

© Deimos Space S.L.U. 2021 109 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

The choice between using this or a similar solution or to simply defining another processing simulation to
aggregate the results and manually execute it depends on design decisions particular to each project.

4.4.3. Simulation run

M 1 A E

Once a simulation definition is ready, users can execute it.

The effective execution order of the simulation modules is determined by openSF, based on the input/output
dependencies - see Section 4.4.3.1.1 for further details.

Upon the activation of the “run” command, the system performs a series of checks to ensure the validity
of the simulation:

O If the global configuration file for the simulation, or the local configuration file of any active module
in the simulation is missing, the execution will not proceed, and a dialog will be displayed listing
the missing files as shown in Figure 4-108.

Session Execution x

- The global configuration file

e The Following files required to run the session are not defined or missing:
- The local configuration file For model Javamodel

Figure 4-108: Execution prevented due to missing configuration files

O If there is any other file with the “missing” status (that is, the system is unable to find it in the
given location), openSF makes the assumption that this file will be in the right place when needed,
so it leaves the responsibility of placing it in the correct place to the user or to process outside the
system. A fatal error is likely to be raised by a module if it cannot locate a needed file.

O If any parameter is not valid, openSF will show a message warning the user. The simulation can be
run with parameters in a not valid state, but modules may then raise errors and stop the execution
if they cannot parse the value, if a parameter points to a non-existing file, etc.

Once every validity check is fulfilled, openSF will run the simulation (Figure 4-109) and information about
its status will be given to the user in three different ways. The first is the simulation progress section,
where the overall simulation progress is displayed by a progress bar. The second is the modules progress
tab, where each module is coloured according to its state and a small progress bar displays the progress
of the single module. The third is the logs tab, which displays the logs generated by the system and the
modules.

In the modules progress tab, the colour scheme of the modules is the following:

U Green: Completed successfully
U Yellow: In progress

U Blue: Pending

U Red: Failed

The single files (represented by the little squares next to the modules) are also coloured from black to
green as the modules produce them.

During the simulation execution, all events raised by the modules are collected and displayed in the Log
Messages table. By default, these messages are processed and displayed/coloured based on their type, but
openSF allows to inspect the original messages by checking the “"Show non-formatted messages” option.
The event messages displayed in the Log Messages table are collected and stored in a log file that can be

© Deimos Space S.L.U. 2021 110 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

Ol 4.3
dEI mOS System User Manual '

27/05/2022
elecnor group

opened for further inspection using the “Show Log” button. The collected events can be of one of the
following types:

U System information - An event with some information to the user is generated by the platform.
This is a harmless event; the execution continues with no interruption. Coloured in dark grey

O Information - Some module raises an event. Its message is intercepted and stored by the platform.
This is a harmless event; thus, the execution continues with no interruption. Coloured in green

O Warning - A module has detected a non-fatal error or situation. From the point of view of openSF,
this is a harmless event, so the execution continues with no interruption. Coloured in yellow

U Debug - These events are raised when executing the simulation in “*debug mode”. Some modules
optionally use an environment variable to show debugging information (see Sec. 4.5.1). Coloured
in grey

O Error - A fatal error has happened in the module execution, so the entire simulation is considered
to have failed. There are multiple ways this may happen: if the module execution unexpectedly
crashes, if the module itself informs the platform by using an “Error” type event, or if it returns a
non-zero code (for the languages that support it). Coloured in red.

U Exception - This log type shows the error output stream of a module when the execution crashes.
Typically, this kind of messages is produced when an un-controlled exception has occurred (Ex:
error in bash script syntax). Coloured in orange.

E2E test.202205067092454d322 *
Simulation progress

Simulation Time: Oh:0m:6s
Execution In Progress Simulation modules: 2 completed, 4 remaining

Modules Progress Log Messages

Zoom: I Default

‘ 0OSSModule (1.0) ’I‘ SceneGenerator (1.0} ‘
. -
-—

LibGenerator (1.0) L2Retrieval (1.0)

lonosphereModule
(1.0)

[1show non-formatted messages Show Log

Close Cancel Abort Resume

Figure 4-109: Simulation execution progress

© Deimos Space S.L.U. 2021 111 of 155

DEG-CMS-SUPTR09-SUM-10-E

OPENSF-DMS-TEC-SUMO1

4 y openSF

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

Log Messages

2019-10-26T01:37:14.867 System Module time::31ms MatlabFail_test_session.20
2019-10-26T01:37:14.863 Warning Output file/folder "output4" has not been successfully generated by the module MatlabFail_test_session.20
2019-10-26T01:37:14.822 Warning Output file/folder "output3" has not been successfully generated by the module MatlabFail_test_session.20
2019-10-26T01:37:14.817 Warning Output file/folder "output2" has not been successfully generated by the module MatlabFail_test_session.20
2019-10-26T01:37:14.813 Warning Output file/folder "output1" has not been successfully generated by the module MatlabFail_test_session.20
2019-10-26T01:37:14.787 Eror Cannot run program "matlab (in directory */opt/opensF/opensF_3.8.2"): error=2 Matlabrail_test _session.20
2019-10-26T01:37:14.774 System Executing Command :: matlab -nosplash-nodesktop -nodisplay -r addpath('/opt/c MatlabFail_test_session.20
2019-10-26T01:37:14.762 System Starting execution of module MatlabFailModel MatlabFail_test_session.20
2019-10-26T01:37:14.740 System Configuration file is valid. MatlabFail_test_session.20
2019-10-26T01:37:14.702 System Validating and copying needed files to session Folder for model: MatlabFailModel MatlabFail_test_session.20

Figure 4-110: Execution log showing an error message

In the previous screenshot it is also shown how openSF warns the user about output files that have not
been created by the module: “Output file/folder "...” has not been successfully generated by the module”,
there is a log message for each output item not generated.

Pressing the “abort” button will make the system ask for confirmation. Once granted, the execution will be
interrupted with an error event generated by the system. Later on, this simulation execution can be
restarted or recovered from the last valid module executed.

4.4.3.1. Parallelisation of module execution

M 1 E

Parallel execution of modules in openSF is based on Multicore programming for parallel computing.

A multi-core processor is a single computing component with two or more independent actual processors
(called "cores"), which are the units that read and execute program instructions. The improvement in
performance gained by the use of a multi-core processor depends very much on the software algorithms
used and their implementation. In particular, possible gains are limited by the fraction of the software that
can be parallelised to run on multiple cores simultaneously (Amdahl's law).

openSF target system is typically a workstation or server. These systems will often have multicore
processors.

Regarding the parallel execution the approach is based on performing parallelisation at module level: each
module acquires a core resource thread and uses it, then releases it when finished. This approach is also
generic enough to cover parallelisation at module chain level as well.

Parallelisation is implemented in openSF according to the principle that a module starts its execution as
soon as its inputs are available. At the E2E simulation start-up, the only modules that can be launched in
parallel are those having external inputs (i.e. inputs not generated as outputs by other modules), while
during the simulation execution the system allocates each available core to the first module in the pipeline
ready to be executed (i.e. the first in the queue with available inputs).

4.4.3.1.1. Parallel execution

The parallel execution of simulation modules is activated and controlled by openSF based on the configured
maximum number of distinct processes used for execution (see option Maximum Execution Threads in the
preferences, Section 4.5).

The process of scheduling the simulation modules execution can be decomposed in two distinct steps:

1. Taking into account the input/output dependencies between all simulation modules (as specified
via the descriptors), openSF calculates a serializable execution schedule of all modules

2. Then, at the start of the execution and whenever a simulation module terminates, openSF launches
in parallel as many modules as possible, considering that:

© Deimos Space S.L.U. 2021 112 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d = E— 4.3
e | m OS System User Manual 27/05/2022
elecnor group

a. a module can only be launched if all modules providing its inputs have already completed
their execution

b. the number of running processes must always be less or equal to the maximum number of
processes allowed

It is important to notice that currently openSF relies only on process termination and the return code to
determine that a simulation module has completed, without any other additional check - i.e. openSF detects
if the intended outputs have not been generated but it will not consider that cause for termination nor will
it verify the validity of generated outputs.

The parallelisation of the simulation modules is essentially transparent to the user, i.e., the parallelisation
is performed without requiring feedback from the user, both at E2E simulation chain level and module level.
Figure 4-111 shows an example of a simulation execution were two modules are executed in parallel as
can be seen by log messages originating from the two modules interleaved with each other.

Type Message Simulation identifier Source

Finishing model execution E2E_test_simulation.20191028T160222d302 Module: GeometryModule (1.0)
GeometryModule:GeometryModule simulation done successfully E2E_test_simulation.20191028T160222d302 Module: GeometryModule (1.0)
Productwriter:Writing XML::Product Geometry in file: fhome/caps/openSF/opensf_workspace/opensf E2E_test_simulation.20191028T160222d302 Module: GeometryModule (1.0)

Finishing model execution E2E_test_simulation.20191028T160222d302 Module: lonosphereModule (1.0)
5 Info lonosphereModule::lonosphereModule simulation done successfully E2E_test_simulation.20191028T160222d302 Module: lonosphereModule (1.0)
1 Info ProductWriter:Writing XML::Product lonosphere in file: /home/caps/openSF/opensf_workspace/open: E2E_test_simulation.20191028T160222d302 Module: lonosphereModule (1.0)
2 Info GeometryModule::Input file reading done successfully E2E_test_simulation.20191028T160222d302 Module: GeometryModule (1.0)
1 Info lonosphereModule::input file reading done successfully E2E_test_simulation.20191028T160222d302 Module: lonosphereModule (1.0)
2 Info ProductReader::readinputGeo Succesful reading of InputGeo Product E2E_test_simulation.20191028T160222d302 Module: GeometryModule (1.0)
1 Info ProductReader::readinputionos Succesful reading of Inputionos Product E2E_test_simulation.20191028T160222d302 Module: lonosphereModule (1.0)
1 Info GeomeryModule::Starting input file reading E2E_test_simulation.20191028T160222d302 Module: GeometryModule (1.0)

Figure 4-111: Simulation execution showing parallel module execution

In case two modules are executing in parallel, the log messages are shown in the order of arrival to openSF.
They will appear mixed in the simulation log. By looking at the Source column the user can identify which
module produced each message. Nevertheless, the user can access the “Execution/Logs” option and
select/filter whichever log messages according to given criteria (see Sec. 4.4.3.3). Notice that the writing
accesses to the log file itself is protected for concurrency issues.

The openSF mechanism on whether to parallelise module execution is based on the simulation module’s I0
descriptors dependencies. Only modules without such dependencies are considered for parallel execution.
This means that during the simulation execution the consistency of the data flow constituents is granted.

In case parallelisation is active for a simulation execution with parameter perturbation a choice is given to
the user whether parameter perturbation can be parallelisable or if it should be serialized.

' ~

Parallel shots ®

Module execution contains parameter perturbations.
Do you wish to execute module shots in parallel?

Yes, parallelize Cancel No, serialize

Figure 4-112: Parallelization option dialogue

© Deimos Space S.L.U. 2021 113 of 155

DEG-CMS-SUPTR09-SUM-10-E

. &
dellmos
elechor group

OPENSF-DMS-TEC-SUMO1
4.3
27/05/2022

openSF

System User Manual

4.4.3.2. Simulation Resuming

A E

Users can also resume aborted or failed simulations taking into account that the simulation chain will start
in the last successfully run module. See Section 4.4.1.3.1 for further details.

4.4.3.3. Logs
A E

One of the products of a simulation execution are a set of events are produced as messages and stored by
the system.

Log messages are stored in the file <simulations_folder>/<sim_id>/openSF.log for global events, and in a
file named log/simulation.log under each execution folder for events related with a specific simulation. Also,
if a certain application setting is enabled (see Section 4.5.2), log files are stored for each module in a
simulation, in the same folder and named after the related module.

Users can access to the complete set of logs stored by the system in the “Logs” menu (Figure 4-113) from
the main menu.

View Tools Help

Reset Views

Figure 4-113: Logs menu

Figure 4-114 shows a window with a list of log messages stored by the system. As it can be seen, the table
shows the computer date and time when the platform intercepted the event, the type of the event, a
message describing the event, the identifier of the simulation associated with the event and its detailed
source (module, simulation or system).

