

Prepared by DME and ESA OpenSF Team
Reference PE-ID-ESA-GS-464
Issue 1
Revision 3.0
Date of Issue 02-09-2020
Status Final
Document Type ICD

Distribution

all

ESA UNCLASSIFIED – For Official Use

estec

European Space
Research
and Technology Centre
Keplerlaan 1
2201 AZ Noordwijk
The Netherlands
T +31 (0)71 565 6565
F +31 (0)71 565 6040
www.esa.int

ESA generic E2E simulator
Interface Control Document

Page 2/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

 Title ESA generic E2E simulator Interface Control Document
 Issue 1 Revision 3.0
 Author DME and ESA openSF team Date 02-09-2020
 Approved by Date 02-09-2020
 Michele Zundo

 Reason for change Issue Revision Date
 First Issue 1 0 12-05-2015
 Added Time Based scenario Orchestration 1 1 20-08-2015
 General clean-up and removal of obsolete feature
in line with openSF 2016

 1 2 13-04-2016

 Updates of Time orchestration file format to
update obsolete examples and coorect
discrepancy

 1 2.1 15-08-2016

 Added definition of elementType and editorials 1 2.2 15-10-2016
 Corrected typos in type range definition and ref.
doc update

 1 2.3 21-08-2017

 Updates addessing issues found during
development of openSF 3.7.2

 1 2.4 30-05-2018

 Use a coherent syntax for modes definition
between Timeline scenario and Local
Configuration file, clarification on parameters’
format and on path usage

 1 2.5 10-07-2019

 Improve basic concepts definition, and update
specification of environment variables

 1 3 02-09-2020

 Issue 1 Revision 0
 Reason for change Date Pages Paragraph(s)
 First Issue 12-05-2015 all All

 Issue 1 Revision 1
 Reason for change Date Pages Paragraph(s)
 Added Time Based scenario Orchestration 20-08-2015 22-26 §3.5

 Issue 1 Revision 2
 Reason for change Date Pages Paragraph(s)
 General cleanup of document structure 13-04-2016 all

Page 3/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

 Added definition of matrix and array parameter
types

 13-04-2016 Section 2

 Removal of legacy syntax for conf file (old
openSF)

 13-04-2016 Section 2

 Consolidation of guidelines and example in
section 4

 13-04-2016 Section 3

 Issue 1 Revision 2.1
 Reason for change Date Pages Paragraph(s)
 Updated version of reference/applicable
documents

 15-08-2016 Section 1.6, 1.7 all

 Clarified naming convention 15-08-2016 Section 2.2.3 all
 Removed obsolete attributes 15-08-2016 Section 2.2.6.1 all
 Corrected XML examples 15-08-2016 Page 19, 21, all
 Harmonised naming Tag and Parameters’ and
removed redundant parameters

 15-08-2016 Section 2.3.2, 2.3.3 all

 Issue 1 Revision 2.2
 Reason for change Date Pages Paragraph(s)
 Added definition of elementType 15-10-2016 19 2.2.6.2
 Editorials (upper case/lower case) 15-10-2016 19 2.2.6.2

 Issue 1 Revision 2.3
 Reason for change Date Pages Paragraph(s)
 Updated reference documents 21-08-2017 9 1.6
 Corrected typos in INT/FLOAT range definition 21-08-2017 19 2.2.6.2

 Issue 1 Revision 2.4
 Reason for change Date Pages Paragraph(s)
 Corrected timestamp format according to CCSDS 30-05-2018 17 2.2.4
 Defined type for TIME parameter compatible
with CCSDS ASCII

 30-05-2018 19 2.2.6.2

 Clarified description of structured and simple
types

 30-05-2018 19-20 2.2.6.2

 Removed schema spec 30-05-2018 22 2.2.6.2
 Corrected typo in examples from DOUBLE to
FLOAT

 30-05-2018 many

Page 4/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

 Issue 1 Revision 2.5
 Reason for change Date Pages Paragraph(s)
 Clarified usage of path and parameter format 10-07-2019 2.1.2, 2.2.6.2
 Added enclosing <ModuleExecutionModes> tag
to local configuration file syntax

 10-07-2019 2.3.2

 Clarify text regarding Local Configuration file wrt
modes

 10-07-2019 2.3.2

 Remove redundant <ModuleExecutionModes>
from Timeline file

 10-07-2019 2.3.2

 Issue 1 Revision 3.0
 Reason for change Date Pages Paragraph(s)
 Clarified the definition of simulation, execution
and orchestration framework/infrastructure

 02-09-2020 1.1, 1.4, 2

 Updated specification of simulation environment
variables E2E_HOME and
E2E_EXECUTION_HOME

 02-09-2020 2.1.1, 2.1.2

Page 5/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

Table of contents:

1	 Introduction .. 6	
1.1	 Purpose ... 6	
1.2	 Scope... 7	
1.3	 Acronyms and Abbreviations .. 7	
1.4	 Definitions .. 8	
1.5	 Applicable Documents ... 9	
1.6	 Reference Documents .. 9	
1.7	 Standards ... 9	
2	 Interface Definition of E2E modules .. 10	
2.1	 Module Execution ... 11	
2.1.1	 Environment variables ... 11	
2.1.2	 Command line arguments .. 13	
2.2	 Module Interface ... 14	
2.2.1	 Input/Output Files ... 14	
2.2.2	 Auxiliary Files ... 14	
2.2.3	 Module interface file naming conventions .. 14	
2.2.4	 Logging .. 15	
2.2.5	 Error handling .. 16	
2.2.6	 XML configuration files.. 17	
2.3	 Designing E2E modules for Time Based orchestration .. 21	
2.3.1	 Concepts .. 21	
2.3.2	 Timeline Configuration ... 23	
2.3.3	 Module Configuration ... 25	
3	 Guidelines for development and integration of E2E simulators 28	
3.1	 Coding guidelines and potential pitfalls ... 28	
3.2	 E2E simulator development walkthrough.. 28	
3.3	 Example Use Cases (time-driven) .. 31	

Page 6/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

1 INTRODUCTION

1.1 Purpose
An E2E Performance Simulator consists of a set of software modules simulating the space segment, its data
output and the subsequent ground retrieval (level 1 and Level 2). The execution of these software modules
needs to be orchestrated including in particular invocation and provision of input data. The definition of a set
of standardised conventions and requirements, which the modules have to adhere to, allows then the use of a
common orchestrating framework.

Figure 1-1: E2E Performance Simulator

These general conventions have been built based on the experience in E2E development for a number of
different Earth Observation missions as well as from the experience gathered in the development and evolution
of the current standard ESA E2E orchestrating framework OpenSF [OPENSF].

