
2024-09-17 1

TN on applicability and guidelines for the design of interfaces compliant
to the "ESA generic E2E simulator Interface Control Document" (PE-ID-
ESA-GS-464)

Michele Zundo EOP-PEP
v1.0

The "ESA generic E2E simulator Interface Control Document" [E2EGICD] allows extensive
freedom in how the data structure for an openSF compliant interface can be defined to support
standardized orchestration of the sw modules; in addition, there are choices that should be
considered to maximise flexibility, interface extension, use of standard tools/framework and end-
user usability. This TN collects the lessons learned from past developments.

The most important is the explicit exposure of inputs (files) and parameters at the level of the
generic interface (as opposed to being hidden inside lower-level files, referred by path or inside
data structures, that is required to achieve this objective and specify a well-defined data
interface.

Selected sections, relevant for the module interface understanding, are extracted from the
[E2EGICD] here below (in red) and commented to highlight the critical points.

Please ensure you have read and understood the [E2EGICD] before reading below.

The interfaces described in [E2EGICD] are shown below in Figure 2-1.

1. Input/Output Files (section 2.2.1) Figure 2-1 orange box
There are no constraints imposed on modules for reading input files or writing output files.
Modules have the freedom to specify as input/output either a directory or a set of one or more
files. In case a directory name is used, it is responsibility of each module to select the
relevant/correct inputs from the directory. A compliant orchestration infrastructure (e.g. openSF)
will automatically trigger a module execution when all the input files are detected as present, and
the generating process has completed successfully.

.

Recommendation:
Preference to use files, instead of directories, as input in the command line unless the
files cannot be specified statically

2024-09-17 2

Examples:
a) Module_1 generate an output file called my_product.nc which is then used by Module_2 as
input.

b) Module 1 generates as output a variable number of files (e.g. depending on data inside some
of his inputs) called: my_product_01.nc, my_product_02.nc, my_product_03.nc,

To note that no check/verification at all is done by the orchestrating framework on how many files
or if there are files at all inside the directory, but only that the directory is created/exists and the
responsibility lies with the module to detect any error condition.

2. Auxiliary Files (section 2.2.2)
A compliant E2E orchestrating framework makes use of one separate directory per each
simulation execution where it will copy the required input files not generated by the modules (e.g.
input for the first module or initial data) . This copy includes directories and their content
whenever the input is specified as such. To avoid disk space overuse the developer can define
large input files as “auxiliary files”.
An “auxiliary file” is therefore a data file that is used as input to the simulation/processing chain
but that will not be duplicated and stored in the simulation execution folder e.g. of candidates are
a very large orbit files, Databases, LUTs or reference data files which do not change (e.g. physical
constants). The “auxiliary files” are consequently not declared in the command line as inputs but
passed to the module as a parameter within the configuration file described in section 2.2.6) and
therefore not processed/visible by the orchestrating framework.

NB Declaring input data as auxiliary files should be carefully assessed as it makes the data set
within the execution directory incomplete and does not ensure that re-execution will be identical,
as external auxiliary data could have been changed and reduce the robustness of the E2E
simulation chain as the existence of auxiliary files is not ensured by the orchestrating framework.

Recommendation:
Define statically the input to Module 2 as ‘my_product.nc’

Recommendation:
Define a directory called my_product/ and define both output of Module_1 and input of
Module 2 the path my_product/. Module_1 will then write its out file(s) into the directory
and Module_2 will be invoked and only given the path and line unless the files cannot be
specified statically

Recommendation:
Define small/normal or changing Auxiliary files as normal inputs (Figure 2-1 orange box)
and instead bypass the copying of Auxiliary data that are both big and static (e.g. Digital
Elevation Model) by referring to its path inside the Configuration Files (Figure 2-1 blue box).

2024-09-17 3

3. XML configuration files (section 2.2.6) Figure 2-1 blue box
The behaviour of a given module can be controlled using the two XML configuration files as
previously described. This section describes the rules and conventions that such configuration
files have to follow in addition to standard [XML] rules, e.g. the preamble <?xml version=”1.0”
encoding=”UTF-8”?>.

a) Format of XML [E2EGICD] Configuration Files

A generic library called OSFI to read/write parameter files in the correct format as well as a
convenient editor (called Parameter Editor PE) is provided as part of the openSF package at eop-
cfi.esa.int.

b) What is a Configuration Parameter?
Parameters within the Configuration files are CONFIGURATION parameters to control/modify the
execution of SW Modules in the E2ES and not meant to be input data.
Attention should be made to identify and clearly separate parameters for execution of simulation,
sensitivity analysis, processing and what-if scenario run (e.g. noise to be added, biases, algorithm
selection, thresholds, logging or processing behavior) from the input data needed for the
processing.

c) Location of parameters
The decision of how many and which are the parameters included in the Configuration files
compliant to [E2EGICD] is critical since only parameters included there are visible externally
to the orchestrating framework and to supporting tools.

Do not use the parameters in the Configuration files to pass auxiliary data, orbit data,
instrument characterisation, etc.. Use input files for this purpose.

Having parameters in any other place e.g. in bespoke files passed to modules as input
(orange box) or as string/path within the [E2EGICD] defined configuration file (blue box)
makes them invisible and useless to the orchestration and to a framework user. This
prevents running of automatic sensitivity analysis, configuration management of the
changed parameters and use of existing tool to directly modify/revert/save parameters
configuration in di`erent versions/runs.

Recommendation:
Put all the needed configuration parameters inside the XML Configuration files as per
[E2EICD] and have the modules read the parameters from the XML configuration files
using OSFI.

2024-09-17 4

d) Parameter identification

The list of parameters that will be defined as configuration parameters depends on the modelling
but should be extensive enough to give flexibility to modify execution behaviour and be iterated
with the E2ES users and developer to ensure all possible cases are covered (e.g. it might not make
sense from the perspective of module1 to change the noise figure of a simulated element
however this might be useful for developer of module2 that uses module1 as input.)

e) Parameter file structure

For readability and maintenance parameters should be grouped inside the Configuration files for
each module per domain e.g. parameters related to platform should be a separate group from
parameters related to environment from parameters related to instrument, etc.

An example of structure from a current mission:

