SAMIEdit - Getting Started About mission input files

esa

SAMIEdit: Input Mission Files - Overview

* Each satellite mission makes use of several input files:

- ✓ Orbit File (in folders OSF, POF or TLE)
- ✓ Attitude File (in folders ADF or ATT)
- ✓ Instrument Swath Definition File (in folder SDF) → Optional, it is not required if only the satellite /orbit ground-track is going to be displayed)

* Files must be copied into the relevant folder

🐻 Config.xml		bulletin_B_mod.txt		AEOLUS	Þ	EOCFI_lds.txt		📄 ADF	Þ
📄 Projects	►	DUMMY copy	•	E CHEOPS	•	GroundStations_Ids.txt		ATT 📄	•
🚞 Repos	►	🚞 Earth	•	COMMON	•	SMOS		OSF	•
តាា SAMIEdit.app		🐻 GroundStations.xml		CRYOSAT2	•	💿 smos_def_osx.bundle		POF	•
		📄 Satellites	•	DUMMY	•	THRUSTERS_SEQ	▶	SDF	•
				EARTHCARE	•	🐻 Version.xml		TLE 📄	•
				🚞 METOPSGA	•		L		
				METOPSGB	•				
				E SENTINEL1	•				
				SENTINEL2	•				
				E SENTINEL3	•				
				SENTINEL5P	•				
				SENTINEL6	•				
				EOSAT	•				
				SMOS	•				
				SWARM	Þ				

SAMIEdit: Input Mission Files - Orbit Scenario Files

esa

Orbit Scenario Files (OSF) contain orbit definition parameters

SAMIEdit: Input Mission Files - Predicted Orbit Files

Predicted Orbit Files (POF) contain a list of Orbit State Vectors

<Data_Block type="xml"> <List_of_OSVs count="4802"> <0SV> <TAI>TAI=2020-08-03T01:14:51.407980</TAI> <UTC>UTC=2020-08-03T01:14:14.407980</UTC> <UT1>UT1=2020-08-03T01:14:14.193318</UT1> <Absolute Orbit>+54704</Absolute Orbit> <X unit="m">-6044774.282</X> <Y unit="m">+3719688.950</Y> <Z unit="m">-0000000.000</Z> <VX unit="m/s">+0422.584191</VX> <VY unit="m/s">+0659.887167</VY> <VZ unit="m/s">+7492.620884</VZ> <Ouality>000000000000/</Ouality> </0SV> <0SV> <TAI>TAI=2020-08-03T02:54:06.071897</TAI> <UTC>UTC=2020-08-03T02:53:29.071897</UTC> <UT1>UT1=2020-08-03T02:53:28.857287</UT1> <Absolute_Orbit>+54705</Absolute_Orbit> <X unit="m">-3920772.366</X> <Y unit="m">+5916495.226</Y> <Z unit="m">-0000000.000</Z> <VX unit="m/s">+0660.766528</VX> <VY unit="m/s">+0420.970965</VY>

<VZ unit="m/s">+7492.474004</VZ>

<Quality>000000000000/Quality> </0SV>

- Predicted or Restituted Orbit Files are made available for ESA missions by ESOC FD or by PDGS
- Alternatively, the executable tool <u>TLE2ORBPRE</u> transforms a TLE orbit file to Predicted Orbit File format (see next slide for details) l ink:

https://eop-cfi.esa.int/index.php/applications/tools/ command-line-tools-tle2orbpre

SAMIEdit: Input Mission Files - TLE Files

Two-Line Elements Orbit Files (TLE) contain a set of orbit parameters

CHEOPS 1 44874U 19092B 19354.15736652 -.00000046 00000-0 00000+0 0 9995 2 44874 98.2275 175.8674 0007499 299.9362 60.1092 14.56925462 258 Example of TLE file, saved as tle_20_DEC_2019_1.txt

- * Two-Line Element (only for TLEs from CELESTRAK website, with mission name CRYOSAT 2, SMOS, SWARM A/B/C, SENTINEL-1A, SENTINEL-1B, SENTINEL-2A, SENTINEL-2B, SENTINEL-3A).

EARTH OBSERVATION SYSTEM SUPPORT

SAMIEdit: Input Mission Files - Attitude

- * Attitude Definition File (ADF)
 - E.g. Nominal Attitude Law
 - ✓ Geocentric Pointing (=0)
 - ✓ Local Normal Pointing (=1)
 - Local Normal Pointing + Yaw Steering(=2)
 - ✓ Zero-Doppler + Yaw Steering(=3)
- * Generic Attitude File (ATT)
 - ✓ It is also possible to supply attitude quaternion data (in EO XML GS file format) through the "ATT" folder
 <List_of_Quaternions count="61">
 - ✓ Useful to display transitions between attitude modes

List_of_Quaternions count="61"> <Quaternions> <Time ref="UTC">UTC=2010-03-10T00:00:00.000000</Time> <Q1>0.139449</Q1> <Q2>0.972486</Q2> <Q3>-0.171644</Q3> <Q4>0.073228</Q4> </Quaternions> <Time ref="UTC">UTC=2010-03-10T00:00:10.000000</Time> <Q1>0.139772</Q1> <Q2>0.971549</Q2> <Q3>-0.176772</Q3> <Q4>0.072851</Q4> </Quaternions>

SAMIEdit: Input Mission Files - Swath Definition (I)

* Instrument Swath can be defined based on:

- ✓ Elevation Angle
- ✓ Incidence Angle
- ✓ Swath Width

SAMIEdit: Input Mission Files - Swath Definition (II)

* Instrument Swath can be defined based on:

- ✓ Elevation Angle
- Incidence Angle
- ✓ Swath Width

<List_of_Swath_Points count="3"> <Swath_Point> <Incidence_Angle_Geometry> <Azimuth unit="deg">+270.000000</Azimuth> <Incidence_Angle unit="deg">+040.000000</Incidence_Angle> <Altitude unit="m">000000.000</Altitude> </Incidence_Angle_Geometry> </Swath_Point> <Swath Point> <Incidence_Angle_Geometry> <Azimuth unit="deg">+090.000000</Azimuth> <Incidence_Angle unit="deg">+040.000000</Incidence_Angle> <Altitude unit="m">000000.000</Altitude> </Incidence_Angle_Geometry> </Swath_Point> <Swath_Point> <Incidence_Angle_Geometry> <Azimuth unit="deg">+090.000000</Azimuth> <Incidence_Angle unit="deg">+040.000000</Incidence_Angle> <Altitude unit="m">000000.000</Altitude> </Incidence_Angle_Geometry> </Swath_Point> </List_of_Swath_Points>

SAMIEdit: Input Mission Files - Swath Definition (III)

* Instrument Swath can be defined based on:

- ✓ Elevation Angle
- ✓ Incidence Angle
- ✓ Swath Width

SAMIEdit: Mission Input Files - User Support

* SAMI User Support contact e-mail

sami@eopp.esa.int

* For further details on the application interface and available features, please have a look to the SAMI Quick Start Guide

https://eop-cfi.esa.int/Repo/PUBLIC/DOCUMENTATION/APPLICATIONS/ SAMI/SAMIEdit_Quick_Start_Guide_Desktop_v1_4_0_6.pdf