
ESA UNCLASSIFIED – Releasable to the Public

ESA ESTEC
Keplerlaan 1

2201 AZ Noordwijk
The Netherlands

Prepared by EOP-PEP team

 ESA

Document Type TN - Technical Note

Reference

Issue/Revision 0 . 2

Date of Issue 18/09/2024

Status Draft

ESA UNCLASSIFIED – Releasable to the Public

GUIDELINES FOR PYTHON DEVELOPMENT

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 2/24

APPROVAL

Title Guidelines for Python development

Issue Number 0 Revision Number 2

Author EOP-PEP team Date 18/09/2024

Approved By Date of Approval

CHANGE LOG

Reason for change Issue Nr Revision Number Date

Initial version 0 1 25/03/2024

Second revision 0 2 18/09/2024

CHANGE RECORD

Issue Number 0 Revision Number 1

Reason for change Date Pages Paragraph(s)

 Initial version 25/03/2024

Issue Number 0 Revision Number 2

Reason for change Date Pages Paragraph(s)

Second revision following contributions and

comments by EOP-PEP team

18/09/2024

DISTRIBUTION

Name/Organisational Unit

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 3/24

Table of Contents

1. Introduction .. 4

1.1. Reference Documents ... 4

2. Development Workflow ... 5

2.1. Organising the source code and packaging the application ... 6

2.2. Virtual environments .. 7

2.3. Writing, running, and debugging Python code .. 9

2.4. Test-driven development ... 12

2.5. Configuration management ... 14

2.6. Deployment .. 14

3. Quality and Performance .. 15

3.1. Code quality ... 15

3.2. Performance optimisation .. 16

4. Recommended packages ... 20

4.1. Packages based on Python array types .. 21

4.2. Fast DataFrame-type computations .. 22

4.3. Geo-spatial and satellite data processing tools .. 23

5. Conclusions ... 24

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 4/24

1. INTRODUCTION

Python is a widely used and versatile programming language that offers many benefits such

as readability, simplicity, and a rich set of libraries. However, to ensure the quality, consistency,

and maintainability of Python code, it is important to follow some best practices and standards.

This document provides a set of guidelines for Python development, covering the following

topics:

- Code writing and development workflow (tools and environment)

- Performance optimization

- Delivery (packaging, versioning, artifact management)

- Recommended python packages for most common development areas

This document, designed to be applied to projects of medium to big size, aims to assist Python

developers in creating code that is easier to maintain and improve performance. It also seeks

to unify Python development and software products, as much as possible, for the ESA Earth

Observation Directorate for activities related to Payload Data Ground Segments (especially

Data Processors) and for End-to-end Mission Performance Simulator Chains while ensuring

the best use of common features.

The document is based on the official Python documentation, the PEP (Python Enhancement

Proposal) standards, and the best practices and conventions followed by the Python

community. The document assumes that the reader has a basic knowledge of Python and its

syntax and is familiar with the common tools and packages mentioned. The document also

provides links and references to more detailed and specific resources for further learning and

exploration.

1.1. Reference Documents

The following table specifies the reference documents that, while not binding, provide

additional information.

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 5/24

Table 1: Reference documents

Reference Code Title Issue

[E2E-ICD] PE-ID-ESA-GS-464 ESA Generic
E2E Simulator
ICD

1.4.2

[PEP8] https://peps.python.org/pep-0008/ PEP 8 – Style
Guide for Python
Code

[PEP257] https://peps.python.org/pep-0257/ PEP 257 –
Docstring
Conventions

[PEP427] https://peps.python.org/pep-0427/ PEP 427 – The
Wheel Binary
Package Format
1.0

2. DEVELOPMENT WORKFLOW

A good development workflow is essential for writing, testing, debugging, and deploying Python

code efficiently and effectively. A development workflow typically involves the following steps:

1. Organising the source code and packaging the application.

2. Setting up a virtual environment to isolate the project dependencies from the system-

wide packages and installing and managing the required packages and libraries for the

project.