This document describes a common generic interface for software modules, which allows their integration into
the ESA E2E Performance Simulator orchestrating infrastructure. These software modules may consist of but
are not limited to scene generators, instrument or platform simulators and processors or analysis tools.
This interface has been designed to be lightweight and can be easily added to existing modules and it is
compatible with many of the existing E2E Performance Simulator developed during Phase 0/A in Earth
Observation as well with the orchestrating framework currently used within ESA [OPENSF].

This document also describes best practices to be followed during the design and implementation of software
modules participating in an E2E Performance Simulator, and the way modules are used and operated within
an orchestrating framework (e.g. OpenSF).

While each developer can independently implement the module interface described in this document, to
facilitate the development ESA provides a set of reference libraries [OSFI] that implement the interface
according to this document.

While ICD is generic, it notes where relevant the legacy aspects originating by the use of modules within the
[OPENSF], e.g. when some feature is not yet supported in [OPENSF] or when some construct is allowed for
compatibility.

Page 7/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

1.2 Scope
This document is divided in the following sections:

Ø Section 1 (this one) provides a glimpse on the document contents and purposes.
Ø Section 2 establishes the relations of this document with other documents and standards.
Ø Section 3 details the orchestrating framework interfaces and gives some development guidelines.

Potential readers of this document include scientists/engineers and modellers interested in integrating their
development into ESA E2E Simulator orchestrating framework.

1.3 Acronyms and Abbreviations
The acronyms and abbreviations used in this document are the following ones:

Table 1-1: Acronyms and abbreviations

Acronym Description
AD Applicable Document

API Application Programming Interface

COTS Commercial Off-The-Shelf

CWD Current Working Directory

E2E End-to-End Simulator

ESA European Space Agency

GUI Graphical User Interface

HMI Human machine Interface

HW Hardware

I/F Interface

I/O Input/Output

ICD Interface Control Document

RD Reference Document

TBC To Be Confirmed

TBD To Be Defined

Page 8/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

1.4 Definitions
The definitions of the specific terms used in this document are the following ones:

Table 1-2: Relevant definitions table

Definition Meaning
Module An executable entity that can take part in a simulation. A module can be understood, broadly

speaking, also as an “algorithm”. Basically, it contains the recipe to produce products function of
inputs. A module contains also several rules to define the input, output and associated formats.
Furthermore, its behaviour is controlled by two configuration files. Overall, the architecture of a
module consists of:

Ø The source code and its binary compiled counterpart
Ø A global configuration file with parameters common to several modules
Ø A local configuration file with module specific parameters
Ø An input file that characterizes its inputs
Ø An output file that characterizes its outputs

Modules are not considered part of the framework.

Simulation A definition of one or more modules that can be executed in a sequential logical order to produce
observable results.
In practice, a simulation provides the configuration required by the orchestrating framework to
control and achieve a well ordered simulation execution with reproduceable results. This
configuration consists of, at least, the module plus configuration and input/output files.

Execution An instance of a (simulation) obtained by running the configured list of Modules with a particular
set of configuration and input. Also, the content of the folder storing all the configuration, input
and output generated by executing the Simulation.

Orchestrating
Infrastructure

A logical set of fundamental facilities and systems required to support the definition and control
of all elements of an E2E Performance Simulator.

Orchestrating
Framework

A concrete software framework designed to support and control the simulation definition and
execution. The implementation of this framework includes the GUI, domain and database
capabilities that enable to perform all the functionality of the simulator.

Configuration
File

An XML file that contains all the parameters necessary to execute a module. A configuration file
instance must comply with the corresponding XML schema defined at module creation time.

Parameter A constant whose value characterizes a given particularity of a module. Parameters are user-
configurable, they are fixed before launching a module and, for practical reasons, and not all of
them shall be accessible from the HMI.

Batch mode The capability of the simulator to perform consecutive runs without continuous interactions with
the user. Batch mode checks the agreement or not between the output of a given module and the
input by the next one in the sequence of the simulation. Several modes of executions can be
performed:

Ø Iteratively, executing one or more simulations
Ø Iteratively, executing the same simulation several times depending on the parameters

configuration
Ø Same as above but by executing a batch script.

Page 9/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

1.5 Applicable Documents
The following table specifies the applicable documents that were compiled during the project development.

Table 1-3: Applicable Documents

Reference Code Title

1.6 Reference Documents
The following table specifies the reference documents that, while not binding, provide additional information.

Table 1-4: Reference documents

Reference Code Title Issue
[OPENSF] openSF-DMS-SUM-001 OpenSF User Manual Document 3.19

[OSFI] openSF-DMS-OSFI-DM-013 OpenSF Integration Libraries
Developers Manual

1.19

[CFI_FS] PE-ID-ESA-GS-584-1.1 EO Mission SW File Format
Specification

1.5

[EO-CFI] (http://eop-
cfi.esa.int/index.php/mission-cfi-
software/eocfi-software)

Earth Observation Mission SW CFI 4.19

1.7 Standards
The following table specifies the standards used in this ICD.

Table 1-5: Standard

Reference Code Title Issue
[BNF] (see also en.wikipedia.org

/wiki /Backus-Naur_form)
Algol-60 Reference Manual 5, 1979

[XML] (https://www.w3.org/TR/x
ml11/)

Extensible Markup Language (XML) 1.1 Second Edition,
Sep 29 2006

[XSD] (http://www.w3.org/TR/x
mlschema-2/)

XML Schema Definition Language Oct 28 2004

[T_CCSDS] CCSDS 301.0-B-4 CCSDS Blue Book,Time Code Formats B-4,Nov 2010

[EO-FFS] PE-TN-ESA-GS-0001 Earth Observation File Format Standard 3.0

Page 10/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

2 INTERFACE DEFINITION OF E2E MODULES

An E2E Simulator requires a series of software modules to be executed in order with the output of some models
used as input to others. To implement these operations an E2E orchestrating framework in charge of invoking
the software modules and passing them the appropriate inputs is needed.

This section defines the generic E2E Simulator Interface by describing how to integrate a module (e.g.
simulators, processors, tools) into a compliant E2E orchestrating framework and providing detailed
harmonised requirements in 3 areas:

Ø Data I/O interface: read input files and write output files,
Ø Logging and Error Handling interface: produce common log/error messaging, and
Ø XML Configuration interface: how to use the XML files configuration interface.