View Log x

Filter

Text to filter by

Field to filter by = Date and time -

Apply and Reload

Maximum number of rows displayed | 1000

Log messages list

Simulation identifier Source
2019-10-29T17:37:30.264 System Executing Command :: /home/caps/openSFfopensf_workspace/opensf/platforn E2E_test_simulation.20191029T173727d772 Module: 0SSModule (1.0)
2019-10-29T17:37:30.274 Warning Different OSFI versions (openSF supports 3.3; 0SSModule (1.0) uses) E2E_test_simulation.20191029T173727d772 Module: 0SSModule (1.0)
2019-10-29T17:37:30.274 Debug OSFI::CLP::parseFiles. Parsing fhome/caps/openSF/opensf_workspace/opensf/| E2E_test_simulation.20191029T173727d772 Module: 0SSModule (1.0)
2019-10-29T17:37:30.277 Debug OSFI::CLP::parseFiles. Parsing fhome/caps/openSF/fopensf_workspace/opensf/| E2E_test_simulation.20191029T173727d772 Module: 0SSModule (1.0)
2019-10-29T17:37:30.278 Debug OSFI::CLP::parseFiles. Parsing fhome/caps/openSF/fopensf_workspace/opensf/| E2E_test_simulation.20191029T173727d772 Module: 0SSModule (1.0)
2019-10-29T17:37:30.280 Info Initializing Geometry Module E2E_test_simulation.20191029T173727d772 Module: 0SSModule (1.0)
2019-10-29T17:37:30.291 Info ObservingSystem::Starting global and local parameters reading E2E_test_simulation.20191029T173727d772 Module: 0SSModule (1.0)
2019-10-29T17:37:30.317 Info ObservingSystem::Global and local parameters reading done successfully E2E_test_simulation.20191029T173727d772 Module: 0SSModule (1.0)
2019-10-29T17:37:30.318 Info ObservingSystem::Starting input file reading E2E_test_simulation.20191029T173727d772 Module: OSSModule (1.0)
2019-10-29T17:37:30.320 Info ProductReader::readGeometry Succesful reading of Geometry Product E2E_test_simulation.20191029T173727d772 Module: OSSModule (1.0)
2019-10-29T17:37:30.321 Info ObservingSystem::Input file reading done successFully E2E_test_simulation.20191029T173727d772 Module: 0SSModule (1.0)
2019-10-29T17:37:33.062 Info Productwriter::wWriting XML::Product Instruments in file: fhome/caps/openSF/o E2E_test_simulation.20191029T173727d772 Module: 0SSModule (1.0)

Close Dump log...

Figure 4-114: Logs list view

© Deimos Space S.L.U. 2021

114 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

This list of events is sorted (by default) in increasing time order until filling the *“Maximum number of rows
displayed” field. Users can change the number of log messages to be displayed. For example, if the
“Maximum number of rows displayed” is set to 10, the list displays the last 10 messages

Users can also filter this list. Users can select a field, input a string that must contain this field and press
the “filter” button. A search is performed by the system and the results are shown on screen. Only records
fulfilling the filter restriction will be shown. When clearing the filter text, the system shows again the full
set of log messages.

Messages can be copied by selecting one or more of them and using the context menu that appears upon
right-clicking on one of the selected messages. Moreover, users can access the “dump log” functionality at
the bottom of the window. Once selected, users can select the name and location of the log destination
file. The list of logs shown in the window will be stored in the file system.

4.4.3.4. Simulation groups
A E

When simulations run in Time-driven or Iteration/Perturbation mode, a considerable number of children
simulations can be opened at the same time (see Sec. 4.4.2). To manage this issue, openSF groups all the
child sub-simulations into a parent window, as well as in a parent output folder (see Sec. 4.2.3) to ease
the user management of the overall simulation results.

Thus, if a simulation is executed in any of these modes, the user will be prompted with a screen collecting
all the sub-simulations and each of the execution results, as depicted in Figure 4-115 (for a time-based
execution) and in Figure 4-116 (for an execution with iterated or perturbed parameters).

Running group of simulations under parent: E2E_test_simulation.20191028T160140d722

20180615T155002927.20191028T160141d283 Successful
20180615T155502927.20191028T160141d369 Successful
20180615T155602927.20191028T160141d406 Successful
20180615T160102927.20191028T160141d470 Successful
20180615T161102927.20191028T160141d542 Successful
20180615T161602927.20191028T160141d649 Successful
20180615T162102927.20191028T160141d662 Successful
20180615T162602927.20191028T160141d753 Successful
20180615T180602927.20191028T160141d851 Successful

Figure 4-115: Grouping of simulations for the Time-Driven execution

While the simulations are executing, the user has several available options: “Abort all...” which aborts all
the sub-simulations, “Abort selected” which aborts only the selected Sub-simulation or “Details...” if the
user wants to open one subs-simulation in particular. The latest option can also be accessed if the user
double-clicks on top of any simulation.

Running group of simulations under parent: E2E_test_simulation.20191028T160015d473

exec2.20191028T160015d637 Successful
exec3.20191028T160015d661 Successful
exec4.20191028T160015d714 Successful
exec6.20191028T160015d810 Successful

Figure 4-116: Grouping of simulations for the Iteration/Perturbation execution

© Deimos Space S.L.U. 2021 115 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d . & 4.3
EI mOS System User Manual 27/05/2022
elecnor group

4.4.4. Import and export simulations

1 E

The import/export capability provides the means to share all the information associated to simulations
among different openSF instances.

4.4.4.1. Export simulation

The data needed to import a simulation consists in two files, obtained through a previously executed export
operation:

O SQL file, containing the SQL operations to perform a replica of the database data into the target
openSF instance.

O ZIP file, containing the data files needed for the execution of the simulation. Furthermore, in case
of an executed simulation, the zip file includes also the input files used for that particular run.

From the openSF HMI, the export operation can be invoked from two different locations:

1. From the Repository menu. In this case, we need to navigate from the “Repository” menu down to
the simulation that the user wishes to export. Next, right-clicking over it; the “Export” option appears
for selection. This is illustrated in Figure 4-117 below.

Repository . Executions | File system

~ Repository

» Descriptors

» Modules

+ Simulations
Breakpoints_test_simulation
E2E_test_simulation
JavaSimulation
MatlabFail_test_simula P Runsimulation
Matlabsimulation # Generate script
Paramlteration_test_si
PythonSimulation

4 Edit...

1 Delete
H copy...

Figure 4-117: Export from the repository menu

1. From the Executions menu. If the user wishes to export a simulation that has been run, it can do so
by accessing the “Executions” menu and selecting the Export operation upon the desired simulation,
similarly to the previous case. This is shown in the next figure.

© Deimos Space S.L.U. 2021 116 of 155

DEG-CMS-SUPTR09-SUM-10-E

. &
deimos

openSF

System User Manual

OPENSF-DMS-TEC-SUMO1
4.3
27/05/2022

elecnor group

Repository Executions “._File system AW E(+pl @

+ Simulation results

~ E2E_test_simulation
E2E_test_simulation.20191028T115524d505
~ PythonSimulation

PythonSimulation. s
O view

W Re-Runsimulation

% Generate report

»| Go to Files
1 Delete

Figure 4-118: Export from the executions menu

In both cases, the output obtained as a result of the Export operation are two files (sql and zip) that are
placed in the folder indicated by $E2E_HOME. These files are needed for the import operation, and they
ensure the creation in the database of the constituent elements of the simulation (i.e. descriptors, modules,
tools, and simulation, as well as the provision of input and configuration files) needed for the simulation’s
execution. However, it is to be noticed that the executable files corresponding to the modules and tools are
not included in the export operation.

The difference between both types of export (from the Repository menu and from the Executions menu) is
that the Import of the latter type creates the simulation only in the Executions tab. That is due to its
identifier (featuring the execution time stamp) and its state (Successful or Failed), which indicates that it
is an executed simulation.

Once the export has been carried out, openSF reports the status in a dialog as the one shown below.

I \

Export Simulation ®

- Simulation E2E_test_simulation.20191029T173727d772 has been successfully
6 exported.

Files generated under /home/caps/openSF/opensf workspace/opensf/
platform:

- E2E_test simulation.20191029T173727d772.zip

-E2E_test simulation.20191029T173727d772.5ql

-E2E_test simulation.20191029T173727d772.log

Figure 4-119: Successful execution of the export

4.4.4.2. Import simulation

Users can activate the import operation by accessing the “Repository” menu and clicking on the “Import
simulation ...” option, showing the dialog of Figure 4-120. The dialog requests the files needed to complete
the operation: the SQL file that includes the statements needed to create the simulation in the target
database, the log file and a ZIP archive with the simulation data files (configuration and optionally, inputs)
for the simulation’s execution.

Note that for simulations exported by openSF v3.7.1 onwards, the ZIP archive includes the simulation logs,
so it is not necessary to provide the log file on import. If one is specified, it will be ignored.

© Deimos Space S.L.U. 2021 117 of 155

DEG-CMS-SUPTR09-SUM-10-E

_ —m OPENSF-DMS-TEC-SUM01

N openSF
4.3
dEI mOS System User Manual 27/05/2022
elecnor group
Import Simulation ®

Imporkt Simulation

Simulation SQL File

Simulation Zip File

Simulation Log File

Help

Please select a SQL, a ZIP and a LOG file generated by openSF export capability.

- System will create if not present all needed entities (Descriptors, Modules ...)

- System will unzip all input and configuration files into simulations folder (simulation name)
- System will append the imported simulation log into the system log File

Figure 4-120: Inputs requested for the import

The user can navigate through the file system in order to access the files by clicking on the buttons
appearing at the right side of each input field. Upon completion, openSF reports on the status of the

operation. The figure below shows the dialogue that is presented in case the import was performed
successfully.

Import Simulation ®

- Simulation E2E_test simulation.20191029T173727d772 has been successfully
0 imported.

Figure 4-121: Successful execution of the import

4.4.4.3. Export module of a simulation

This capability deals with the possibility of exporting the data associated with a module that has already
taken place in a simulation. The export functionality exports the data related to only one module of a given
simulation. Thus, the data exported are the module configuration and input files.

From the openSF HMI, the export module operation can be invoked from the simulation execution window
by navigating down to the module that the user wishes to export. Next, right-clicking over it; the “Export”
option appears for selection. This is illustrated in Figure 4-122 below.

© Deimos Space S.L.U. 2021 118 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d = E— 4.3
eImOS System User Manual 27/05/2022
elecnor group

Input files lisk

Default File File instance Status
¥ Input
+ lonosphereModule (1.0)
Inputlonos.xml /home/caps/opensF/opensf_workspace/opensf/platform/simulations/E2E_test Available

v GeometryModule (1.0)

InputGeo.xml /h Switch Module Version

yensffplatform/simulations/E2E_test Available

~ 0SSModule (1.0) A GeometryModule (2.0)

Geometry.xml Jhi & Bypass/Switch-off module sensffplatform/simulations/E2E_test Available
¥ SceneGenerator (1.0) W Runfrom here

Maps.xml Jhi ensffplatform/simulations/E2E_test Available

% Resel Setu
- P ensffplatform/simulations/E2E_test Available

ensf/platform/simulations/E2E_test Available

Instruments.xml /hi .
Geometry.xml /h «” Use previous data

+ L1bGenerator (1.0)

scene.xml [hi € Import yensffplatform/simulations/E2E_test Available
Instruments.xml Jhi @ setas simulation yensffplatform/simulations/E2E_test Available
lonosphere.xml Jhi yensffplatform/simulations/E2E_test Available

. 40’ Set as Simulation from here
« L2Retrieval (1.0) B

Figure 4-122: Export module from the Simulation Result view

The output obtained as a result of the Export operation is a zip file placed in the folder indicated by
$E2E_HOME. This file is needed for the import operation providing the input and configuration files needed
for the simulation’s execution. However, it is to be noticed that the executable files corresponding to the
modules and tools are not included in the export.

4.4.4.4. Import module of a simulation

From the openSF HMI, the import module operation can be invoked from the simulation edition window by
navigating down to the module that the user wishes to import to. Next, right-clicking over it; the “Import”
option appears for selection. This is illustrated in Figure 4-123 below.

Input files list

Default file File instance Status
~ Input
+ lonosphereModule (1.0)
Inputlonos.xml /home/caps/openSF/opensf_workspace/opensf/platform/simulations/E2E_test Available
~ GeometryModule (1.0)
InputGeo.xml /hg Switch Module Version ensf/platform/simulations/E2E_test Available
~ 0SSModule (1.0) A GeometryModule (2.0)
Geometry.xml /hc & Bypass/Switch-off module ensf/platform/simulations/E2E_test Available
+ SceneGenerator (1.0) W Run from here
Maps.xml /hc . ensf/platform/simulations/E2E_test Available
Instruments.xml /he R ResetSetup ensf/platform/simulations/E2E_test Available
Geometry.xml /he ¥ Useprevious data ensf/platform/simulations/E2E_test Available
+ L1bGenerator (1.0) % Export

Scene.xml thnsffplatformfsimulationstZE_test_ Available
Instruments.xml /hc ensf/platform/simulations/E2E_test Available

> Setas Simulation

K

lonosphere.xml /hc
w L2Retrieval (1.0)

ensf/platform/simulations/E2E_test Available
‘0" Setas Simulation from here

L

Figure 4-123: Import module from the Simulation edition view

© Deimos Space S.L.U. 2021 119 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - gl 4.3
el mOS System User Manual 27/05/2022
elecnor group

A module data can be imported into an openSF instance from the data obtained from the export operation.
As the contents of the export relate to data files, it is required that the module exists in the target openSF
instance.

4.4.5. Simulation script generation

I E

This functionality is provided to create and save a file script to enable the external execution of the
simulation. This script file, which e.g. in Linux is named “<simulation_name>.sh”, will be saved in the
simulation folder as every needed input and configuration files. This script contains all the environment
variables definitions and calls for modules’ executions. The script can be executed from command line and
it requires no parameters.

Note that the script is always generated when executing a simulation. The simulation script generation
functionality just generates the script, without having to execute the simulation.

It is important to notice that the execution of this script (outside openSF) will not rely on any of the openSF
provided functionalities. In fact, while the execution will be mimicked, the error handling and results storage
capabilities provided by openSF will not be in place. Moreover, the simulation will be executed without
resorting to the parallelisation capabilities provided by openSF.

4.4.6. Multi-node simulation

openSF has the ability of orchestrating the remote execution of one (or several) modules in a simulation.