3. Writing, formatting, and documenting the code following the Python style guide [PEP8]

and docstring conventions compatible with an automatic documentation generator

unique for all the Python deliverables (e.g. compatible with the Sphinx documentation

generator such as NumPy style docstring format, Google style or reStructuredText with

Sphinx extensions).

4. Running and debugging the code using an interactive interpreter, a code editor, or an

integrated development environment (IDE).

5. Testing the code within the whole project using a single testing framework and tools,

such as unittest, pytest, or nose2.

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 6/24

6. Versioning and tracking the changes in the code using Git as a version control system.

7. Distributing and deploying the code as a package, a module, a script, or an executable

file, depending on the intended use and audience.

There are different tools and methods that can be used to implement each step of the

development workflow. In this document, we will give an overview of the most common tools

and provide recommendations on which ones to use in different contexts.

2.1. Organising the source code and packaging the application

One of the first steps in developing a Python application/package is to organise the source

code in a way that is easy to maintain, test, and distribute. There are two common layouts for

organising the source code: flat layout and src layout. A detailed comparison of the two layouts

can be found on the packaging.python.org website.

The flat layout is simpler and more straightforward, the various configuration files and import

packages are all in the top-level directory, but it can cause some problems when importing

modules or running tests. The src layout is more robust and reliable, but it requires some extra

configuration and changes in the pyproject.toml/setup.py file. In the src layout, the code that is

intended to be importable is moved into a subdirectory, e.g.:

.

├── README.md

├── noxfile.py

├── pyproject.toml

├── setup.py

├── src/

│ └── awesome_package/

│ ├── __init__.py

│ └── module.py

├── tests/

│ └── test_module.py

└── tools/

 ├── generate_awesomeness.py

 └── decrease_world_suck.py

https://packaging.python.org/en/latest/discussions/src-layout-vs-flat-layout/

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 7/24

The recommended organisation is the src layout.

Once the source code is organised, and the development is completed, the next step is to

package the application/package so that it can be installed, distributed, and deployed.

Packaging involves creating a pyproject.toml file that contains the metadata and

dependencies of the application, as well as other files such as README, LICENSE,

MANIFEST, etc., and, if the package provides binary extensions, a setup.py to build them.

The pyproject.toml file allows the application/package to be built and installed using the

setuptools library, which is the standard tool for packaging Python applications. More

information on how to create a pyproject.toml file and package a Python application can

be found on the packaging.python.org website.

The packaging system as base minimum should be able to produce both source packages

(tarballs) and binary packages in “wheel” format (see [PEP427] and updates specifications in

packaging.python.org).

2.2. Virtual environments

A virtual environment isolates dependencies required by a software from the rest of the system.

The use of virtual environments ensures a stable, reproducible, and portable environment

during development and deployment.

The native way for setting up and managing virtual environments is to use the tools included

in the Python Standard Library: venv and pip. venv is a small tool that creates and

activates/deactivates virtual environments. pip is a tool to download and install dependencies

(most notably from the Python Package Index, but it can handle other sources as well). These

tools are very basic but work well for pure Python dependencies. pip can handle non-Python

dependencies (e.g. C-libraries such as NumPy): if the package repository has pre-built binaries

for the target environment (Python version, operating system, hardware architecture) it will

download those, otherwise it will attempt to download the source code and build the package.

For the latter (building from source), pip assumes that a suitable compiler and libraries are

installed, which makes this a fragile workflow.

https://packaging.python.org/tutorials/packaging-projects/
https://packaging.python.org/tutorials/packaging-projects/

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 8/24

This problem has been addressed by creating repositories that contain pre-compiled binary

packages for all platforms, but notably also provide auxiliary dependencies such as compilers.

An auxiliary tool is then used by the developer or end-user to retrieve and install the packages

and their dependencies, like pip. Among such package managers, conda is probably the most

well-known and mature one. This tool works with the repositories from Anaconda Inc., a

commercial company that requires a license to access their repositories. The conda tool

itself is open-source, and an alternative, license-free repository is maintained by conda-forge

(they also provide mamba, an open-source re-implementation of conda and fully compatible).