A module is defined as an entity represented by a single executable program or script. These executables
represent the smallest component within a simulation chain, and can perform a given scientific algorithm,
instrument modelling, data processing or any desired part of the processing chain to be simulated.
In order to integrate modules into an orchestrating framework, developers shall use an interface convention as
follows:
• A common calling format from the command line (shell, cmd), as per section 2.1.2.
• Logging messages format for user information and error handling described in sections 2.2.4 and 2.2.5.
• XML configuration files for user-configurable parameters described in section 2.2.6.

Below these lines Figure 2-1 shows the diagram of the module interfaces.

Figure 2-1: Module Entity Interfaces

A compliant module has to adhere to the following:

• Environment variables – modules can make use of environment variables passed from the platform to

the execution environment.
• Command line arguments – module executables must accept a defined list of arguments.

Module Entity

Module BinaryInput Output

Configuration
Files

Log

Standard Output

XML Parsing

Read Write

Page 11/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

• Logging – module output messages must comply with a given format.
• Error handling – successful executions must return a zero code to the operating system.
• Configuration files – modules can accept a specific XML format file if they want users to access and

control their parameter values.

For a better understanding of modules logic, Figure 2-2 shows the flow diagram that a module shall nominally
follow. The module execution flow can also be as complex as module developer wants provided that the
interface compatibility is ensured on the item mentioned above.

Figure 2-2: Normal Module Execution Flow Diagram

2.1 Module Execution

2.1.1 Environment variables
Users can define, through the orchestrating framework configuration, a collection of environment variables
that are available in the simulation execution environment, and thus can be used by the modules.

However, the definition of the following environment variables is reserved to the orchestrating framework:
E2E_HOME and E2E_EXECUTION_HOME. These environment variable shall be automatically set by the
orchestrating framework in the simulation execution environment.

Modules are not obliged to use or depend of either E2E_HOME or E2E_EXECUTION_HOME environment
variables.

Module

Command Line Module Invocation

Command Line
Parsing

Read Input File/s

Parse XML
Configuration Files

Write Output File/s

Module Algorithm

Log Messages

Start Execution

Finish Execution

Page 12/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

E2E_HOME
The E2E_HOME environment variable defines the location of the E2E Simulator components (i.e. the folder
containing the modules, input and configuration files that compose the E2E Simulator).

The modules can assume the E2E_HOME environment variable is defined and use it accordingly – e.g. as a
base location to access immutable reference data.

E2E_EXECUTION_HOME
The E2E_EXECUTION_HOME environment variable points to the location of the execution folder of a
simulation and is dynamically defined by the orchestrating framework.

The orchestration framework uses the execution folder as the working directory for the invocation of the
simulation modules.

To independently control and configure each simulation and its results, the orchestrating framework creates
for each simulation execution a separate execution folder, where the configuration and input files are
provisioned and assign its path to the E2E_EXECUTION_HOME environmental variable.
The execution folder location can therefore be referred by a module through the E2E_EXECUTION_HOME
environment variable (e.g. to point to a common log folder inside the execution folder).

openSF Reference Implementation

In openSF, the original definition of OPENSF_HOME environment variable has had multiple iterations, evolving and originating the current
specification of E2E_HOME or E2E_EXECUTION_HOME environment variables:

- OPENSF_HOME
 - installation location of the orchestrating
 - up until openSF 3.9.2, used also for same purpose as E2E_HOME
 - deprecated in openSF 3.9.3, to be used only for openSF internal purposes

- E2E_HOME
 - location of the E2E modules, including reference configuration and static data

- E2E_EXECUTION_HOME
 - location created by the orchestrating framework, and provisioned with all configuration and data required to execute the module
 - also where the module creates the outputs and execution logs

 - E2E_SESSION_HOME
 - deprecated in openSF 3.9.3

Page 13/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

2.1.2 Command line arguments
The convention for invoking a module is via its command line arguments. The general format of the calling
command is a list of tokens grouped as:

• Two configuration files: one Global and one Local
• Input files
• Output files

Command line shall adhere to the following format (described here in Extended Backus-Naur form [BNF]):

<command_line> ::= <executable_name> <whitespaces> <configuration_files> <whitespaces>
<input_files> <whitespaces> <output_files> <EOL>

<executable_name> ::= <file_name>

<whitespace> ::= (“ “)

<whitespaces> ::= <whitespace>+

<file_name> ::= (<alphanumeric>)+

<configuration_files> ::= <list_of_files>

<input_files> ::= <list_of_files>

<output_files> ::== <list_of_files>

<list_of_files> ::= <file_name>(“,” <file_name>)*

Examples of command line are:

> executable config_file_global.xml,config_file_local.xml input_file1 output_file_1

> executable config_file_global.xml,config_file_local.xml input_file_1,input_file_2
output_file_1,output_file_2

The first argument is the name of the binary (or executable shell-script).

The second argument is the global configuration file and followed/comma-separated with the module local
configuration file. These files are XML format files that shall be provided with a related schema. The syntax of
a configuration file is specified in section 2.2.6.

The next group of command-line argument is a comma separated list of input data file names (which may be
of various different formats) while the last group of command-line arguments is a comma separated list of
output data files (which also may be of various different formats).

Files declared in the command line arguments will be managed by an orchestrating framework as taking part
of the simulation chain and to be used by other modules and therefore stored in the dedicated execution folder
during the simulation execution.

For the configuration, input and output file names can be either a full-path name or a relative path name.
The module shall expand relative file paths as relative to current working directory. The orchestration
framework shall build the CLI parameters paths either using absolute paths or paths relative to the current

Page 14/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

working of the module4. Notice that, as mentioned in section 2.1.1, the orchestration framework defines the
E2E_EXECUTION_HOME environment variable, and ensures that it is used as working directory.

2.2 Module Interface

2.2.1 Input/Output Files
There are no constraints imposed on modules for reading input files or writing output files. Modules have the
freedom to specify as input/output either a directory or a set of one or more files. In case a directory name is
used, it is responsibility of each module to select the relevant/correct inputs from the directory. A compliant
orchestration infrastructure will automatically trigger a module execution when all the input files are detected
as present and the generating process has completed successfully.

2.2.2 Auxiliary Files
A compliant E2E orchestrating framework makes use of one separate directory per each simulation execution
where it will copy the required input files not generated by the modules (e.g. input for the first module or initial
data) . This copy includes directories and their content whenever the input is specified as such. To avoid disk
space overuse the developer can define large input files as “auxiliary files”.

An “auxiliary file” is therefore a data file that is used as input to the simulation/processing chain but that will
not be duplicated and stored in the simulation execution folder e.g. of candidates are a very large orbit files,
Databases, LUTs or reference data files which do not change (e.g. physical constants). The “auxiliary files” are
consequently not declared in the command line as inputs but passed to the module as a parameter within the
configuration file described in section 2.2.6) and therefore not processed/visible by the orchestrating
framework5.