For the sample test simulation scenario shown in Figure 4-124, the user can choose which machine to use
for each module to execute. Note that the remote execution in openSF relies on mounting a remote file
system shared by all instances of openSF executing modules of a same simulation.

He‘lrivals —b L2
Module

O aps(PO, 6)

I OpenSF I

Server

File

Figure 4-124: Outline of a simulation scenario

© Deimos Space S.L.U. 2021 120 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

4.4.6.1. Remote machine management

For this purpose, a set of remote machines can be configured and managed in the system configuration.

When the user selects the "Remote” option from the menu “System”, the window shown in Figure 4-125
will show up.

P Remote nodes + 0 X
Remotes

Remote Address ‘ User | Home ‘ =

Connected to: |@localhost

Connect | Di5connect| New... | Delete... | Refresh | Close

Figure 4-125: Remote machines management window

In the bottom of the window there are five buttons, which allow users to perform different actions over the
remote machine configuration. Users can connect or disconnect from a remote machine, create a remote
machine reference, delete a remote machine configuration or refresh the list of available remote machines.

The central area of the window shows a list with the remote machine configured in openSF. Users can
obtain information about the remote machine address, the user that connects to the machine and the
remote path where openSF instance is installed.

The bottom of the window shows a label with the remote machine currently connected. In the case
exemplified, the application is not connected to any remote machine so the local installation of openSF is
used for storing the execution products (identified by “localhost” label).

4.4.6.2. Connect to a remote machine

Users can configure openSF to produce the simulation execution products in the file system of a remote
machine. For this, the user has to select a remote machine from the list, and click on the “"Connect” button.
Automatically the file system is connected to it, and then, the name of the selected machine is shown
beside the label “"Connected to”.

Connecting to a remote machine file system means that the Simulation system folder used by openSF is
located in a remote machine instead of in the local one.

4.4.6.3. Disconnect from a remote machine

Users can disconnect from a remote machine and rely on the local machine file system for simulation
execution. For this, the user has to click on the “"Disconnect” button. In case openSF is already connected
to a remote machine automatically the file system is disconnected from it, and then the label “localhost” is
shown beside the label "Connected to”.

Disconnecting from a remote machine file system means that the imulation system folder used by openSF
is the one in the local machine.

4.4.6.4. Configure a new remote machine

If the user wants to create a new remote machine reference, he has to click on the "New"” button, and a
dialog will be shown by the application, as it is can see in Figure 4-126.

© Deimos Space S.L.U. 2021 121 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - i 4.3
el mOS System User Manual 27/05/2022
elecnor group

Remote Machine Settings
User |bpenSF

Password |......

Address |I0calh05t

Home |

Cancel | 0K I

Figure 4-126: Create new remote machine
A remote machine has four characteristics fields:
O User, it is the user who connects to the remote machine

U Password (optional), it is the password of the user. In case the ssh key has been setup this field
is not required

U Machine Address, it is the address (IP or verbose) of the remote machine

U Home, it is the location in the remote machine where openSF instance is installed
Fields User and Home have a default value, that are:

U User: “openSF” (created during the installation of the application)

O Home: $E2E_HOME (created during the installation of the application)

It is mandatory that all fields have a correct value with the only exception made for the password field,
that can be empty.

When the user enters all the information correctly and clicks on the “OK' button, openSF attempts to
connect to the remote machine using the configuration provided.

In case some field has been entered incorrectly (as for example the user or password to connect with the
server are incorrect) openSF shows a message reporting the error (Figure 4-127), and invites the user to
enter the correct information or cancel the creation.

Incorrect connection

Cannot connect to remote machine
Please, check that user, password and address are correct

-~

0K

Figure 4-127: Remote machine is unreachable

If the user clicks on the “Cancel” button on the remote machine settings window, no action is performed.

4.4.6.5. Delete a remote machine

To remove a remote machine configuration, the user has to select the remote machine to be removed from
the list, and click on the “Delete” button (Figure 4-128). A new dialog is shown to confirm the action. If the
user clicks on “Yes, delete”, the entry is deleted.

© Deimos Space S.L.U. 2021 122 of 155

DEG-CMS-SUPTR09-SUM-10-E

_ —m

- a openSF OPENSF-DMS-TEC-SUMO01
4.3
delmOS System User Manual 27/05/2022
elecnor group
_— o D o _R____&___‘—;

Delete machine instance

This operation will erase the remote machine reference.
Are you sure?

=)

Yes, delete Mo, cancel

Figure 4-128: Confirm deletion operation

4.4.6.6. Refresh remote machine list

The remote machine management dialog provides the capability to refresh the list of remote machines to
which openSF can be connected to. This capability is useful e.g. in a situation when the user wants to
recover an existing configuration upon upgrading to a new version of openSF.

© Deimos Space S.L.U. 2021 123 of 155

DEG-CMS-SUPTR09-SUM-10-E

OPENSF-DMS-TEC-SUMO1

= y openSF

d . & 4.3
EI mOS System User Manual 27/05/2022
elecnor group

4.5. Preferences

1 A E

The “System” menu, shown in Figure 4-129, gives control the general characteristics of the whole openSF
system.

System Edit View Tools

Preferences...
Databases...
Remotke...

Quit openSF Ctrl+x |

Figure 4-129: System Menu

Selecting this menu option presents the dialog presented in Figure 4-130.

B Preferences a x

type filter text Environment Variables Frory
Application Folders
Application Settings
Environment Variables

Values set in this page will be passed to all called modules as enviranment variables.

Environment Variables

Interpreters Definiton Variable Value Add
E2E_HOME

DEBUG_MODE an
PARAMEDITOR_HOME
OPENSF_HOME

Remove

Off

Apply and Close Cancel

Figure 4-130: Environment variables

In this dialog users can modify some of the characteristics of the system.

4.5.1. Environment variables

A list of environment variables and associated values are shown in a table (Figure 4-130). Once a module
or a product tool is being executed, they can access these variables if they need them because the system
makes them available to the execution process. Users can “add” or “remove” an environment variable using
the given buttons. Double-clicking on an already existing variable the user can edit its name and value.

Note that all other variables that were already present in the system/user environment when openSF was
started will also be passed to the modules. In case of conflict, the variables defined in the preferences
replace (with a few exceptions, see below) those already in the environment with the same name.

$E2E_ HOME must to be defined here so it is exported as an environment variable (see Sec. 3.3.2 for
reference). There is an environment variable recognized by OSFI called $DEBUG_MODE that controls the
verbosity of some module executions. Setting to "On” or “Off” can enable or disable this output.

© Deimos Space S.L.U. 2021 124 of 155

DEG-CMS-SUPTR09-SUM-10-E

-, e
deimos

elecnor group

openSF

System User Manual

OPENSF-DMS-TEC-SUMO1

4.3
27/05/2022

OpenSF handles in a special way all environment variables used to customize the search for dynamic
libraries. For %PATH% (on Windows), $LD_LIBRARY_PATH (on Linux) and $DYLD_LIBRARY_PATH (on
macO0S), openSF prepends the value specified in the preferences to the value exported externally in the
environment.

macOS users must be aware of the limitations in using environment variables in script execution enforced
by Apple with the introduction of the System Integrity Protection (SIP) security feature in OS X 10.11 (El
Capitan), which does not allow critical environment variables (such as $DYLD_LIBRARY_PATH) to be passed
in a cascading shell script call.

4.5.2. Application settings

o Preferences O e
| type filter text Application Settings Gy i
Applfca‘[!on Fold_ers These settings modify general aspects of the functioning of the framework.
Application Settings - -
Environment Variables Check for updates URL | https:/feop-cfi.esa.int/updates/updates_opensfxml
Interpreters Definitan Check for updates at start
Synchronize Navigation Tabs |:|
Enable user role selection
Override Parameter Dimensions O
Timeline Segment Definition Duration ~
Default Time Segment Duration | 300 |
Initial Time Segment Epoch | 2022-05-12T09:01:08.7574324 |
Default Execution Strategy Data-Driven v
Maximum Directory Copy Depth | 3 |
Symlink handling mode Copy File ~
Module CLI Version Version 1 - Positional arguments ~
Maximum Execution Threads | D{
Store raw logs for each module executed O
Apply and Close Cancel

Figure 4-131: System Applications settings

Under this category (Figure 4-131) users can change the following default system parameters:

Q
Q

© Deimos Space S.L.U. 2021

Check for Updates URL. The configurable URL where openSF looks for software updates.

Synchronize Navigation Tabs: Shows the appropriate simulation folder in the repository view when
a simulation result is opened.

Enable user role selection: When enabled, a custom menu is shown in the toolbar to allow switching
between “Normal” user role and “Developer” user role (see Section 3.2.2).

Override Parameter Dimensions: When a parameter is changed, its dimensions may vary. When
this option is ticked, this would generate a DimsMismatch error. When this option is unticked, the
parameter dimensions are updated according to the new value.

Timeline Segment definition: Specifies how the timeline segment time should be interpreted
(Section 4.4.2.4).

Default Time Segment duration: Default duration of the new Time Segments in seconds.

Initial Time Segment Epoch: Initial Epoch for new Timeline Scenarios. This field shall be compliant
with the CCSDS ASCII Time Code A format (YYYY-MM-DDThh:mm:ss.ddd).

125 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
E| mOS System User Manual 27/05/2022
elecnor group

Q Default execution strategy: The user can choose if the default execution is data-driven or time-
driven.

Q Maximum Directory Copy Depth: Defines the maximum depth of the directory tree used when
copying files and folders before a simulation is executed. This copy operation typically includes
copying input and configuration files/directories into the simulation folder. The use of this value is
widespread and is designed to avoid possible infinite loops caused by symbolic links.

Q Symlink handling mode: By default, when a symbolic link file or folder is used in a simulation (as a
configuration or input), the actual file or folder referred to by the source element is copied in the
simulation folder (“Copy File") (see Section 4.3.4). The user can instead choose to create a symbolic
link to the original source (“"Copy Link”) or ignore symbolic links altogether (“Ignore”). In this latter
case, the symbolic links are not considered when creating the execution folder. If some module
refers to files/folders containing symbolic links, the user is responsible for manually placing them
where the module expects them to be found.

Q Module CLI Version: Version of the Command Line Interface used when running a module. Version
1 uses positional arguments, while version 2 uses flagged options (see [AD-ICD]).

Q Maximum Execution Threads. Sets the maximum number of modules that can be executed in
parallel during a simulation execution. The recommended value corresponds to the number of cores
of the machine were openSF is installed. Possible values are: 0 (number of cores of the machine),
1 (no parallelisation enable) or N (the number of modules that may be executed in parallel). Keep
in mind that it is allowed to insert a maximum number of execution threads higher than the number
of cores of the machine and the impact is that a core may have to deal with more than one thread.
Nevertheless, a warning message will be shown to the user whenever entering a value higher than
the machine’s number of cores.

Q Store raw logs for each module executed: if disabled, a single log file will be generated for each
executed simulation. The file contains general status messages, plus the messages from all modules
formatted according to [AD-E2E]. However, if this option is enabled, a log file will be created in the
same folder containing the “raw” output (both with and without E2E-ICD format) for each module
in the simulation. This may be useful for debugging some modules.

4.5.3. Application folders
Under this category users can change the default locations for these directories. If relative paths are given,

they are resolved under $E2E_HOME (see 3.3.2) unless otherwise specified:

Q Simulations. This is the place where all the files associated to simulation executions can be found.
Execution scripts, report files and, by default, configuration and output files generated are going to
be stored here.

Q Temp. Some intermediate files are going to be stored temporarily in this directory.

B Preferences O X

type filter text Application Folders (=14 v v

Application Fold
BE !ca !on ° .ers Settings in this page control where the framework locks for and stores files.
Application Settings

Environment Variables Simulations | simulations | Browse...

Interpreters Definiton | |

Temp Browse...

Figure 4-132: Application folders

4.5.4. Interpreters Definition

OpenSF allows the user to run modules not directly executable from the system command line. Such
modules can be executed by means of an interpreter that can be specified in the system preferences (See
Section 6.3.1 for module’s execution details). A number of built-in interpreters are available by default,

© Deimos Space S.L.U. 2021 126 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

. S 4.3
dEI mOS System User Manual :

27/05/2022
elecnor group

while further ones can be specified by the user. Figure 4-133 shows a list of available interpreters,
accessible by navigating to System > Preferences > Interpreters Definition.

B Preferences O X
type filter text Interpreters Definiton (=14 A
Application Folders . o -
Application Settings These se'.ctlngs allow the user to specify different interpreters to execute the modules.
Environment Variables U=y PEm: (RS
Interpreters Definiton Enabled MName Extension Type Interpreter Add
java jar Built-in Ch..
matlab m, p Built-in Ch... Eemoye
O idl pro, sav Built-in «<Default>
winpython py Built-in <Default=]
Pascal pas User e
Apply and Close Cancel

Figure 4-133 Interpreters definition

When a module is executed, openSF checks if its extension is compatible with one of the available active

interpreters, giving priority to the built-in ones. Interpreters can be activated and disabled using the first
column in Figure 4-133.

Built-in interpreters’ path can be modified by selecting the desired interpreter and pressing on the “Edit”
button. This will open the pop-up in Figure 4-134, which allows the user to select an interpreter’s path.

B Interpreter Path O >

Select a path for the interpreter:

| k::\... Browse...

Path to the 'java’ program in a JVM. If not provided, it will be assumed to
be in the systermn path.