Projects must, as baseline, use venv + pip to manage virtual environments and dependencies.

The required tools for compilation of non-Python sources (e.g. compilers) must be properly

documented. Projects may use other tools to simplify the installation process for end users

(e.g. conda) but their use shall be justified, consistent across the project, and a fallback to

manual installation using venv + pip in an offline environment must always be possible.

In addition, vendor lock-in shall be avoided, i.e., do not use conda specific features that are not

part of the open-source standards. The use of licenced repositories and/or packages shall be

avoided unless justified and approved.

Many package managers (including pip and conda) allow to generate “requirements” files or

“environment” files including the complete list of dependencies with the corresponding version

numbers. Such files can be uses by the same tools that have generated them to setup from

the scratch an environment that is identical to the original one. It is good practice to generate

and provide such environment files together with the software.

Many package managers (including pip and conda) ensure the possibility to download all the

software dependencies and to generate local package repositories. It is good practice to

provide a copy of such local repositories together with the software delivery to allow the user

to perform an offline installation.

It is considered bad practice to embed external non-python dependencies (e.g., shared objects

for external C/C++ libraries) in binary Python wheel packages. In such cases the use of a

https://docs.anaconda.com/
https://conda-forge.org/

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 9/24

general-purpose package manager (like conda) could be considered but considering that it

shall be ensured that it remains possible to build wheel packages.

2.3. Writing, running, and debugging Python code

Writing, running, and debugging Python code can be challenging without the use of some tools

and best practices. In this section, we will briefly introduce some of the recommended tools

and best practices for Python development.

2.3.1. Logging

One of the essential tools for Python development is the logging package, or any package

that implements its standard interface. Logging is a way of recording events and messages

that occur during the execution of a program. Logging can help developers to monitor,

troubleshoot, and debug their code, as well as provide useful information for users and

administrators. The logging package provides a simple and flexible way of configuring and

using logging in Python programs. It also allows developers to use alternative logger

implementations by just replacing the import statement.

The software must adhere to the interface of the Python Standard Library’s logging package.

It is recommended to use the logging package, but alternative implementations of the interface

are allowed. In case that the Software is required to adhere to [E2E-ICD], it needs to implement

the log format specified therein. This must instead be achieved using functions provided by the

OSFI package or by directly implementing the log format through a custom

logging.Formatter class.

2.3.2. Type hints and type checking

Type hints are annotations that indicate the expected types of variables, parameters, return

values, and attributes in Python code. Type hints were added to Python in version 3.5, and

they can help developers to write more readable, maintainable, and robust code. Type hints

can also enable static type checking, which is a process of verifying that the types in the code

are consistent and correct, before running the program. Static type checking can help

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 10/24

developers to catch errors and bugs early, as well as improve the performance and quality of

the code. One of the most popular tools for static type checking in Python is MyPy, which can

analyse and report type errors in Python code.

However, type hints and static type checking are not enough to ensure the correctness and

validity of the data and values in Python code. Runtime type checking and data validation

are also necessary, especially when dealing with external sources of data, such as user input,

files, databases, APIs, etc. Runtime type checking and data validation are processes of

verifying that the data and values in the code match the expected types, formats, and

constraints, during the execution of the program. Runtime type checking and data validation

can help developers to prevent and handle errors and exceptions, as well as ensure the

security and integrity of the data. Some of the tools that can perform runtime type checking

and data validation in Python are marshmallow, pydantic, typeguard, typical, and pytypes.

2.3.3. Exception handling

Speaking of error and exception handling, Python provides a powerful and flexible mechanism

for dealing with unexpected situations and problems that may arise during the execution of a

program. Errors and exceptions are objects that represent the occurrence of an event that

disrupts the normal flow of the program. Errors and exceptions can be raised by the Python

interpreter, the built-in functions and modules, or the user-defined code. Python also provides

a way of catching and handling errors and exceptions, using the try-except-finally

statements. These statements allow developers to specify blocks of code that should be

executed when an error or exception occurs, or when the try block is finished. Error and

exception handling must be used by developers to avoid crashes and terminate the

program gracefully, as well as provide useful feedback and recovery options for users and

administrators.