NB Declaring input data as auxiliary files should be carefully assessed as it makes the data set within the
execution directory incomplete and does not ensure that re-execution will be identical, as external auxiliary
data could have been changed and reduce the robustness of the E2E simulation chain as the existence of
auxiliary files is not ensured by the orchestrating framework

2.2.3 Module interface file naming conventions
In order to:

a) facilitate the integration activities into a processing chain of several modules developed separately
using coherent naming

b) allow the orchestration infrastructure to identify interfaces and automatically detect input/output data
availability

each module is (logically) identified by a user defined ModuleID and shall use the naming conventions
described here below.

4 OpenSF checks the availability of the configuration and input files, as specified by user in the GUI, by
expanding paths relative to $E2E_HOME; during simulation execution, openSF uses the expanded absolute
paths relative to $E2E_EXECUTION_HOME to invoke the modules.
5 When data is passed to a module as auxiliary file specifying a path in configuration files, this ICD does not
require a method/syntax to allow the orchestrating infrastructure to check their existence at time a module is
started.

Page 15/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

• Global Configuration files shall be named Global_Configuration.xml;
• Local Configuration files shall be named with each (user defined) module identifier ModuleID followed by

suffix “_Local_Configuration.xml” (e.g. Geo_Local_Configuration.xml);
• Timeline file shall be named with string “Timeline_” followed by a user defined variable part, e.g.

Timeline_Commissioning_20150712.xml

Input/Output Simplified convention:

• Input directories or files shall be named with the module identifier followed by suffix “_Input” (e.g.

Iono_Input);
• Output directories or files shall be named with the module identifier followed by suffix “_Output” (e.g.

Scene_Output).

Input/Output Advanced convention: 6

This convention supports the use and generation by modules of input/output files with filename having a fixed
part and a variable part (e.g. the timestamp or sensing time). Its use is envisaged to support the
generation/ingestion of realistically named data products.

• Names for Input/Output directories or files shall be identified by a fixed string and a variable part (regular

expression).

2.2.4 Logging
The E2E orchestrating framework offers logging services based on the capture of the messages that each
module triggers/launches. The requirement here is that the modules must send the messages to a standard
output for that language (e.g. default unit number 6 in FORTRAN codes, stdout in C codes) following the next
formatting described here below in Backus-Naur Form [BNF]:

<message> ::= (<progress> | <log>) <EOL>

<progress> ::= “Progress” <whitespace> <delimiter> <whitespace> <progress_body>

<delimiter> ::= “|”

<progress_body> ::= <integer> “ of “ <integer>

<log> ::= <type> <whitespaces> <delimiter> <whitespaces> <text> [<whitespaces>
<delimiter> <whitespaces> <version>]

<type> ::= “Error” | “Warning” | “Info” | “Debug”

<version> ::= <digit>(“.” <digit>)*

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

<whitespace> ::= (“ “)

<whitespaces> ::= <whitespace>+

This format defines five different types of messages:

6Responsibility to generate and use the filenames according to the advanced convention resides with the
module developers .

Page 16/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

• Information. This is an informative message raised by the module describing a harmless event. Module
execution should continue with no interruptions.

• Warning. The module has detected a non-fatal error or anomalous condition in data or during the
processing that may cause a fatal error or affect the outputs in format or content. The execution should
continue with no interruption.

• Error. A major error has happened in the module execution, the module has detected it and has time to
“graciously” close the execution or handle it in a module-specific way.

• Debug. Detailed information of the module execution given to the user. Information is intended to lead
the user (or module developer) to support fixing a problem. This is a harmless event so module execution
should continue with no interruptions.
Modules shall present debug messages only if the environment variables named “DEBUG_MODE” is
defined and set as “On” in the module execution context.

• Progress. Numerical information on the amount of module execution performed.

Examples of log messages provided by an executable are:

Info | Method “m” started | 3.2

Warning | Method “m” applied an approximation to this calculation

Error | Method “m” could not converge to a solution

Debug | Method “m” obtaining error = 0.001

Progress | 5 of 25

It is important to recall that it is the responsibility of the developer to decide when a condition shall be flagged
as a Warning instead of an Error, or when and where a Debug message is relevant. Therefore, it is not ensured
that all “Warning” messages shown in the orchestrating framework have the same severity and consequences,
i.e. they are qualitatively the same among the different modules.
All those pieces of information composing a message must be joined together by the module that has to write
the complete message as string of characters formatted according to this ICD. The version component of the
message is optional and represents the version of the logging library used to issue the message.
If the message does not fulfil this requirement it will not be considered as information to be stored, thus, when
closing a simulation execution, it will be lost.

The time-stamping of each message with actual computer time is the responsibility of the logging infrastructure
implementing this ICD; any other time information relative to the domain of the processing module (e.g.
sensing time associated with a certain data causing the message or scenario simulation time) has to be added
as part of the message. Any such time representation is recommended to abide to the ASCII format as described
in section 2.5 of [T_CCSDS] with millisecond decimal part and without the optional Z terminator ‘YYYY-MM-
DDThh:mm:ss.nnn’, e.g. 2015-06-04T12:53:48.021

2.2.5 Error handling
An orchestrating framework implementing this ICD will interrupt the execution of a simulation once a module
returns a non-zero code. This is used to detect module crashes and can be adopted by module developers as
another way to stop the simulation execution in case of errors. There is a basic difference between the return
codes and the Error string message:
• When a non-zero code is detected, it means that an error condition has happened and that the module has

been unable to detect it, handle it or is intentionally returning a non-zero code to signal to the E2E
orchestration simulator that the whole simulation execution has to be aborted.

• When a string message of category “Error” is returned, it means that the module has found a non-nominal
situation according to the flow and tests coded by the module developer. Thus, after an Error message, all

Page 17/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

the subsequent actions will proceed with what the module handling strategy foresees with no intervention
by the E2E orchestration framework. While one option is to stop the module it can also take corrective
actions so that the module proceeds with further processing. These possibilities are fixed by the developer
at the time of coding it.

2.2.6 XML configuration files
The behaviour of a given module can be controlled using the two XML configuration files as previously
described. This section describes the rules and conventions that such configuration files have to follow in
addition to standard [XML] rules, e.g. the preamble <?xml version=”1.0” encoding=”UTF-8”?>.

Note that, the choice has been made to limit the parameter representation in the configuration files to a fix set
of types in order to reduce complications.