Figure 4-134 Built-in interpreter path definition

In case no path is given, the table in Figure 4-133 will display the placeholder “<Default>", which assumes
the interpreter to be in the system path. The only exception to this mechanism is for Python interpreter
under Windows OS, that has to be explicitly specified in order for the interpreter to work. This built-in
option is hence only available in Windows.

User-defined interpreters can be added, removed and edited using the corresponding buttons, as shown in
Figure 4-133. When one of the last two options is chosen, the window in Figure 4-135 is shown.

© Deimos Space S.L.U. 2021 127 of 155

DEG-CMS-SUPTR09-SUM-10-E

OPENSF-DMS-TEC-SUMO1

= y openSF

d . & 4.3
EI mOS System User Manual 27/05/2022
elecnor group

B | Edit module runner O x

Mame: Extension:
Interpreter binary: Browse...

Arguments: Add
<input_files=> Up
<output_files>
- Down
<config_files>

Remave
Cancel

Figure 4-135 User-defined interpreter definition

Here the user can define a name, an extension, a binary path and a list of arguments. Note that only one
extension can be specified. Note also that if different interpreters share the same extension, openSF does
not resolve the ambiguity and therefore the user is invited to resolve it, e.g. activating only the desired
interpreter. To add, shift upwards, shift downwards or remove an argument from the arguments list, the
user can use the respective buttons. When creating an argument, the window in Figure 4-136 is shown.

Choose an argument >

() Module File

() Configuration Files
() Input Files

() Output Files

Figure 4-136 Interpreter argument definition

Here, the user can choose to specify a general argument as a literal string or to insert a placeholder to
indicate openSF to insert:

Placeholder ‘ Representing

<mod_ file> The module file nhame that is being executed

<input_files> The module input file names

<output_files> The module output file names

<config_files> The module configuration files (global and module-specific)

The actual output generated by the input, output and configuration files placeholders depend on the global
setting for the CLI version to be used: running with CLI version 1 generates a single argument with all files
separated by commas, while using CLI version 2 generates multiple arguments with the appropriate flags
e.g. --global gcf.xml.

© Deimos Space S.L.U. 2021 128 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - gl 4.3
el mOS System User Manual 27/05/2022
elecnor group

4.6. Miscellaneous

M I A E

A series of documents and utilities that are available from openSF is presented in this section.

4.6.1. About openSF
I

From the “help” tab of the menu bar, the “"About openSF” functionality can be accessed. The system will
show a dialog with the copyright and license scheme for the openSF platform.

@ About openSF] X

openSF - Open Simulation Framework v.3.10.0-SNAPSHOT
Build: 2021-04-13T15:25:.07Z

Created by Deimos Elecnor Group
Official ESA support: http://eop-cfi.esa.int/index.php/opensf

openSF is free software; you can redistribute it and/or modify it
under the terms of the "ESA Software Community Licence
Permissive' as published by the European Space Agency; either
version 2.4 of the License, or{ (at your option) any later version.
LI LN 10U should have received a copy of the 'ESA Software
Community Licence Permissive - v2.4' distributed with openSF,
or one can be found at
http://eop-cfi.esa.int/index.php/docs-and-mission-data/licensin
g-documents

Other modules, product tools/plugins used in this framework
follow their own licensing scheme.

Installation Details

Figure 4-137: openSF About View

4.6.2. Embedded documents
M I A E

A series of documents are embedded and deployed along with openSF. Users are able to view these
documents launching the proper software application. The applications for viewing the supported file types
are the ones defined as default applications for current OS.

Help i
Check for Updates ParameterEditor-sum '
About opensSF opensSF-5UM I

Figure 4-138: Help documents tree view
The supported file types and the typical viewers are the following:

L PDF: “Portable Data Format”; Acrobat Reader

© Deimos Space S.L.U. 2021 129 of 155

DEG-CMS-SUPTR09-SUM-10-E

. &
deimos

elecnor group

System User Manual

openSF

U HTML: “Hypertext Markup Language”; Web Browser

U Plain Text: Notepad, Vim, Emacs ...

4.6.3. CPU usage
E

OPENSF-DMS-TEC-SUMO1

4.3
27/05/2022

This dialog is helpful to analyse the CPU core use when the module execution is parallelised by openSF.

4.6.3.1. Linux

Accessing this functionality, the system will show a custom dialog with occupation of CPU cores by machine

processes.
CPU Usage = x

Linux 5.0.8-32-generic (ubuntu) 108/23/2019 XB6 64 (4 CPU)

©3:44:39 PM CPU %USr %nice %sys %iowait %irg %soft %steal %guest %gnice %idle
03:44:40 PM all 9.00 0.00 0.50 0.80 0.00 9.00 0.00 0.00 Q.80 99.50
03:44:40 PM 0 0.00 0.00 0.00 0.80 a.00 0.00 0.00 0.00 0.80 100.80
03:44:40 PM 1 8.00 0.80 0.00 0.80 8.00 8.00 0.00 0.00 0.80 1e0.80
03:44:40 PM 2 .00 0.00 1.98 0.00 0.00 .00 0.00 0.00 .00 98.02
03:44:40 PM 3 9.00 0.00 Q.00 Q.00 8.00 9.00 0.00 Q.00 0.00 100.00

4.6.3.2. macOS

Figure 4-139: CPU Core Usage view

The macOS Operating System already provides a default application to convey information about CPU
usage, the ‘Activity Monitor’. Accessing the CPU Usage functionality in openSF therefore launches the

‘Activity Monitor’ external application.

4.6.3.3. Windows

Similarly to macOS, in Windows the system program “Task Manager” is launched.

© Deimos Space S.L.U. 2021

130 of 155

DEG-CMS-SUPTR09-SUM-10-E

a y openSF

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

OPENSF-DMS-TEC-SUMO1

5. ANNEX A: ERROR MESSAGES

1 A E

openSF platform controls its correct behaviour with an error handling system. Users are informed about
the nature of the error and a possible way to correct it.

In general, every time an input value is needed, the platform will perform a validation process. If the input
does not comply with the needed format, the user will be informed with a self-explained message.

Errors not shown as part of the graphical interface are not controlled messages. They correspond to
messages from the standard output or error stream.

When executing a simulation, modules raise their own error messages and they are intercepted by the
system and shown as log messages in the execution view

Here is a list of different kinds of raised errors:

Module ‘ Operation Error Comments
System.Configuration Adc_llng anew Validation error Follow the instructions to
variable correct the value
The user has chosen a
Tool addition failed duplicated identifier. Please
Accepting changes provide a different identifier
Validation error Follow the instructions to
System.Tools correct the value
Deleting a tool Database error Possible database fa|lure. Is
the database running?
Executing a tool File IO error Follow the instructions

Descriptor modification | Possible database failure. Is
failed the database running?

Duplicated identifier chosen.
Please provide another
identifier

Descriptor addition

Accepting changes failed

Follow the instructions to

Validation error
correct the value

Repository.Descriptors - -
Follow the instructions to

Validation error
correct the value

Adding an IO file A descriptor shall not
have associated two
files with the same id

Please choose another
identifier

Possible database failure. Is

Deleting a descriptor | Database error the database running?

Follow the instructions to

Validation error
correct the value

Accepting changes - - —
Duplicated identifier. Please

Module addition failed provide a different identifier

Repository.Modules Possible database failure. Is
Deleting a module Database error the database running and
configured?

Possible database failure. Is
Database error the database running and
configured?

Creating a new
version

Possible database failure. Is
Repository.Results Deleting a result Database error the database running and
configured?

© Deimos Space S.L.U. 2021 131 of 155

DEG-CMS-SUPTR09-SUM-10-E

~ , a—
deimos

elecnor group

Module

Repository.Simulations

openSF

System User Manual

‘ Operation

Accepting changes

Error

Validation error

OPENSF-DMS-TEC-SUMO1
4.3
27/05/2022

Comments

Follow the instructions to

correct the value

Database error

Possible database failure. Is
the database running and
configured?

Simulation addition
failed

Duplicated identifier. Please
provide a different identifier

Simulation
modification failed

Possible database failure. Is
the database running and
configured?

Adding a simulation

Simulation identifier
cannot be void

Please provide a valid
identifier before adding a
simulation

Deleting a simulation

Database error

Possible database failure. Is
the database running and
configured?

Generating a script

File 10 error

Follow the instructions

Iterating parameters

Invalid list of values

Please input a comma-
separated list of valid values
(no blanks)

Validation error

Follow the instructions to
correct the value

Removing a
simulation

There is no simulation
selected

Please select a simulation to
remove

Running a simulation

Cannot run an
unnamed simulation

Please input a valid
identification to the
simulation

Missing configuration
files

Provide the missing GCF or
LCFs in order to run the
simulation

Validation error

Follow the instructions to
correct the value

File IO Error

Follow the instructions

Setting limits

Validation error

Follow the instructions to
correct the value

Executions.Log

Dumping the log

File IO error

Follow the instructions

© Deimos Space S.L.U. 2021

132 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

6. ANNEX B: DEVELOPING MODULES FOR OPENSF

M

This section is aimed to module developers that are looking for further information about openSF module
integration.

openSF can integrate as a module every executable code that follows the requirements described in [AD-
ICD], and execute them within the system.

Nevertheless, module developers must take care of the following points:

O Memory handling is responsibility of the module. openSF does not manage memory assignments
and does not destroy any data structure created by the module;

O A module can create child processes, but their management is still on the module developer’s side;

U openSF does not detect when a module execution is “halted” or in an infinite loop. It is suggested
to periodically send some logging information to openSF (i.e. heartbeat) so that the user can
identify a stalled module.

O Execution performance of the module may be slightly slower when orchestrated by openSF, because
of the messaging interception/collection mechanism;

U Module developer is responsible of the error and exception handling as explained in [AD-ICD].
(Error Handling section).

Below there is a list of documents with relevant information on module development and the topics covered
by each one.

U openSF Interface Control Document [AD-ICD]
» openSF interface specifications
> Module development guidelines
» Module development process
U OSFI Developer’s Manual [RD-OSFI-DM]
> Integration libraries reference manual for each programming language.
L OSFEG Developer’s Manual [RD-OSFEG-DM]
» Error Generation Libraries reference manual
U openSF Architecture Design Document [AD-ADD]
> openSF architecture

» Interaction between modules and openSF

6.1. Precautions to ensure safe module parallelization

The functionality of openSF to allow parallel execution brings a certain responsibility to module developers.
It is responsibility of the module developers to ensure that the modules are in fact parallelisable, e.g. that
their implementation has the proper precautions regarding access to common resources. openSF can only
assure synchronization of module execution and it must rely on modules being “well behaved” with respect
to parallel execution.

In order to ensure safe module parallelisation, module developers should ensure that modules are either:

U Thread safe: implementation is guaranteed to be free of race conditions when accessed by multiple
threads simultaneously, or;

© Deimos Space S.L.U. 2021 133 of 155

DEG-CMS-SUPTR09-SUM-10-E

/&gﬁ@) _ _ _
openSF OPENSF-DMS-TEC-SUMO1

[
= 4.3
dEl mOS System User Manual 27/05/2022
elecnor group

U Conditionally safe: different threads can access different objects simultaneously, and access to
shared data is protected from race conditions.

The use of software libraries can provide certain thread-safety guarantees. For example, concurrent reads
are typically guaranteed to be thread-safe, but concurrent writes might not be. Whether or not a program
using such a library is thread-safe depends on whether it uses the library in a manner consistent with those
guarantees. Thread safety guarantees imply some design steps to prevent or limit the risk of different
forms of deadlocks, as well as optimizations to maximize concurrent performance.

There are several approaches for avoiding race conditions to achieve thread safety. The first class of
approaches focuses on avoiding shared state, and includes:

U Re-entrancy: writing code in such a way that it can be partially executed by a thread re-executed
by the same thread or simultaneously executed by another thread and still correctly completes the
original execution. This requires the saving of state information in variables local to each execution,
usually on a stack, instead of in static or global variables or other non-local state. All non-local state
must be accessed through atomic operations and the data-structures must also be re-entrant;

U Thread-local storage: variables are localized so that each thread has its own private copy. These
variables retain their values across subroutine and other code boundaries, and are thread-safe since
they are local to each thread, even though the code which accesses them might be executed
simultaneously by another thread.

The second class of approaches are synchronization-related, and are used in situations where shared state
cannot be avoided:

U Mutual exclusion: access to shared data is serialized using mechanisms (e.g. semaphores) that
ensure only one thread reads or writes to the shared data at any time. Incorporation of mutual
exclusion needs to be well thought out, since improper usage can lead to side-effects like deadlocks
and resource starvation;

U Atomic operations: shared data are accessed by using atomic operations which cannot be
interrupted by other threads. This usually requires using special machine language instructions,
which might be available in a runtime library. Since the operations are atomic, the shared data are
always kept in a valid state, no matter how other threads access it. Atomic operations form the
basis of many thread locking mechanisms, and are used to implement mutual exclusion primitives;

U Immutable objects: the state of an object cannot be changed after construction. This implies that
only read-only data is shared and inherent thread safety. Mutable (non-constant) operations can
then be implemented in such a way that they create new objects instead of modifying existing ones
(e.g. this approach is used by the string implementations in Java, C# and python).