2.3.4. Code style

Another aspect of Python development that can improve the readability, maintainability, and

consistency of the code is code style. Code style refers to the conventions and rules that

govern the formatting and structure of the code, such as indentation, whitespace, naming,

https://mypy-lang.org/
https://marshmallow.readthedocs.io/en/stable/
https://docs.pydantic.dev/latest/
https://pypi.org/project/typeguard/
https://pypi.org/project/typical/
https://pypi.org/project/pytypes/

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 11/24

comments, etc. Code style can affect the readability and understandability of the code, as well

as the collaboration and communication among developers. Python has a set of official

guidelines for code style, called [PEP8], which can be found at peps.python.org.

However, following and enforcing code style can be tedious and time-consuming, especially

when working on large and complex projects. Therefore, it is advisable to use tools that can

automate and simplify the process of checking and formatting code style, such as flake8, black,

or ruff.

2.3.5. Documenting code

One more aspect of Python development that can enhance the readability, maintainability, and

usability of the code is documenting code. Documenting code refers to the practice of adding

explanatory and descriptive text to the code, such as comments, docstrings, and external

documents. Documenting code can help developers to understand, explain, and maintain their

code, as well as provide useful information and instructions for users and other developers who

want to use or modify the code. Python has a standard way of writing docstrings, which are

multi-line comments that document the purpose, parameters, return values, and behaviour of

functions, classes, modules, and packages. The basic standard for docstrings formatting is

defined in [PEP257], which can be found at peps.python.org. More advanced docstring

formatting standards are the NumPy style docstring format (recommended), the google style

docstring format and reStructuredText with Sphinx extensions.

However, writing docstrings alone is not enough to produce comprehensive and accessible

documentation for the code. It is also recommended to use tools that can generate

documentation from docstrings, such as Sphinx, which can convert docstrings into HTML and

CSS files that can be easily viewed and navigated by web browsers. All the above mentioned

advanced docstring formatting standards are fully supported by tools like Sphinx.

2.3.6. Object-oriented programming

Finally, one of the paradigms that Python supports and encourages is object-oriented

programming. Object-oriented programming is a way of designing and organizing code based

on the concepts of objects, classes, inheritance, polymorphism, and encapsulation. Objects

are instances of classes, which are templates that define the attributes and methods of the

https://peps.python.org/pep-0008/
https://flake8.pycqa.org/en/latest/
https://pypi.org/project/black/
https://docs.astral.sh/ruff/
https://peps.python.org/pep-0257/
https://www.sphinx-doc.org/en/master/

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 12/24

objects. Inheritance is a mechanism that allows classes to inherit the attributes and methods

of other classes and extend or override them. Polymorphism is a feature that allows objects of

different classes to be treated uniformly, based on their common interface. Encapsulation is a

principle that “hides” the internal details and implementation of the objects and exposes only

the relevant and essential information and functionality to the outside world. Object-oriented

programming can help developers to write more modular, reusable, and maintainable code,

as well as model complex and realistic phenomena and systems.

Python provides various features and tools that support and facilitate object-oriented

programming, such as built-in types, special methods, multiple inheritance, abstract base

classes, descriptors, decorators, metaclasses and protocols.

It is strongly recommended that medium to big software project makes use of the object-

oriented programming paradigm.

2.4. Test-driven development

One of the best practices for Python development is to adopt a test-driven approach (TDD),

where tests are written before the code and used to guide the design and implementation.

Test-driven development can improve the quality, reliability, and maintainability of the code, as

well as facilitate refactoring and debugging.

The workflow of TDD in Python can be summarized as follows:

- Write a test for a specific feature or functionality and run it. The test should fail since the

code for that feature or functionality has not been written yet.

- Write the minimum amount of code that can make the test pass and run it again. The

test should pass, indicating that the code meets the requirements of the test.