The configuration files shall contain the following xml elements:

Element “<group_name>”
This type of element constitutes an informative name related to the scope of the elements it encloses. In
addition to the mandatory cases listed below, the string group_name can be any user defined text.
An element of type <group_name> can contain nested groups that can in turn enclose parameters. When a
<group_name> tag encloses a set of parameters, it is used by the orchestrating infrastructure as a label to
identify them.

A mandatory <group_name> tag identifying the configuration logical file name shall be used in each file as
listed below. This element constitutes the root xml element and encloses the whole file and it is a string
identifying the configuration file logical name. For a module called “ModuleID” the following logical names
shall be used for the each of the 3 configuration files identified in this ICD:

o <Global_Configuration version=”XX.YY.ZZ”>, (for Global Configuration File)
o <ModuleID_Local_Configuration version=”XX.YY.ZZ”> (for Local Configuration

Files)
o <Timeline_UserDefinedString version=”XX.YY.ZZ”> (for Timeline Files as described

in section 2.3.2)

Element <parameter>
Sequence of one or more tag with fixed string “parameter”. This element can define the following attributes:

• name. This is the parameter identifier. Names cannot contain spaces;
• description. Short definition or meaning for the parameter;
• type. The data type of the parameter. Possible values are system-independent type of values, only

intended for formatting validations. The data types supported by configuration files are the following:

NB Even if the configuration filenames violate the file naming requirements described
in section 2.2.3, the Configuration File Logical name shall be as specified above

Page 18/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

Simple types
- STRING. A string of alphanumeric characters with a size not greater than 255.
- INTEGER. Integer number (no decimal part) between -231 and 231-1
- FLOAT(legacy note);7. Decimal number as per IEEE 754 between 5.0 × 10-324 and 1.7
× 10308 (positive or negative)

- BOOLEAN. TRUE or FALSE.
- TIME A string according to CCSDS ASCII time format with millisecond or

microsecond precision e.g. 2020-11-21T13:45:12.123 or 2020-11-21T13:45:12.123456
- FILE. Path to a file in the local file system (either absolute or implicitly relative to

E2E_HOME environment variable).
- FOLDER. Path to a folder in the local file system (either absolute or implicitly relative

to E2E_HOME environment variable).
Structured types

- ARRAY. A generic array of elements (up to 3 dimensions), where each dimension may
have distinct sizes.

- MATRIX. A special case of ARRAY of two dimensions in which all rows (sub-elements)
have the same size8.

elementType
- used in complex types to specify the type of the actual data. Its value can be any of the

simple types described above. Note that heterogeneous arrays (with data elements
having different elementType values, like a row of INTEGERs and a row of STRINGs)
are not supported

- value. (UNSUPPORTED) This is the numerical, string or file location value of the parameter
(legacy note);9

- units. Physical units of measurements if applicable. This attribute is optional;
- min. Numerical minimum value for the parameter. Only applicable for FLOAT and INTEGER

types.
- max. Numerical maximum value for the parameter. Only applicable for FLOAT and INTEGER

types.
- dims. Size of the dimensions. For example: “5” defines a [5x1] vector of five elements (arranged

in a row); and “4 3” is a matrix of [4x3] elements.
By convention, to describe a two dimensional type the first dimension refers to columns and the
second to rows. In case of a tree dimensional type, the dimension referring to layers becomes the
last, as in [column x row x layer].

For scalar variables, the “dims” attribute can be avoided.

To support structured parameters and matrices (or more generically arrays of elements) the following syntax
is prescribed (legacy note)10.

7 The Java types “int” and “double” fix the range of values in INTEGER and FLOAT parameters
8 The dims for a MATRIX variable are specified as "columns rows", instead of having dims="rows" in the
outer element and dims="columns" in each row
9 Specification of the parameter values via the Value attribute is a legacy deprecated syntax used up to
OpenSF version 3.3 and not supported by the present version of the ICD and by newer version of openSF.
10 The simplified format for vector/matrices (based on simple concatenation of types) defined in ICD version
1.1 and accepted by openSF up to version 3.4 is deprecated by the current version of the ICD and by newer
version of openSF and not to be used.

Page 19/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

1. to represent a vector, arranged in a row (with dimension [5x1])

<MyModule_Local_Configuration version="01.03.00">
 <parameters>

 <parameter name="myV" description="example 1" type="ARRAY" elementType="INTEGER" dims="5">
 1 2 3 4 5
 </parameter>

 </parameters>
</MyModule_Local_Configuration>

2. to represent a matrix (with dimension [4x3]) (see attribute note)11

<MyModule_Local_Configuration version="01.03.00">
 <parameters>

 <parameter name="MyMatrix" description="example 2a" type="MATRIX" dims="4 3">
 <parameter name="v1" type="ARRAY" elementType="INTEGER">1 2 3 4</parameter>
 <parameter name="v2" type="ARRAY" elementType="INTEGER">5 6 7 8</parameter>
 <parameter name="v3" type="ARRAY" elementType="INTEGER">9 10 11 12</parameter>
 </parameter>

 </parameters>
</MyModule_Local_Configuration>

3. to represent a two-dimensional generic array (considering the variable number of columns, the

enclosing dimension is [6x4])

<MyModule_Local_Configuration version="01.03.00">
 <parameters>

 <parameter name="spectrum" description="example 3a" type="ARRAY" dims="4">
 <parameter name="v1" type="ARRAY" elementType="INTEGER" dims="3">1 2 3</parameter>
 <parameter name="v2" type="ARRAY" elementType="INTEGER" dims="6">4 5 6 7 8 9</parameter>
 <parameter name="v3" type="ARRAY" elementType="INTEGER" dims="5">10 11 12 13 14</parameter>
 <parameter name="v4" type="ARRAY" elementType="INTEGER" dims="1">15</parameter>
 </parameter>

 </parameters>
</MyModule_Local_Configuration>

4. to represent a three-dimensional generic array (considering the variable number of columns, the

enclosing dimension is [5x4x2])

<MyModule_Local_Configuration version="01.03.00">
 <parameters>

 <parameter name="OuterArray" description="example 3b" type="ARRAY" dims="2">
 <parameter name="innerArray1" type="ARRAY" dims="4">
 <parameter name="v1a" type="ARRAY" elementType="INTEGER" dims="1">1</parameter>
 <parameter name="v2b" type="ARRAY" elementType="INTEGER" dims="3">2 3 4</parameter>
 <parameter name="v3c" type="ARRAY" elementType="INTEGER" dims="2">5 6</parameter>
 <parameter name="v3d" type="ARRAY" elementType="INTEGER" dims="1">7</parameter>
 </parameter>

11 Considering the current implementation openSF/OSFI for structured elements, the name and
description attributes can only be used to access the outermost <parameter> element. When associated to
inner elements these attribute cannot be accessed with the existing openSF/OSFI API and are ignored.