Thread safety

Thread safety is a simple concept: is it "safe" to perform operation A on one thread whilst another thread
is performing operation B, which may or may not be the same as operation A. This can be extended to
cover many threads. In this context, "safe" means:

U No undefined behaviour;
U All invariants of the data structures are guaranteed to be observed by the threads.

The actual operations A and B are important. If two threads both read a plain int variable, then this is fine.
However, if any thread may write to that variable, and there is no synchronization to ensure that the read
and write cannot happen together, then a data race occurs, which is undefined behaviour, and this is not
thread safe.

Unless special precautions are taken, then it is not safe to have one thread read from a structure at the
same time as another thread writes to it. If it can be guaranteed that the threads cannot access the data
structure at the same time (through some form of synchronization such as a mutex, critical section,
semaphore or event) then there should be no problem.

Element like mutexes and critical sections can be used to prevent concurrent access to some data, so that
the writing thread is the only thread accessing the data when it is writing, and the reading thread is the

© Deimos Space S.L.U. 2021 134 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
E| mOS System User Manual 27/05/2022
elecnor group

only thread accessing the data when it is reading, thus providing the thread safety guarantee. This therefore
avoids the undefined behaviour mentioned above.

However, the programmer still needs to ensure that the code is safe in the wider context: if more than one
variable needs to be modified then the mutex needs to be held across the whole operation rather than for
each individual access, otherwise the invariants of the data structure may not be observed by other threads.

It is also possible that a data structure may be thread safe for some operations but not others. For example,
a single-producer single-consumer queue will be fine if one thread is pushing items on the queue and
another is popping items off the queue, but will break if two threads are pushing items, or two threads are
popping items.

Global variables are implicitly shared between all threads, and therefore all accesses must be protected by
some form of synchronization (such as a mutex) if any thread can modify them. On the other hand, if a
separate copy of the data is held for each thread, then that thread can modify its copy without worrying
about concurrent access from any other thread, and no synchronization is required. Of course,
synchronization is always needed if two or more threads are going to operate on the same data.

6.2. Environment variables

The user can customize the environment variables used by openSF and that are available to the modules
and tools during simulation execution, tailoring them to his system. These variables can be set in the
system preferences window (see Section 4.5). An environment variable that is always exported is
$E2E_HOME, which is described in Section 3.3.2.

6.3. Module pre-requisites

In most cases, openSF runs modules by invoking them as binaries from the simulations folder. This means
that it is responsibility of the module developer/integrator to provide any dependencies (e.g. libraries,
interpreters, etc.) and to perform the setup needed for such modules to work correctly. The means are
varied and depend on the type of module (compiled binary, script, etc.).

For example, a module written in C++ may link statically against all its dependencies so that the resulting
executable does not depend on any dynamic libraries that would have to be found and loaded on start,
although this may not always be possible depending on the library and the system. Alternatively,
dependencies can be provided in a way that may be located by the module, so e.g. a Python module that
makes use of OSFI-Python or other libraries may access them by:

L Installing them in the site-packages directory of Python,
O Including them in the PYTHONPATH environment variable, or

] Distributing them alongside with the module, making the script itself look for them in a known
location relative to the module (e.g. ../1ibs/0SFI/Python).

For more information on the matter of module development and deployment, look at the documents
mentioned in Section 6.

6.3.1. Modules not compliant with E2E Generic ICD

OpenSF offers some support to run modules non-strictly adherent with the Generic E2E Interface Control
Document [AD-ICD]. If such modules do not comply with the standard CLI, they can be wrapped and

© Deimos Space S.L.U. 2021 135 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

. IS 4.3
dEImOS System User Manual 27/05/2022

elecnor group

called by means of a specified interpreter. The arguments of the given interpreter can be freely specified
and ordered (See Section 4.5.4) and they may include:

The list of input files

The list of output files

The list of configuration files
The module file

PWNRE

Note that the lists themselves are specified in the same fashion as described in [AD-ICD].

6.3.2. IDL

Note: IDL module execution is deprecated and not under further development.

To execute modules in IDL with openSF is necessary to have IDL software installed on the computer.
openSF has been tested with the following versions of this software: version 7.1, 8.0 and 8.1.

If the user has a previous version, the application may not work. It is recommended to have installed at
least IDL 7.1, and whenever possible version 8.0 or later.

An important requirement for the correct functioning is that IDL is installed in the default path, because if
not some features of the OSFI library will not work properly. This problem is related with the ConFM module,
which uses some internal classes of IDL that must be in the default path in order for the application to find
them. IDL looks in fact for these classes only in the default directory, and if it does not find them generates
an error.

For IDL 7.1 the default path is ‘/usr/local/itt/idl" and for IDL 8.x the default path is ‘/usr/local/itt/idl/idl’.
Furthermore, IDL provides three types of licenses according to the user needs, as can be seen below:

O IDL development: Full license for IDL that allows to the user to use all its functionalities. Users can
access to the IDL Development Environment, the IDL command line, and having the ability of
compiling and executing IDL .pro files and executing .sav files.

O IDL runtime: Allows executing IDL programs precompiled and saved as .SAV files, or .pro files
without any type of restriction.

O IDL virtual machine: It is a free license that allows to the user to execute IDL programs precompiled
and saved as .SAV files, or .pro files. This kind of license has a few restrictions, like displaying a
splash screen on start-up, callable IDL applications are not available.

To execute a .sav or a .pro file without any type of restriction it is necessary to have installed the
development license or the runtime license on the computer. If user wants to generate .sav files by
compiling .pro files, it is mandatory to have the development license. If the user only has the virtual
machine license, he can execute .pro and .sav files but with restrictions, as many functionalities are not
available for this type of license.

6.3.3. MATLAB

To execute modules in MATLAB with openSF, MATLAB software must be installed on the computer. The
only requirement is that MATLAB version must be R2009a or later, with the corresponding license.

6.3.4. Python and other scripts

The framework also executes script-based modules, such as Python or shell scripts. Currently, they are
invoked as normal programs, so they must be marked with execution permissions. The choice of interpreter
must be somehow recognizable for the system e.g. with the customary hash-bang line:

#!/bin/sh (POSIX shell scripts)

#!/bin/bash (BASH scripts)

#!/usr/bin/env python (Python, system default version)

© Deimos Space S.L.U. 2021 136 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

- — 4.3
dEI mOS System User Manual 27/05/2022

elecnor group

#!/usr/bin/env python2/3 (Python, script choice of a version)

#!/opt/bin/PowerShellCore6/pwsh (Other, custom script interpreters)

Since .sh/.bat files are executed directly, Windows users cannot run POSIX shell modules and Linux/Mac
users cannot run CMD batch modules. However, the system is extensible and new “interpreted file” types
can be added in future versions.

6.3.5. Python scripts execution in Windows

Due to the possibility of having more than one Python interpreter (different versions, venvs for different
modules, etc.), a method to choose the correct interpreter for each script is necessary. Giving the version
of the interpreter to be used via shebang lines in the beginning of the Python script solves the issue.

Since Windows does not allow shebang lines to choose between which Python version to use, the solution
is to use a launcher!3 for aiding in the location and execution of different Python versions, allowing the
scripts to indicate a preference for a specific Python version.

Thus, in Windows, the Python interpreter must be specified to run Python modules. If available, the user
shall use the aforementioned launcher/chooser “py.exe” instead of a specific interpreter version i.e.
“python.exe”.

This Python interpreter, as well as others interpreters from the compatible languages, can be chosen by
accessing Systems > Preferences - Interpreters Definition, as thoroughly described in Section 4.5.4.

13 PEP-397, “Python launcher for Windows”

© Deimos Space S.L.U. 2021 137 of 155

DEG-CMS-SUPTR09-SUM-10-E

https://peps.python.org/pep-0397/

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

7. ANNEX C: PACKAGING & DELIVERING AN E2E SIMULATOR

I

This section outlines the recommendations and steps required to package an E2E simulator and ship it to
the user and those for the user to extract it.

To understand this Section, the reader should be acquainted with the openSF elements (Section 4.3) and
its folder structure (see Section 3.5.1.4).

7.1. Create the simulator

The integrator is recommended to generate the folder structure that will contain all the input files,
configuration files, tools and modules of the simulations contained in the simulator. All the files used by
the simulations should be placed in a common root folder. An example of folder structure is presented in
Section 8.2.1.

Note that modules are understood to be standalone tools, is the sense that their dependencies of the
modules should also be made available in this folder in order to ease the extraction/deployment process.

Once the simulator root folder is assembled, set the E2E_HOME variable to the aforementioned root folder.

As a final step, the integrator must configure all the simulation elements (descriptors, modules, simulations,
tools) in openSF. Notice that by placing all necessary files inside the simulator root folder all paths used to
configure the simulation elements can be made relative to E2E_ HOME. If absolute paths are used, one of
the following should apply:

U The absolute path points to a location in a shared memory device and accessible by all the intended
users of the simulator via the same path (e.g. a network server).

L The absolute path points to a location always available in the end user’s machines (e.g. “C:\Program
Files\” in Windows). In this case, the integrator shall list the file or folder as a requirement (or
provide an installer that takes care of providing it).

Paths referring to a location outside the root folder must be avoided, so that the simulator is relocatable
and thus can safely be installed in any location. For the same reason, symlinks pointing outside the root
folder, or using an absolute path for the link, should be avoided. The same applies to contents of the
configuration files for parameters of type FILE or FOLDER.

At this point, all the simulations and tools should run correctly.

7.2. Package the simulator

To package the simulator the integrator must export the database generating an XML file and create a
compressed archive of the root folder (e.g. zip, tar.gz). Note that the openSF does not guarantee the
portability of the database file itself, hence the creation of the XML file. Moreover, note that depending on
the definition of the modules a separate archive may be required for each platform.

The shipping material then consists in:
W The archive with all the input files, configuration files and modules
1 The database in XML format, possibly located in the same archive
L openSF (see Section 7.2.1)

Note that openSF has platform-specific packages, so a different simulator package is needed for every
platform the simulator is intended to be run on. Depending on the modules, this may also be the case for
them and/or their dependencies e.g. a Fortran program that is compiled for a specific platform, or a
Java/Python program requiring the platform-specific runtime/interpreter.

© Deimos Space S.L.U. 2021 138 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

7.2.1. Package openSF

The openSF framework can be delivered by bundling the installer itself with the rest of the package. It may
either be run silently by a custom installer/script provided by the integrator, or normally by the person
performing the overall simulator installation. See the automation section below for more details.

In addition, it is possible to package an existing openSF installation, after removing any absolute paths
from the openSF.properties file. Note that this option is not officially supported and so it is not
recommended.

7.3. Install the packaged simulator

In order to set-up the simulator, the following steps need to happen:

1. Extract the provided folder containing all the modules and files. If the modules’ dependencies were
placed in this folder, they need to be extracted too. If the modules’ dependencies were not
packaged directly inside the provided zip, resolve those dependencies.

2. Install openSF: either by running the installer manually or by using a custom script. See Section
7.3.2 for details.

3. Set any required openSF configurations, such as:

> Set E2E_HOME to the E2E simulator root folder
» Import the XML database

» Set the required module runners (interpreters)
» Set the CLI version to be used

At this point, the simulator shall be functioning and ready to be used.

7.3.1. Multi-user environment

In case of a multi-user environment, the integrator needs to balance flexibility and ease of installation with
security. OpenSF uses the “simulations” folder to run simulations, which by default is under E2E_HOME.
This means that a user of the integrator should have writing permits at least to the “simulations” folder in
order to use it. Hence, one of the following options may be chosen:

(1 Have an independent simulator installation for each user
1 Have a common installation in a non-writable folder. Any common customization can be performed
in openSF_defaults.properties. In this case, either:

» Have a separate E2E_HOME folder for every user

» Share the E2E_HOME folder, denying writing permissions to the users. Every user will select
a different “simulations” folder.

» Share the E2E_HOME folder, allowing writing permissions to the users at least to the
“simulations” subfolder. This option is not recommended for security reasons, since any
user could delete/interfere with other users' simulations. Simulations are not shared
anyway, since they would need to be present in each user’s database as well. This option
should be considered only to simplify the process if the simulator is, for instance, going
through frequent updates.

Note that in any case the database shall not be shared. OpenSF has in fact no protection against concurrent
database usage.

7.3.2. Automation

The extraction process can be eased by automating some of the steps with a custom installer script. Such
script can in fact:
U Extract the root folder
U Install openSF silently. Refer to the primary source at install4j'4 for the command line options of
the installer.

14 https://www.ej-technologies.com/resources/install4j/help/doc/installers/options.html

© Deimos Space S.L.U. 2021 139 of 155

DEG-CMS-SUPTR09-SUM-10-E

https://www.ej-technologies.com/resources/install4j/help/doc/installers/options.html

/&gﬁ@) _ _ _
openSF OPENSF-DMS-TEC-SUMO1

[
= 4.3
dEl mOS System User Manual 27/05/2022
elecnor group

1 Set any required openSF configurations by pre-defining values in the configuration files, or any
other methods defined in section 7.4.

L Resolve any required dependency. An example of dependency resolution would be to install the
right version of Python and possibly some specific packages with “pip”.

As of this version, importing an openSF database cannot be automated.

7.4. Framework configuration

This section describes the most common configuration options that an integrator might wish to customise
on the installed framework, without requiring a rebuild of openSF from the sources. Most of these options
are customised by updating the configuration file (see below), but others (e.g. the splash image) require
modifying other files.