- Refactor the code to improve its readability, performance, or structure, and run the test

again. The test should still pass, ensuring that the code does not break or introduce new

errors.

- Repeat the process for each feature or functionality, until the code is complete and all

the tests pass.

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 13/24

Using this workflow, TDD can help with developing high-quality Python code that is easy to

test, debug, and maintain.

There are various tools and frameworks that can help with TDD in Python, but one of the most

popular and widely used is Pytest. Pytest is a powerful and flexible testing framework that

supports multiple types of tests, such as unit, integration, and end-to-end tests. Pytest also has

many features and plugins that enhance its functionality, such as fixtures, parametrization,

mocking, parallelization, and integration with other tools.

Another option besides Pytest, is nose2. Nose2 is a successor of nose, a testing framework

that extends the built-in unittest module in Python. Nose2 aims to improve the readability and

structure of the tests by providing features such as test discovery, plugins, and configuration

files. Nose2 also supports Pytest-style fixtures and parametrized tests, which can help with

writing more concise and reusable tests. To use nose2 with TDD, developers can follow the

same steps as with Pytest but replace Pytest with nose2 in the commands.

In addition to writing tests, it is also important to measure the coverage and effectiveness of

the tests. Code coverage is a metric that indicates how much of the source code is executed

by the tests.

However, code coverage alone does not guarantee that the tests are thorough and meaningful.

Mutation testing is a technique that can evaluate the quality of the tests by introducing small

changes or mutations in the code and checking if the tests can detect them. Mutation testing

can be performed in Python using tools such as mutmut or mutpy.

Another way to improve the quality and correctness of the code is to use type checking. Type

checking is the process of verifying that the types of the variables, arguments, and return

values are consistent and compatible. Python is a dynamically typed language, which means

that the types are inferred at runtime and not checked beforehand. This can lead to errors and

bugs that are hard to detect and debug. To overcome this limitation, Python supports optional

type annotations that can be used to specify the expected types of the code elements. Type

checking has been introduced in section 2.3.2.

https://docs.nose2.io/en/latest/
https://mutmut.readthedocs.io/en/latest/
https://github.com/mutpy/mutpy

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 14/24

2.5. Configuration management

Configuration management is the practice of keeping track of the changes made to the code

and data in a software project. It helps ensure that the code is consistent, reliable, and

reproducible across different environments and stages of development. One of the most widely

used tools for configuration management is Git, a distributed version control system that allows

developers to store, share, and collaborate on code. Git can be integrated with online platforms

such as GitHub or GitLab, which provide additional features such as issue tracking, code

review, and continuous integration (CI). A CI pipeline is a workflow that automates the process

of testing and deploying the code whenever a change is made. By using Git and a CI pipeline,

Python developers can improve the quality and efficiency of their software projects.

2.6. Deployment

Depending on the intended use and audience, applications can be distributed and deployed as

a package, a module, a script, or an executable file.

2.6.1. Python packages

Python-only projects must be distributed as Python package, using the packaging guidelines

published by the Python Packaging Authority. If the project depends on non-Python libraries,

then their inclusion shall be compatible with pip (via setuptools) and buildable from source.

2.6.2. Dependencies

Dependencies must be version-pinned.

If dependencies from non-standard (i.e., other than PyPI, conda) repositories are used, these

shall be provided as separate source packages and their use justified in the Software Reuse

File.

2.6.3. Containers

As the size and complexity of the application, a containerization solution might be suitable for

deploying Python applications. Container images are self-contained and include all the

https://packaging.python.org/en/latest/

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 15/24

dependencies and configurations needed to run the application. This means that the

application can run on any environment that supports a container runtime, regardless of the

operating system, hardware, or network settings.

The deployment via container, if provided by the developer, is to be understood as optional

and complementary to the mandatory deployment directly on the target operating system. In

this case, an OCI compliant image format and container runtime shall be used. Vendor lock-in

is not permitted (e.g. Docker-specific features).

The developer shall deliver all original sources and build scripts to reproduce the container

image from scratch (i.e., a container image is never acceptable as sole deliverable).