Page 20/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

 <parameter name="innerArray2" type="ARRAY" dims="3">
 <parameter name="v1e" type="ARRAY" elementType="INTEGER" dims="2">1 2</parameter>
 <parameter name="v2f" type="ARRAY" elementType="INTEGER" dims="5">3 4 5 6 7</parameter>
 <parameter name="v3g" type="ARRAY" elementType="INTEGER" dims="2">8 9</parameter>
 </parameter>
 </parameter>

 </parameters>
</MyModule_Local_Configuration>

For vector/matrix types the values consists of blank-separated list of values by rows. To fully describe a
parameter of a structured type, the attribute elementType is used to define the element type. Attribute
elementType may have, as value, all currently supported parameter simple types.

String vectors must enclose each element in single quotes. For example “’a string’ ‘second string’
‘last string’”. The situation for an array of strings can be handled with generality, as it is possible to
manage strings that included blanks or commas. For example, for a case with dims="1 3" (an array of three
strings) these are the possible options:

• Value set to ’PMT’ ‘PMT’ ‘PMT’. OK. 3 values
• Value set to P T P T P T Invalid. 6 values in a vector of size 3

Parameters of type FILE/FOLDER can include also environment variables explicitly, by enclosing their name
in curly braces e.g. ${E2E_HOME}/var/tai-utc.data). A FILE/FOLDER parameter value expressed as a relative
path is implicitly considered as being prefixed by “${E2E_HOME}/”.

A compliant orchestrating framework or associated functions automatically resolve FILE/FOLDER
parameters, by substituting explicit or implicit environment variables and resolving the path to an absolute
path. When retrieving these type of parameters from the configuration file, a simulation module will therefore
always access an absolute path.

Validation Schemas
An XSD schema can be used by the module to validate the module configuration files.
The freedom allowed in the use of group names in XML configuration files makes impossible the creation of a
unique XSD schema file valid to all of them. Note that module developers are able to create as many groups as
they desire and there are no restrictions in the number of nesting levels.

Adoption of Earth Observation File Format
The use of the Earth Observation File Format [EO-FFS] is oriented to ground segment software in a near-
operational environment. This format is not used for the XML configuration files defined in this interface but
its use is recommended as a standard, harmonised format for the input/output files and data used by each
module. This is strongly recommended, in particular, for the elements that simulate the ground processing
(e.g. Level 1/Level 2 Processor Prototypes).

Note that if any of the software modules makes used of Earth Observation Mission SW CFI libraries [EO-CFI]
e.g. to support orbital propagation, visibility calculations and read/write of XML files, then these files are fully
compliant with the [EO-FFS].

Page 21/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

2.3 Designing E2E modules for Time Based orchestration

This section prescribes how to define the standard configuration interface of each module in order to allow
invocation in a time based fashion from any complaint orchestrating framework.

In a real operational satellite system, the behaviour and stimuli presented to the satellite are a function of time
and a dynamic function of the operational control by the ground or on-board. Depending on instrument mode,
attitude, position different stimuli are available and different on-board functions active (e.g. different
observation modes, calibration, downlink, attitude determination, etc). Being able to flexibly drive the modules
of an E2E simulation from the infrastructure as if flying the actual mission allows an efficient execution of the
simulation, the assessment of mission performance in representative operational scenario, a quick way for test
data generation and in general gives the freedom to explore different operational concepts in an automated
way and not restricted to feeding static test stimuli to the simulation modules and avoiding the need to
hardcode dynamic behaviour inside static data.

The Time based scenario execution implements the notion of time driven execution of a simulation whereby
each simulation module is invoked in a sequence of time segment. The implementation was designed to
maintain interfaces compatibility with modules compliant with previous orchestrating infrastructures
operating mode (e.g. openSF up to version 3.3).
The interface described in this ICD therefore (a) keeps the previous approach for invoking a module (as per
section 2.1.2); (b) naturally extends existing configuration files (defined in section 2.2.6) to include additional
time related parameters.

This section introduces the concepts and the definition in term of the interfaces also with regards to the
reference [OPENSF] orchestrating infrastructure that implements this ICD.

2.3.1 Concepts

E2E chain execution categories
To guide the time driven execution each module in an E2E chain are classified in one of two execution
categories: Simulation and Processing. A module of the “Simulation” category can be run either in time-driven
execution or in data-driven execution, while a module of the “Processing” category is instead run only in data-
driven execution.

Time-driven vs. Data-driven execution
Each overall E2E chain/simulation execution may be performed either in time-driven or data-driven execution
(legacy note)12
When in time-driven execution the modules categorised as “Simulation” shall be executed in time-driven
fashion (iterating in time) while in data-driven execution the same modules are executed in data-driven
configuration (driven by data availability), on the other hand the modules categorised as “Processing” are
always executed in data-driven configuration regardless of the overall simulation execution strategy therefore
only for “Simulation”-type modules can time-driven configuration be applied.

12The “snapshot” execution strategy implemented in OpenSF up to version 3.2 where the whole processing
chain is run without time reference - “static” mode - is a special case of the data-driven execution

Page 22/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

Module-execution modes
Each module may have several associated module-execution modes as identified by its developer. Each
module-execution mode is defined by a given set of parameters affecting the functions of that module, as
example a parameter could be used to set the module to perform calibration simulation instead of
measurements. For a given module with several available modes there may be parameters which are mode-
independent (so applicable to all modes) and parameters, which are mode-specific. Nominally a mode is
defined by a specific assignment of values to their corresponding mode parameters and these shall be passed
by the orchestrating infrastructure to the module, it is however possible to manually override via the
infrastructure these pre-defined values in a given execution although this is transparent to the module.

Timeline Segment
A timeline is composed by a time-ordered sequence of non-overlapping time segments, each defined by:

a. a start time;
b. one among: duration, number of steps and step size or end time;
c. a list of module-execution modes (one per each module of the E2E chain);
d. a status (active/inactive);
e. an (optional) set of overridden module execution mode parameters.

Simulation execution
In time-driven mode the orchestration framework invokes, for each timeline segment, the (simulation)
modules in the order defined by the setup, each time passing as input the parameters of the selected mode
defined by the timeline segment being executed. The process is repeated until the end of the timeline.

The time driven related parameters are passed to the modules thru the global configuration file grouped in an
xml tag. The mode specific parameters are passed to each module thru the local configuration file grouped in
an xml tag with the mode name. If the mode specific parameters were overridden in the timeline definitions
this shall be signalled with an xml attribute in the mode group tag.