Regarding the configuration files, the framework reads two separate files: one in the workspace root and
one in the program installation folder (see section 3.5.1.4 for more details). Normally, the second option
(“"<OPENSF_INSTDIR>/openSF_defaults.properties”) should be preferred by an integrator delivering a
simulator. This is because options in the “defaults” file automatically apply to all workspaces that the user
might create or switch to.

The settings themselves may be created in the openSF GUI itself as part of the process of creating the
simulator (section 7.1). The integrator must however take care to only extract the relevant values (as
described in the list below) to place in the delivered configuration file.

L Paths and environment:

» E2E_HOME can be set either by defining it as an environment variable external to openSF,
or by creating a property “env.E2E_HOME" in the configuration file. Note that this step
can be skipped if the root folder is already a subfolder of the installation directory (provided
that the database elements correctly point to them)

» The same applies to any other environment variable that the modules might require in
order to run: openSF will take and forward any pre-defined environment variables, and the
configuration file may be used to override those for all modules and simulations by defining
a variable “env.VARNAME" with the desired value.

» Simulations folder: the “openSF.simulationsDir” option stores the path (absolute or
E2E_HOME-relative) that will be used to write the application log and simulation execution
files and folders. It must be writable by the user.

d Interpreter setup:

» The “exec.rt.java” option stores the path to the Java runtime executable used to launch
“.jar” files as modules. The default is to launch “java” from the system PATH.

» The “exec.rt.matlab” option does the equivalent for *.m” and “.p” modules, launching
them with Matlab. The default is to launch “matlab” from the system PATH.

» In Windows, the “exec.rt.winpython” option stores the Python launcher to use for “.py”
modules. This is required because in Linux and macOS the “hashbang” (“#!”) line can be
used to select the Python interpreter to use (different versions or installations), while in
Windows this requires a helper program. See section 6.3.5 for details.

> All the above support an additional option named “X_enabled” where X is the name of the
main interpreter option. Setting it to false will disable the built-in interpreter, allowing a
user-defined interpreted to handle the same extension.

» The user-defined interpreters use options whose names start with “exec.rt.user.X”, where
X is the extension that the interpreter is supposed to handle. Several sub-properties are
required to define each interpreter, so it is recommended that the openSF GUI is used to
create the configuration.

Q General openSF settings:

» E2E-ICD module CLI version: the “openSF.cliVersion” option stores the E2E-ICD version
that is used to call modules in simulations. Note that this applies to all modules and
simulations run by the framework.

© Deimos Space S.L.U. 2021 140 of 155

DEG-CMS-SUPTR09-SUM-10-E

/&gﬁ@) _ _ _
openSF OPENSF-DMS-TEC-SUMO1

[
= 4.3
dEl mOS System User Manual 27/05/2022
elecnor group

» User roles: the “openSF.appModesUnlocked” option allows or forbids the user role
selection, while the “openSF.appMode” option stores the active mode/role. See section
3.2.2 for an explanation of user roles.

» Maximum simultaneous modules: the “openSF.maxThreads” option is the number of
modules that are allowed to run simultaneously. The default value of 0 means that the
value should be autodetected. For example, if the modules in the simulation are themselves
written to use all CPU cores at once, it makes sense to prevent openSF from launching
them in parallel by setting this option to a value of 1.

> Auto-update settings: the “openSF.autoUpdateCheck” option can be set to false to
prevent the automatic update check on start. Furthermore, if the “openSF.updateURL"
option is present but empty, even manual update checks will be disabled.

U Branding elements:
> Application name (executable):

= Windows and Linux: the launcher binary can be renamed, as long as the “.ini” file
that lives alongside it is also renamed.

= macOS: the application bundle can be renamed, but it contains some symlinks
(created by the installer) that will get broken. While they can be created again, it
is difficult to ensure that the updated setup is correct so renaming the application
bundle is not recommended.

» Application name (text): the “openSF.appLongName” and “openSF.appShortName”
options can be configured to replace the names the program uses to refer to itself. These
strings are shown in the main window title and in some menus and dialogs.

» Splash image: the image to be used as a splash is stored inside the JAR file of the openSF
“platform” plugin. This file lives under <OPENSF_INSTDIR>, as “plugins/platform_X.jar"
where X is a version number. The splash image is a bitmap stored at the root of the file.

= To ensure the correct display of the image (i.e. avoid distortions and void areas)
the replacement image must have the same dimensions and DPI of the original.
= Note: in macOS, the JAR file is under “openSF.app/Contents/Eclipse/plugins”.
U Other customizations:

» Embedded documentation: both openSF and ParameterEditor show a submenu under
“Help” with useful documentation like this document. Each program examines the
subfolders of "<OPENSF_INSTDIR> /resources/documentation”. If a folder contains
a file named “.openSF_doc” or “.PE_doc” (respectively for openSF and PE), any file inside
it with the extension “.pdf” will appear in the menu.

> Removal of ParameterEditor: if the folder for the companion application cannot be found,
the corresponding icon in openSF will simply be inactive (greyed out).

© Deimos Space S.L.U. 2021 141 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d = E— 4.3
eImOS System User Manual 27/05/2022
elecnor group

B—
— o —

8. ANNEX D: TUTORIAL - CREATING AN E2E SIMULATION

I A E

This chapter will show user how to create and end-to-end simulation within openSF software. The simulation
chain used is the one installed as validation scenario during openSF deployment.

This chapter is divided in the following sections:

U Scenario Description, showing the outline of the E2E simulation, logic entities, input and output
identification, etc...

U Module Development Guidelines detailing the module development process aimed to be
integrated in openSF.

U Framework Structure Definition, which details the steps that shall be taken in order to create a
whole simulation scenario within openSF HMI. This section also gives some guidelines about the
recommended folder structure for a simulation project that will be integrated within openSF.

U Product Tools Specification, including the definition of data exploitation tools.

This tutorial should be complemented by the information in the openSF Training course material [RD-TM]
available on the openSF web page (https://eop-cfi.esa.int/index.php/openSF).

8.1. Scenario Description

The outline of a test simulation scenario is shown in Figure 8-1. The drawing of this diagram is the first
step to integrate a simulation scenario within openSF.

Bmaps

Generation ‘

Module

‘ Retrievals = > [2

Module

Pmaps

Generation Module

oﬂmalp:as{p‘:";I 8)

OpenSF

Figure 8-1: Outline of a test simulation scenario

After this point users shall identify and define the openSF entities that will be part of the simulation scenario.
The entities that take part in this tutorial E2E simulation are listed in the following sections.

© Deimos Space S.L.U. 2021 142 of 155

DEG-CMS-SUPTR09-SUM-10-E

https://eop-cfi.esa.int/index.php/opensf

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

8.1.1. Descriptors — Input and Output Files

The definition of the descriptors (file sets) shall be done together with the module definition as input and
files generated are the interfaces for simulation modules. This is described in the [AD-ICD].

The files showed in this section have been extracted from the validation test data set. These can be found
in the openSF installation test folder. Note that even though they are XML files, they are input/output files
and not configuration files as defined in AD-E2E, and therefore they do not use the same format.

U Input_Ionosphere: input used for the Ionosphere module.

® Inputlonos.xml

U Product_Ionosphere: file generated by the Ionosphere module.

® Jonosphere.xml

U Input_Geometry, input used for the Geometry computation module.

e InputGeo.xml
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<openSFProduct>
<InputGeo>
<temperature type="FLOAT" value="30"/>
<humidity type="FLOAT" value="56"/>
</InputGeo>
</openSFProduct>

Figure 8-2: Product file example

U Product_Geometry, file generated by the Geometry computation module.

® Geometry.xml

U Product_OSS, file generated by the Observing System module.

® Instruments.xml

U Input_Scene, input used for the Scene Generator, it is composed by a map input file and the
outputs of the Geometry module and the Observing System module.

® Maps.xml

® Geometry.xml

® Instruments.xml/

U Product_Scene, output from the Scene Generator module.
® Scene.xml

U Input_L1b, input used for the L1b processor composed by the outputs coming from Scene
Generator, Observing System and Ionosphere modules.

® Scene.xml

® Instruments.xml

® Jonosphere.xml|

U Product_L1b, descriptor that represents the level 1b simulated product.
e [1b.xml

O Product_L2, descriptor that represents the level 2 simulated product. This file can be considered
as the global simulation output.

© Deimos Space S.L.U. 2021 143 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

o [2.xml

8.1.2. Modules

This is the list of modules identified within the test simulation chain. Each module has associated an input
and output description to allow a proper orchestration of the simulation scenario. Other module
configuration items such as executable file and XML configuration file are described in [AD-ICD].

U IonosphereModule
e Input descriptor: Input_Ionosphere

® OQutput Descriptor: Product_Ionosphere

U GeometryModule
e Input descriptor: Input_Geometry

® Qutput Descriptor: Product_Geometry
U oOSSModule

e Input descriptor: Product_Geometry

® Output Descriptor: Product_OSS

U SceneGenerator
e Input descriptor: Input_Scene

® Qutput Descriptor: Product_Scene

U LibGenerator

e Input descriptor: Input_L1b

® OQutput Descriptor: Product_L1b
U L2Retrieval

® Input descriptor: Product_L1b

® OQutput Descriptor: Product_L2

8.2. Framework Structure Definition

This task consists in defining all the entities specified in section 8.1 into the openSF HMI. This can be
performed following the instructions specified in the openSF reference manual, chapter 4 of this document.
Furthermore, a step by step example of the creation of this simulation in the openSF HMI can be found in
the openSF Training course material [RD-TM] available on the openSF web page (https://eop-
cfi.esa.int/index.php/openSF).

8.2.1. Folder Structure Guidelines

This section gives some tips and recommendations about the folder structure within a simulation project
that is integrated into openSF. This section is aimed at easing the integration process. As mentioned, the
following instructions are not mandatory as users can choose whatever structure they prefer.

Simulation Project Structure

U modules folder where all files regarding to the simulation algorithms are stored including
executable, configuration and input files

© Deimos Space S.L.U. 2021 144 of 155

DEG-CMS-SUPTR09-SUM-10-E

https://eop-cfi.esa.int/index.php/opensf
https://eop-cfi.esa.int/index.php/opensf

openSF OPENSF-DMS-TEC-SUMO1

d o 4.3
el mOS System User Manual 27/05/2022
elecnor group

e src for modules source code
® bijn for modules binaries

e /ib for the libraries (example libProducts.dll for input output management that can be common to
all modules within the simulation chain)

® cots folder for storing third party applications and libraries used within the modules
e test folder for system and unit tests

® data
» conf for global and module configuration files
> input for filed used as input

O tools folder where store source code and related files for project specific tools (ex: end-to-end
comparator)

® bin for tools binary files
e /jb for tools library files

® src for tools source files
U doc folder where useful documentation of the project can be located

openSF team recommends storing all the data regarding to the project in folders using E2E_ HOME as root
directory or a subfolder of it. Example: /home/tester/openSF/E2Etutorial/ being /home/tester/openSF/ the
openSF home folder. This will help in the framework integration process as relative paths to the files can
be used. The resultant folder structure for the E2E tutorial presented in this chapter is shown in Figure 8-3.

|
/home/tester/openSF/E2Etutorial
I
models
I = e
sIc lib test
=) —
Geomet lonosphere
y P = =
bin cots
= —
0SS SceneGen [
data
=) =)
L1 L2Retrieval conf input
— —
tools doc
bin sIc data

Figure 8-3: E2E tutorial folder structure

© Deimos Space S.L.U. 2021 145 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

8.3. Product Tools Specification

The definition of product tool is detailed in Section 4.3.5; it is recommended that users take a look to this
section before going on reading.
8.3.1. Simulation Products Exploitation

Following the mechanism described in Section 4.3.5, openSF users are able to plug-in any product tool in
order to visualize, post-process or archive the simulation products.

The selection of this product tools depends on the type of simulation products (definitively files) users want
to analyse. A list of popular product tools used in openSF related simulation projects is shown in Section
4.3.5.5.

In case of the test simulation scenario where all product files are XML the tool associated can be the user-
preferred text editor (Notepad, Gedit, Emacs etc...).
8.3.2. Closing the Loop in an E2E Simulation

Usually the target of performing and E2E simulation is to validate the output of a set of algorithms
comparing the input and the output of the simulation. Other objectives can be the sensitivity and stability
analysis of a full processing chain over a set of simulation parameters.

In any of the mentioned cases it is necessary to perform a comparison between two points of the simulation
chain in order to analyse the results. This connection closes the loop within a simulation scenario.

In order to close the loop in openSF, users can follow the following strategies depending on the simulation
scenario.

U Development of a product specific processing tool.
U Development of a new module and insert it into the simulation chain as a new processing stage.

L Use of a cots comparison tool. This mechanism is recommended when the product format can be
compared directly without any pre-processing step.

For the tutorial scenario possible points to close the loop are the Scene input (Scene.xml) and the L1b or
L2 product (L1b.xml or L2.xml). This action would require the development of a product specific tool that
performs a simple processing of the Scene input in order to compare with the L1b or L2 products. This
situation can be also solved including a new module in the simulator where this comparison is performed.

© Deimos Space S.L.U. 2021 146 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

9. ANNEX E: INSTRUCTIONS TO BUILD THE FRAMEWORK

1 A E

This annex explains how the openSF framework is built. This section is oriented only for developers that
need to build openSF from sources due to project specific customizations.