The orchestrating framework shall manage a single working directory for a simulation execution in time-driven
execution (labelled with the execution timestamp). Within this working directory there shall be a separate
working folder for each timeline segment (labelled with the simulation timestamp). A simulation execution in
data-driven execution shall use a single working folder were the several executions of each given module shall
access their inputs and outputs.

Page 23/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

2.3.2 Timeline Configuration
The Timeline configuration is implemented via a file containing the information defining the time-driven
execution of a simulation in a self-contained manner, i.e., containing all required parameterisation that allows
the orchestrating infrastructure to execute and replicate a given time based simulation.

Figure 2-3 - E2E simulation with processing modules and simulation modules driven in time

The timeline configuration file is an XML file compliant with the configuration files format (defined in section
2.2.6) and with the logical structure shown in Error! Reference source not found..

This file is not needed/present if the simulation is not time driven.

The Timeline configuration file contains the following set of data:

a. the generic time parameters;
b. the list of time segments;

Page 24/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

These 3 elements are described here below:

A. The generic time parameters are the following:
o InitialEpoch. A Time indicated the start time of the entire time driven execution;
o DefaultTimeSegmentDuration. An Integer with the default duration (in seconds) to apply

when adding a new time segment to the timeline.

B. A time segment is defined by the following parameters:
o TimeSegmentStartTime. A Time indicating the start time of the time segment;
o TimeSegmentDuration. An Integer indicating the duration of the time segment (in seconds);
o Active. An Boolean indicating whether the time segment is to be executed;
o A set of module execution modes, identifying the mode in which each module shall execute

during that time segment. It may optionally include a set of parameters re-defining module
execution mode parameters used when the user intends to manually override the default values
for a module execution mode.
Each module execution mode is defined by the set of specific parameters grouped in an xml
tag with the mode name.

The root element of the timeline configuration files shall be <Timeline>.

An example of a timeline configuration file is here below:

timeline_scenario.xml

<?xml version="1.0" encoding="UTF-8"?>
<Timeline version="00.15.33">
 <TimeConfiguration>
 <parameter name="InitialEpoch" description="Time Driven Execution Start Time"
 type="TIME">20150101T00:00:00.000</parameter>
 </TimeConfiguration>

 <TimeSegments>

 <TimeSegment>
 <parameter name="TimeSegmentStartTime" description="Time Segment Start Time"
 type="TIME">20150101T00:00:00.000</parameter>
 <parameter name="TimeSegmentDuration" description="Time Segment Duration"
 type="INTEGER" units="second">300</parameter>
 <parameter name="Active" description="Time Segment Status" type="BOOLEAN">TRUE</parameter>
 <ModuleExecutionModes>
 <GeometryModule>
 <Nominal></Nominal>
 </GeometryModule>
 <SceneGenerator>
 <Nominal status="override">
 <parameter name="toa_factor" type="FLOAT">1</parameter>
 <parameter name="pol_factor" type="FLOAT">0.02</parameter>
 </Nominal>
 </SceneGenerator>
 </ModuleExecutionModes>
 </TimeSegment>

 <TimeSegment>
 <parameter name="TimeSegmentStartTime" description="Time Segment Start Time"
 type="TIME">20150101T00:05:00.000</parameter>
 <parameter name="TimeSegmentDuration" description="Time Segment Duration"
 type="INTEGER" units="second">10</parameter>

Page 25/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

 <parameter name="Active" description="Time Segment Status" type="BOOLEAN">FALSE</parameter>
 <ModuleExecutionModes>
 <GeometryModule>
 <Manouvre></Manouvre>
 </GeometryModule>
 <SceneGenerator>
 <Nominal></Nominal>
 </SceneGenerator>
 </ModuleExecutionModes>
 </TimeSegment>

 </TimeSegments>

</Timeline>

2.3.3 Module Configuration
The parameters related to the time driven execution mode are passed to the modules thru the configuration
file(s) grouped in the xml tag <TimeExecution>.

Global Configuration File
The fixed set of global time driven related parameters included in the global configuration file are the following:

o InitialEpoch. A Time indicated the start time of the entire time driven execution scenario.

global.xml

<?xml version="1.0" encoding="UTF-8"?>
<Global_Configuration version="01.00.00">

 <TimeConfiguration>

 <parameter name="InitialEpoch" description="Time Driven Execution Start Time"
 type="TIME">20150101T00:00:00.000</parameter>

 </TimeConfiguration>

</Global_Configuration>

Note that if time-driven execution is not implemented or supported by modules the corresponding time-related
entries in the Global Configuration file might not be present.

Local Configuration File
The fixed set of parameters related to the module-specific time driven execution and that are included in each
local configuration file are the following:

o ModuleExecutionMode. A String representing the module execution mode.
o TimeSegmentStartTime. A Time indicating the start time of the specific timeline execution step

for the given module.
o TimeSegmentDuration. The seconds that define the duration of the time step to be executed

by the module.

Page 26/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

The mode specific parameters are passed to the module thru the existing local configuration file grouped in an
xml tag with the mode name. If the module specific parameters were overridden in the timeline definitions this
shall be signalled with an xml attribute in the mode group tag.

Page 27/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

localA.xml

<?xml version="1.0" encoding="UTF-8"?>
<ModuleA_Local_Configuration version="04.15.33">

 <TimeConfiguration>
 <parameter name="ModuleExecutionMode" description="Module Execution Mode"
 type="STRING">Maintenance</parameter>
 <parameter name="TimeSegmentStartTime" description="Time Driven Execution Start Time"
 type="TIME">20150101T00:00:00.000</parameter>
 <parameter name="TimeSegmentDuration" description="Execution Length"
 type="INTEGER" units="second">300</parameter>
 </TimeConfiguration>

 <parameter name="Lambda" description="Central Wavelength"
 type="FLOAT" units="nm">500.3</parameter>
 <parameter name="ErrorThreshold" description="Threshold of the output RMS error"
 type="FLOAT" units="Km">1.0</parameter>

 <ModuleExecutionModes>
 <Off>
 <parameter name="calibration" description="text" type="BOOLEAN">TRUE</parameter>
 </Off>
 <Maintenance status="override">
 <parameter name="angle" description="text" type="FLOAT">0.5</parameter>
 </Maintenance>
 </ModuleExecutionModes>

</ModuleA_Local_Configuration>

Note that if time-driven execution is not implemented or the module is modeless, the corresponding time-
related entries in the Local Configuration file will be not present.