The openSF development team recommends the use of Eclipse IDE as it is the platform used for developing
the framework. It is just a recommendation, as the platform uses Maven as a build system and thus can
be built directly from the command line, or with another Java IDEs.

9.1. Pre-requisites to Build the Framework

U openSF source files
U Java Development Kit, version 11 or later
U Apache Maven tool, version 3.6.3 or later

U If installer packages are to be generated, install4j with a valid license, version 9.

9.2. How to Build the openSF Platform

Apache Maven is a Java-based build system that uses Project Object Model (POM) files to orchestrate
compilation and packaging of applications. Maven is able to automatically pull dependencies from the
Internet, a functionality that is used to download the Eclipse RCP Java files and native launchers.

Due to the above, building openSF requires a connection to the Internet, at least the first time that the
build is attempted: This is necessary in order for Maven to download its own plugins, including the Tycho
system that builds Eclipse RCP applications, and the Eclipse runtime files.

Once unpacked, the openSF tree contains the following relevant files and folders:
1 build.sh: support script performing most of the Maven build steps.

openSF.build: folder containing the majority of the “release engineering” architecture. In particular,
the main POM file that other files in the project reference.

(|

L openSF.build/generate-installers.py: support script that gathers the files for each platform into the
right structure and calls install4j to generate the installer packages.

(|

openSF.build/installers: folder containing install4j project files in order to generate installation
packages for openSF (see §9.3). Also contains a folder to place the external packages to be bundled
in, like documentation files, example modules, ParameterEditor, etc.

L openSF.product: folder where the output of the build will be generated (under “target”).
O platform: folder containing the main source code for the openSF framework.

U platform.tests: folder containing unit tests for the openSF platform.

The output of this step is a series of “Eclipse packaged product” ZIP files, one for each platform, available
at the openSF.product/target/products/ folder. Note that a single build in one machine generates the files
for all platforms?'>, since the platform-dependent components are downloaded from Eclipse and don’t need
to be built.

15 However, if building on Windows, the fact that the Windows file system does not save the “executable”
bit will mean that the launchers in the generated Linux and Mac OSX product files generated will require a
later chmod +x.

© Deimos Space S.L.U. 2021 147 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

. S 4.3
dEI mOS System User Manual 27/05/2022

elecnor group

These files are not full installations of openSF: they are only one of the multiple components that are
needed to build a fully-functional installer package, as described in Section 9.3. However, they can be used
as-is during development and testing, if they are unpacked on top of an existing openSF installation, they
will in effect “upgrade” that installation.

9.2.1. Simplified procedure
Using the support script provided, it is easy to build the openSF platform files

$./build.sh

The support script runs the two-step build process outlined in the following simulation, accepting two
environment variables that change its behaviour:

O MVN: path to the Maven executable, defaults to *mvn”, so Maven is expected to be available in the
system PATH.

(d SKIP_TESTS: if defined to “1”, skips the phase in which the openSF unit tests are run (the Maven
target used is “package” instead of the next step “verify”).

9.2.2. Detailed procedure

Any build configuration changes before the process can be performed on the various files that define the
project settings. For example, the file openSF.build/pom.xml defines the system platforms to build for; the
file platform/plugin.properties configures some strings in the program, etc.

In order to build the platform, OSFI must be available in the local Maven repo. After this dependency is
met, the main project can be built:

$ mvn -f openSF.build/pom.xml clean verify

The “verify” target builds the product and runs unit tests. If such tests fail, the build stops immediately and
the product files are not generated. If such behaviour is not desired, there are two different options:

L Passing the -fae (“fail at end”) flag to Maven. In this case, the test failure will be noted and the build
will be reported as “failed”, but the product files will still be generated.

1 Using the “package” target instead of “verify”, which skips the execution of the unit tests.

9.3. How to Build the Installer Packages

As mentioned before, the output of the last step is a series of ZIP files in the Maven-generated target folder
under openSF.product. They contain the archived installations of the RCP products for each platform, which
can be used during development as mentioned in §9.2. However, a working openSF installation is made up
of several components, which if missing will make the system work partially, or not at all. Those
components are:

U Documentation files, the set of PDFs shown in the help menu. Without these files, no help files will
be shown at all in the HMI.

U ParameterEditor, which is built separately as another RCP archived product, but with the same
procedure described for openSF. If this platform-specific component missing, openSF will not be able
to launch PE as an external configuration file editor.

L Example modules and database, which is a set of dummy modules, configuration and input files,
along with a database with simulations including them. Since they include C++ modules along with
Java and Python examples, they are platform specific, built using CMake and require linking against
the OSFI library. If missing, only the “empty” database template file is available in the HMI, but no
openSF functionality is lost.

© Deimos Space S.L.U. 2021 148 of 155

DEG-CMS-SUPTR09-SUM-10-E

. &
deimos

elecnor group

OPENSF-DMS-TEC-SUMO1
4.3
27/05/2022

openSF

System User Manual

L Template openSF.properties file, placed by the installer in the installation folder after some variables
have been replaced. Without this file, openSF might not start.

In order to generate the installer, the openSF.build/generate-installers.py script can be used. It requires
the other components to be present at openSF.build/installers/external. The user can place them there
manually, or, if these outputs are uploaded to some internal Maven repository (e.g. as part of some
continuous integration build system), the dependencies.pom and gather-components.py files in that same
folder are designed to download them from such a repository automatically. In either case, the layout
should look like Figure 9-1.

Finally, if install4j is available, running the installer generation script will create files similar to those
displayed in Figure 9-2. The script accepts settings through several environment variables including the
product version and installer signing capabilities; see the script itself for details.

dependencies.pom
gather-components.py
gather-components.sh
mvn-settings.xml.template

mysgl-connector-java.jar

= B, |

openSF-archived-product-linux.gtk.x86_64.zip
openSF-archived-product-macosx.cocoa.xB6_64.zip
opensF-archived-product-win32win32.x86_64.zip
opensf.dist-docs.zip

[
opensf.examples.modules-linux-x86_64.zip = mdssums

openSF_linux64_3.7.3.201810261443.sh

opensf.examples.modules-osx-x86_64.zip
opensf.examples.modules-windows-x86_64.zip
ParameterEditor-archived-product-linux.gtk.x86_64.zip
ParameterEditor-archived-product-macosx.cocoax86_64.zip

ParameterEditor-archived-product-win32.win32.x86_64.zip

Figure 9-1: External components

[

openSF_macosx_3.7.3.201810261443.dmg
openSF_wing4_3.7.3.201810261443.exe

[

= outputtxt

updates.xml

Figure 9-2: Generated installers (one release and

one development build)

© Deimos Space S.L.U. 2021

149 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
E| mOS System User Manual 27/05/2022
elecnor group

10. ANNEX F: USING DOCKER IN OPENSF SIMULATIONS

1 A E

The ability to run applications in virtual containers enables developers to easily integrate heterogenous
environments in which E2E simulators are nowadays expected to work. The use of Docker promotes also
the automated deployment of the execution environment and favours simpler and continuous testing
procedures. This section describes how a simulation module can be setup inside a container and how to
integrate it in an openSF E2E simulation.

It is highly recommended that each simulation module is deployed inside a separate Docker container, with
OpenSF used to orchestrate the multiple modules that make part of the simulation. Notice that the goal of
using containers, in the scope of E2E development, is to allow the integration of modules developed in
heterogenous OS. This facility should not be used to favour the creation of deployment schemes that create
unnecessary coupling between components.

The deployment of OpenSF inside a container is considered highly inappropriate.

10.1. Concepts and Requirements

When running a module inside a container, it is by default isolated from the host environment in multiple
ways which depend on the system and its configuration. For example, Docker isolates the host filesystem
and, depending on the daemon configuration, it may also provide a separate user namespace; that is, have
different users than the host.

In order for openSF to run a module distributed as a container image, the following points must be taken
into consideration:

1. Dependencies: all dependencies of the module must be included in the container image. For
example, this may include dynamic libraries, OSFI and other packages.

2. Paths mapping: from the point of view of openSF, the container-based module must respect the
E2E-ICD. This means that the module will be passed some arguments and environment variables
which represent paths into the host filesystem, while the container internally sees a separate
filesystem. Thus, some paths from the host need to be mapped into the container.

3. File access: the module needs read and write access to the simulation folder (the path represented
by the E2E_EXECUTION_HOME variable), in order to read the configuration/input files and to
generate the output files as required. Furthermore, read-only access to other paths may also be
needed.

4. Permissions of output files: the output files created by the module need to be themselves
accessible by the (host environment) user running openSF, so they can be opened by any further
modules in the simulation, or by the user when the simulation completes.

In general, point 1 is taken care of at the time of image definition (Dockerfile) and build. For point 2, the
module needs some external support program or script that presents an E2E-ICD compatible interface to
openSF, while launching the container with an appropriate configuration to map the necessary host paths
into the container environment.

In case the simulation module needs to rely on data in other paths (either directly or via filesystem
symlinks), beware that extra caution is required. The path mappings defined when running the Docker
container need to ensure that all necessary data is correctly available for the module.

Points 3 and 4 present a more complex problem that depends on the setup of the container system. For
example, the default settings for Docker on Linux share the user IDs between the host and the container,
but security-oriented deployments may use that separate user namespaces that appear as different
numbers inside and outside the container.

If the container process can be made to run using the same (external) user as openSF, then the issue is
likely moot. Otherwise, permissions and/or ACLs need to be set appropriately on the simulations folder to
allow the proper interoperation of files.

© Deimos Space S.L.U. 2021 150 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d - & 43
EI mOS System User Manual 27/05/2022
elecnor group

10.2. Example

Considering that an openSF simulation module is ready for deployment, in order to run it inside a Docker
container the following steps will be considered:

1- Create Docker image
2- Invoke Module in Docker container
3- Setup Module in openSF

The example provided as part of openSF assumes a Linux host and Docker containers, and that the Docker
daemon is not configured to remap the user namespace. Refer to the contents of folder
<OPENSF_INSTDIR>/test/data/docker for the files described in the following sections, which provide
details of how these steps allow to set up the Simple simulation module.

Please note that other container environments are not covered by this example. In particular,
macOS/Windows Docker is not considered, even when running Linux containers. Neither are Windows
containers on Windows Docker, other Linux container runtimes such as Podman, etc. While it is possible
that such systems may be able to run a module in openSF by carefully applying the four points in section
10.1, they are not the main focus of this section.

10.2.1. Create Docker Image

A Docker image is created by following the recipe described in a Dockerfile. Typically, images take an
existing base image (e.g. Ubuntu 20.04) and build on top of it by installing only what is essential to run
the application, which in our case the simulation module.

1 | FROM ubuntu:20.04

2

3 | ENV DEBIAN FRONTEND noninteractive

4

5 # Make basic tooling available

6

7 | RUN apt-get update \

8 && apt-get install -y --no-install-recommends \
9 software-properties—-common \
10 sudo \

11 gosu \

12 python-is-python3 \

13 && rm -rf /var/lib/apt/lists/*

14

15 | # Install the openSF (Simple) Module. Other dependencies (e.g. OSFI) would go here too

17 | COPY simple.py /opt/simple/simple.py
18 | RUN chmod +rx /opt/simple/simple.py

19
20 | ENV PATH="/opt/simple:S${PATH}"
21
22 # Setup a generic entry point
23

24 | COPY entrypoint.sh /usr/local/bin/entrypoint.sh
25 | RUN chmod +x /usr/local/bin/entrypoint.sh
26 | ENTRYPOINT ["/usr/local/bin/entrypoint.sh"]

Figure 10-1: Simple Dockerfile

The Simple Dockerfile, presented in Figure 10-1, is based on Ubuntu 20.04 (line 1).

The Dockerfile then installs the basic tools necessary to deploy and run the Simple simulation module (lines
7-14). Notice that in the example, auxiliary tools such as sudo/gosu are installed to facilitate the execution
of the simulation module, and specifically to allow running the simulation module with root and non-root
users. Depending on the use case, the simulation module developer might want to install the build toolchain
and allow building/deploying the module from sources.

The deployment of the simulation module is handled in lines 17-18. Considering that Simple is a single
Python script file, the deployment just copies the file to the expected installation location and ensures that
it is executable. Since this example comes with openSF itself, it will re-use the OSFI-Python library that is

© Deimos Space S.L.U. 2021 151 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

- e 4.3
dEI mOS System User Manual 27/05/2022

elecnor group

distributed with the openSF examples. However, normal modules must include their own dependencies,
including OSFI, since they should run on multiple versions of openSF.

In case it is necessary, the Dockerfile also allows to customize the execution environment (see line 20,
where the PATH environment variable is adjusted to allow finding simple.py).

The deployment step in the Dockerfile should be considered as a working specification of how to deploy the
simulation module, either base on a distribution package or on a sources package. In this sense, it should
be a dynamic reflection of what is described in the module’s user manual.

The setup finishes by provisioning and configuring an entry point to be executed when the docker container
is run. This file is a small auxiliary script that runs inside the container, and customizes the environment
based on parameters passed when running the container (e.g. adjusts the user running the simulator inside
the container).

Assuming that the environment variable OPENSF_HOME is defined to <OPENSF_INSTDIR>, to build the
Docker image opensf:simple execute the following commands:

$ cd SOPENSF HOME/test/data/docker/simple

$ docker build -t opensf:simple

10.2.2. Invoke Module in Docker container

Even though running inside a Docker container, the simulator module must be able to access configuration
and input files and to generate output files at locations designated by openSF. The simulator module must
also be invokable using the standard CLI parameters (as described in [AD-E2E]). This can be achieved via
a Simple adapter script that maps all necessary folders inside the Docker container, and forwards all the
options to the simulator module.