Page 28/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

3 GUIDELINES FOR DEVELOPMENT AND INTEGRATION OF
E2E SIMULATORS

3.1 Coding guidelines and potential pitfalls
 Developers should have in mind the following points when coding modules:
• Memory handling is responsibility of the module. This ICD does not require that a compliant orchestrating

framework manages the memory assignments and destroys any data structure created by the module;

• A module can create child processes, but their management is responsibility of the parent module and not
of the orchestrating framework;

• This ICD does not require that a compliant orchestrating framework detects when a module execution is
“halted” or in an infinite loop unless a non-zero code is returned on exit. It is therefore recommended that
logging information (see section 2.2.4) are issued around every two seconds to allows the orchestrating
framework to update the progress bar informing, the user that there is no problem and to provide a more
user friendly simulation environment.

3.2 E2E simulator development walkthrough
This section gives an example of the development process for a generic E2E simulation using modules
compliant with this ICD.

 The steps given in this section can be taken as guidelines for a correct integration of an E2E simulator. The
simulation chain used along this section is depicted in Figure 3-1.

Figure 3-1: Fictitious Simulation Scenario

There are a series of steps that a developer has to address in order to accomplish a simulation goal and integrate
all the system into a compliant orchestrating framework.

a) Identify the elements involved in the simulation scenario. In this example are:
Ø Two modules – Module A and B (yellow boxes).
Ø Three product files – Input, Intermediate and Output (green boxes).
Ø Three XML configuration files – a global and two local files (blue boxes).

Module A
moduleA.exe

Configuration
Interface

localA.xml global.xml

Input
input.txt

Intermediate
interm.txt Module B

moduleB.exe

Configuration
Interface

Output
output.txt

localB.xml global.xml

Log
Standard Output

Log
Standard Output

Page 29/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

b) Provide a detailed description of the simulation logic. The one depicted in the example is as

follows:
Ø The input for the simulation chain is the file “input.txt”, it is also the input for Module A.
Ø There are two modules, one after the other, in the simulation (Module A and Module B). These

modules execute a set of algorithms and are callable by command line invocation.
Ø Module A generates an output file (“interm.txt”) that Module B accepts as input.
Ø The output of the simulation chain is the file generated “output.txt” and is considered as the result

product in the chain.
Ø Module A and Module B have a configuration interface requiring two files, one local (“localA.xml”

and “localB.xml”) and one global that is common to both modules (“global.xml”). These
configuration files contain the simulation parameters that govern the internal functionality of
modules. The ones relevant for all modules in the simulation shall be identified and assigned to
global configuration file.

Ø Identify which input data files are considered input files and which ones (if any) can be passed to
the modules as path within the Local Configuration file noting the disadvantages mentioned in
section 2.2.2

Ø The log messages system provides information about the current state of the modules during a
simulation run.

c) Develop the modules following the architecture defined in the design phase. The

development process for the example shall be:

Ø Build the configuration files with the simulation parameters. Simplified example configuration

files are shown here below.

global.xml

<?xml version="1.0" encoding="UTF-8"?>
<Global_Configuration version="01.03.07">

 <parameter name="Nbands" description="Number of Bands" type="INTEGER">11</parameter>
 <parameter name="MissionID" description="Mission Identifier" type="STRING">Sentinel3</parameter>

</Global_Configuration>

localA.xml

<?xml version="1.0" encoding="UTF-8"?>
<ModuleA_Local_Configuration version="04.15.33">

 <parameter name="ErrorThreshold" description="Threshold of the output RMS error"
 type="FLOAT" units="Km">1.0</parameter>

</ModuleA_Local_Configuration>

localB.xml

<?xml version="1.0" encoding="UTF-8"?>
<ModuleB_Local_Configuration version="6.15.00">

 <parameter name="Lambda" description="Central Wavelength"
 type="FLOAT" units="nm">500.3</parameter>

</ModuleB_Local_Configuration>

Page 30/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

Ø Implement the modules input/output interfaces. This step involves the reading of input files and

configuration files (XML parsing), write the output files and the implementation of the command
line calling interface as well as fetching the auxiliary files defined within the Local Configuration
file..

Ø Implement the module logic, the algorithm.
Ø Perform Unit testing for the modules.

Once the development of the tasks above is completed, the test of manually running the simulation chain is
possible the following commands:

> moduleA.exe global.xml,localA.xml input.txt interm.txt

> moduleB.exe global.xml,localB.xml interm.txt output.txt

d) Define the simulation scenario within the orchestrating framework.

e) Verify the integration within the orchestrating framework by executing the simulation

using the framework.

Page 31/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

3.3 Example Use Cases (time-driven)

Use Case 1: E2E simulation including both simulation modules and processing modules, when the simulation
modules are driven in time-based synchronisation

From a conceptual point of view the expected behaviour of an execution in such scenario corresponds to what
is depicted in Figure 3-2.

Figure 3-2 - E2E simulation with processing modules and simulation modules driven in time

Note that it is outside the orchestrating framework’s orchestration scope to understand the events of "Data
available for processing" (the "stars" in the figure above). These events depend on the processing chain
definition as well as on the actual outputs of each module or even the particular implementation of the modules.
Therefore the emulation of this flow can be performed in the following alternative ways:

a) always execute the entire processing chain (S1 -> P2) at each time moment, but P1+P2 shall only do
"meaningful" computation if S3 has produced the consolidated outputs (identifiable by P1 through a
given mask);

b) Execute the simulation in two separate steps:
i. execute the time-driven execution, where the Simulation Module’s part of the chain is

executed, with one independent execution for each time moment;

Page 32/32
ESA generic E2E simulator Interface Control Document
Date 02-09-2020 Issue 1 Rev 3.0

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

ii. after concluding the above execution, trigger the data-driven execution, where the Processing
Modules part of the chain are executed, configured to have as input the output of the previous
time-driven execution;

Either way the underlying idea is that the responsibility for the "handover" between Simulation modules and
Processing modules is either on the modules implementation or the operator, not on the orchestrating
framework.

Use case 2: Multi-Instrument E2E simulation including both simulation modules (in time-driven execution)
and processing modules, with different timelines for each instrument

In the example of Figure 3-3 consider that INSTR1 is in Nominal mode for 2 hours while INSTR2 changes every
10 second between CAL and NOM_A, NOM_B, NOM_C modes.

Figure 3-3 - Multi-Instrument E2E simulation with different timelines for each instrument

The shown E2E chain shall be achieved by having three separate simulations (one for Instr1, one for Instr2 and
one for the "Processing" modules) executed separately and in sequence by the operator.

NB: this is independent of having or not the time-driven orchestration: a "static" version of the multi-
instrument scenario depicted also requires separate simulation executions.