1 | #!/usr/bin/env bash
2
3 | IMAGE=opensf:simple
4
5 | docker run --rm -t \
6 -e RUN_AS USER="$(id -u)" \
7 -e RUN7WITH7USERNAME:"${USER} "\
8 -e OPENSF_ HOME=" S {OPENSF_ HOME}" \
9 -e E2E_HOME="S${E2E_HOME}" \
10 -e EZEiEXECUTIONiHOME:"$ {E2E_EXECUTION_ HOME}" \
11 -V "$(OPENSF7HOME} :${OPENSF7HOME} "o\
12 -v "${E2E_HOME}:${E2E HOME}" \
13 -v "$ {E2E_EXECUTION_HOME} : S {E2E_EXECUTION_ HOME}" \
14 "S{IMAGE}" \
15 simple.py "$@"
16

Figure 10-2: Simple adapter

The Simple adapter script (shown in Figure 10-2) creates a temporary container to run the simulation
module simple.py inside.

The script calls the docker run command on line 5, with option --rm to dispose of the container one the
simulation module is finished.

The options on lines 6-7 provide environment variables for the entry point script, customizing the user that
runs the simulator inside the container - this is important to correctly match file ownership/permissions
inside and outside of the container as stated in points 3 and 4 of 10.1.

The relevant environment variables (E2E_HOME and E2E_EXECUTION_HOME) are made available to the
simulator based on the options in lines 8-10. Typically OPENSF_HOME is not used by the simulation module
and thus is not necessary, but in the current example it is used to locate and provision the OSFI Python
library.

© Deimos Space S.L.U. 2021 152 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

I 4.3
dEImOS System User Manual 27/05/2022

elecnor group

In case the simulation depends on other environment variables, made available via openSF preferences,
these must be added as further options in the adapter script.

To allow reading configuration and inputs and writing outputs, the options in lines 11-13 mount the relevant
folders inside the container at the locations they are expected. This means that even though running inside
the container, the simulation module will find the files/folders and no path translation is actually needed.

The Docker image to be used is determined by line 14 and then line 15 specifies the command to be
executed - i.e. the simulator module called with the parameters exactly as defined by openSF.

Assuming that the OPENSF_HOME variable is defined and points to <OPENSF_INSTDIR>, to run Simple
inside the container run the adapter script as follows:

$ cd SOPENSF HOME/test/data/docker

$./simple.sh -g gcf.xml -1 lcf.xml
Info | OpenSF (Simple) Module v1.0 is inside docker|3.6.0
Info | Inside docker, using configuration file: gcf.xml|3.6.0

Info | Inside docker, using configuration file: lcf.xml|3.6.0

10.2.3. Setup Module in OpenSF

In practice, with the Docker image created and an invokable script to run the Simple simulation module
ready, there are no differences to set up any other simulation module. From an openSF perspective, the
invokable script will act as a regular/native module.

For the Simple simulation module, do as follows:

1) Create the appropriate input and output descriptors
2) Create the module, defining test/data/docker/simple.sh as the executable
3) Add the new module to an existing simulation or create a new simulation and use it

After these three steps are concluded, simply run the simulation. Figure 10-3 shows the execution log of a
simulation where the provided Simple example was configured with input descriptor Product_L1b, output
description OutputGeneric, and included in E2E_test simulation.

© Deimos Space S.L.U. 2021 153 of 155

DEG-CMS-SUPTR09-SUM-10-E

[openSF OPENSF-DMS-TEC-SUMO1
4.3

dEImOS System User Manual 27/05/2022

elecnor group

‘ene 0DenSF - Open Simutation Framework
BhHZ /0% O @ @uwnw
=0
tl=
Prodect Somns = (—— i
YModuies lonosphereModule (1.0) lonosphere computation module dms
o Geomenycomoion macse e s
GeometryModule (2.0} ossnmmum Observing System Simulator moduse ams.
o Scene Ganrace i .m
Civosmarsior (1.0 Lovet 10 product geneation ke - .
t;:n«--(»;;w (2Retrieval (1.0} Lovel 2 Retreval mode dms.
o 1. Sorpe 101 Smple st moclonving ade Docker
Mt ahiodils (.0
Vartabode 101
Osswadsn (10)
Pytnrsioae (101
Séanwrnacaor (10 Smeas [T
Sencie (11
Srepores st =
€26 e Gcutons| . E
Jova.tost E2€ 1e51.2021061071546190964 21
o o st
- Stk
- Sk
Python_test

Tenedne.tast o Succenwts oo 8.-5mom (101

Database: H2 fle-based database resh' at (E2E HOME) ININEENIRE 0sm

Figure 10-3: Example container module configured and running in openSF

© Deimos Space S.L.U. 2021 154 of 155

DEG-CMS-SUPTR09-SUM-10-E

openSF OPENSF-DMS-TEC-SUMO1

d = E— 4.3
eImOS System User Manual 27/05/2022
elecnor group

PR ‘_1—__*_*_\

END OF DOCUMENT

© Deimos Space S.L.U. 2021 155 of 155

DEG-CMS-SUPTR09-SUM-10-E

	1. INTRODUCTION
	1.1. Purpose
	1.2. Scope
	1.3. Acronyms and Abbreviations
	1.4. Definitions

	2. RELATED DOCUMENTS
	2.1. Applicable Documents
	2.2. Reference Documents
	2.3. Standards

	3. GETTING STARTED
	3.1. Introduction
	3.2. openSF User Profiles and Roles
	3.2.1. User profiles definition and quick-start guide
	3.2.1.1. Scientific modules developer
	3.2.1.2. E2E processing chains integrator
	3.2.1.3. E2E performance engineer
	3.2.1.4. E2E performance analyst

	3.2.2. openSF user roles

	3.3. Conventions
	3.3.1. <OPENSF_INSTDIR>
	3.3.2. $E2E_HOME
	3.3.3. Data types

	3.4. System Requirements
	3.4.1. Hardware requirements
	3.4.2. Operating system requirements
	3.4.3. Framework pre-requisites
	3.4.3.1. MySQL/MariaDB installation
	3.4.3.2. Remote execution installation
	3.4.3.2.1. Linux installation
	3.4.3.2.2. macOS installation
	3.4.3.2.3. SSH access permission configuration

	3.5. How to Install the Framework
	3.5.1. Installer guide setup
	3.5.1.1. Linux installation
	3.5.1.2. macOS and Windows installation
	3.5.1.3. Uninstalling openSF
	3.5.1.4. Folder structure

	3.5.2. Licensing scheme

	3.6. Running openSF
	3.6.1. How to start the application
	3.6.2. First start-up
	3.6.3. Check for updates
	3.6.4. Exit the system

	4. REFERENCE MANUAL
	4.1. HMI Description
	4.1.1. Main window
	4.1.1.1. Side bar

	4.1.2. Frame management
	4.1.3. Generic functionalities, dialogues and displays

	4.2. Data Structure
	4.2.1. Workspaces
	4.2.1.1. Switching workspaces
	4.2.1.2. Configuration persisted across workspaces

	4.2.2. Databases
	4.2.2.1. Connect to a database
	4.2.2.2. Create a new database
	4.2.2.3. Delete a database
	4.2.2.4. Import and Export a database
	4.2.2.5. Refresh database list
	4.2.2.6. Database maintenance

	4.2.3. Simulation Results Naming Conventions

	4.3. Framework Elements
	4.3.1. Descriptors
	4.3.1.1. Descriptor list
	4.3.1.2. Descriptor creation
	4.3.1.3. Descriptor modification
	4.3.1.4. Descriptor deletion
	4.3.1.5. Descriptor copy

	4.3.2. Modules
	4.3.2.1. Module list
	4.3.2.2. Module creation
	4.3.2.2.1. General data
	4.3.2.2.2. Configuration
	4.3.2.2.3. IO descriptors

	4.3.2.3. Module modification
	4.3.2.3.1. Module upgrade - New version

	4.3.2.4. Module deletion
	4.3.2.5. Module copy

	4.3.3. Simulations
	4.3.3.1. Simulation list
	4.3.3.2. Simulation creation
	4.3.3.3. Simulation deletion
	4.3.3.4. Simulation copy
	4.3.3.5. Simulation modification
	4.3.3.6. Settings in a simulation
	4.3.3.6.1. Simulation definition
	4.3.3.6.2. Input files
	4.3.3.6.3. Configuration files
	4.3.3.6.4. Output files
	4.3.3.6.5. Parameters configuration

	4.3.4. Results
	4.3.4.1. Result view
	4.3.4.1.1. Modules execution time

	4.3.4.2. Continuing or repeating the execution of an existing simulation
	4.3.4.3. Report generation
	4.3.4.4. Result deletion

	4.3.5. Product tools
	4.3.5.1. New tool
	4.3.5.2. Edit tool
	4.3.5.3. Delete tool
	4.3.5.4. Tool execution
	4.3.5.5. Popular product tools
	4.3.5.6. Specification of final product tools

	4.4. Executing a Simulation
	4.4.1. Execution settings
	4.4.1.1. Switch module version
	4.4.1.2. Bypass/Switch-off module execution
	4.4.1.3. Run from a given point in the module chain
	4.4.1.3.1. Run from a given module using previous data

	4.4.1.4. Removal of intermediate output files
	4.4.1.5. Breakpoint scheduling
	4.4.1.6. Remote execution

	4.4.2. Series of simulations with parameters variation
	4.4.2.1. Parameters iteration
	4.4.2.1.1. Saving parameter iteration definitions

	4.4.2.2. Batch simulation
	4.4.2.3. Parameter perturbations
	4.4.2.3.1. Parameter perturbation interface
	4.4.2.3.2. Defining a new perturbation
	4.4.2.3.3. Statistical and combined perturbed execution modes
	4.4.2.3.4. Perturbations functions
	4.4.2.3.4.1. Deterministic functions
	4.4.2.3.4.2. Sampling functions
	4.4.2.3.4.3. Non-deterministic functions
	4.4.2.3.4.4. Binary and composite operations

	4.4.2.4. Time-based scenario orchestration
	4.4.2.4.1. Time-based orchestration interface

	4.4.2.5. Monte Carlo simulations
	4.4.2.5.1. One module MC with local parameter
	4.4.2.5.2. Multiple modules MC with local parameter(s)
	4.4.2.5.3. Multiple modules MC with global parameter

	4.4.3. Simulation run
	4.4.3.1. Parallelisation of module execution
	4.4.3.1.1. Parallel execution

	4.4.3.2. Simulation Resuming
	4.4.3.3. Logs
	4.4.3.4. Simulation groups

	4.4.4. Import and export simulations
	4.4.4.1. Export simulation
	4.4.4.2. Import simulation
	4.4.4.3. Export module of a simulation
	4.4.4.4. Import module of a simulation

	4.4.5. Simulation script generation
	4.4.6. Multi-node simulation
	4.4.6.1. Remote machine management
	4.4.6.2. Connect to a remote machine
	4.4.6.3. Disconnect from a remote machine
	4.4.6.4. Configure a new remote machine
	4.4.6.5. Delete a remote machine
	4.4.6.6. Refresh remote machine list

	4.5. Preferences
	4.5.1. Environment variables
	4.5.2. Application settings
	4.5.3. Application folders
	4.5.4. Interpreters Definition

	4.6. Miscellaneous
	4.6.1. About openSF
	4.6.2. Embedded documents
	4.6.3. CPU usage
	4.6.3.1. Linux
	4.6.3.2. macOS
	4.6.3.3. Windows

	5. ANNEX A: ERROR MESSAGES
	6. ANNEX B: DEVELOPING MODULES FOR OPENSF
	6.1. Precautions to ensure safe module parallelization
	6.2. Environment variables
	6.3. Module pre-requisites
	6.3.1. Modules not compliant with E2E Generic ICD
	6.3.2. IDL
	6.3.3. MATLAB
	6.3.4. Python and other scripts
	6.3.5. Python scripts execution in Windows

	7. ANNEX C: Packaging & delivering an E2E simulator
	7.1. Create the simulator
	7.2. Package the simulator
	7.2.1. Package openSF

	7.3. Install the packaged simulator
	7.3.1. Multi-user environment
	7.3.2. Automation

	7.4. Framework configuration

	8. ANNEX D: TUTORIAL - CREATING AN E2E SIMULATION
	8.1. Scenario Description
	8.1.1. Descriptors – Input and Output Files
	8.1.2. Modules

	8.2. Framework Structure Definition
	8.2.1. Folder Structure Guidelines

	8.3. Product Tools Specification
	8.3.1. Simulation Products Exploitation
	8.3.2. Closing the Loop in an E2E Simulation

	9. ANNEX E: INSTRUCTIONS TO BUILD THE FRAMEWORK
	9.1. Pre-requisites to Build the Framework
	9.2. How to Build the openSF Platform
	9.2.1. Simplified procedure
	9.2.2. Detailed procedure

	9.3. How to Build the Installer Packages

	10. ANNEX F: USING DOCKER IN OPENSF SIMULATIONS
	10.1. Concepts and Requirements
	10.2. Example
	10.2.1. Create Docker Image
	10.2.2. Invoke Module in Docker container
	10.2.3. Setup Module in OpenSF