3. QUALITY AND PERFORMANCE

3.1. Code quality

Code quality is an essential aspect of the python development process, as it ensures that the

code is readable, maintainable, and adheres to the best practices and standards. One way to

ensure code quality is to use tools that can perform automated checks and analyses on the

code and identify potential issues or improvements.

3.1.1. Formatting

Consistent code formatting guidelines ensure that code remains readable and maintainable,

even when multiple developers contribute to the code base. Projects must adopt a code

formatting guideline (either an existing standard or tailored variant) and must enforce the

formatting rules using tools integrated in the CI process. Examples of such tools include black,

ruff, flake8, pylint, etc.

3.1.2. Quality metrics

The software development community has developed several metrics that aim to measure

quality and maintainability of code. Such metrics include:

- Number of lines of code and comments

- Number of duplicated lines of code

https://opencontainers.org/
https://github.com/psf/black
https://docs.astral.sh/ruff/
https://flake8.pycqa.org/en/latest/
https://pylint.pycqa.org/en/latest/user_guide/usage/run.html

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 16/24

- Comment/code ratio

- Cyclomatic complexity (or McCabe complexity)

- Halstead metrics

- Maintainability index (combining the above metrics into one number)

Projects must, at a minimum, compute the following quality metrics and enforce compliance to

the given upper bounds by means of automated tools:

- Lines of code per file <= 1000

- Lines of code per method/function <= 100

- Cyclomatic complexity <= 10

- Maintainability index >= 50

Some tools that can help in computing these metrics include Radon, pylint and flake8. A

comprehensive list of tools for code quality can be found on Python Code Quality Authority

website. Note that not all tools use the same definitions for each metric (for example, there

exist multiple formula’s for computing the maintainability index).

3.1.3. Security

Security and vulnerability scanners are another type of tools that can improve code quality by

detecting and preventing security risks and flaws in the code. Projects that are deployed on

servers with (semi-) public internet access must perform automated vulnerability checks on the

source code and all dependencies.

Bandit is a tool that can scan the code for common security issues, such as injection attacks,

weak cryptography, hardcoded passwords, and insecure use of subprocesses. Safety is a tool

that can check the dependencies of the project and alert the developers if any of them have

known vulnerabilities. Both bandit and safety can be run from the command line or as part of

a testing framework.

3.2. Performance optimisation

3.2.1. Code Syntax

https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Halstead_complexity_measures
https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning?view=vs-2022
https://pypi.org/project/radon/
https://github.com/PyCQA
https://github.com/PyCQA
https://bandit.readthedocs.io/en/latest/
https://pypi.org/project/safety/

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 17/24

When optimizing Python code for numerical computations, it is crucial to prioritize efficiency

and performance. Here are some refined recommendations:

- Minimize explicit loops: developers must utilize Python's powerful abstractions to

avoid explicit loops wherever possible. This not only makes code more readable but

also leverages Python's internal optimizations for better performance.

- Leverage iterators: Developers must opt for iterators or generator expressions over

explicit indexing to make code more Pythonic and efficient, especially when dealing with

large datasets.

- Utilize extension packages: Python's ecosystem is rich with extension packages that

can perform tasks more efficiently than custom code. For XML parsing, array operations,

and other specialized tasks, rely on these packages to avoid reinventing the wheel and

to benefit from their optimized performance.

- Proper use of NumPy: For numerical computations, NumPy is the go-to library. It offers

C/C++ speed due to its underlying implementations and can significantly speed up

operations with its support for SIMD (Single Instruction, Multiple Data) and releasing the

GIL (Global Interpreter Lock). Ensure you're using NumPy effectively to tap into these

performance benefits.

Using the same numerical library for all the software modules in a project can help achieve

overall consistency.

3.2.2. Just-in-time Compilation of Python Code

It is also beneficial to consider just-in-time (JIT) compilation solutions to further enhance code

performance. Numba and Taichi are two notable JIT compilers that can significantly

accelerate Python code execution, especially for numerical computations.

- Numba: A JIT compiler that translates a subset of Python and NumPy code into fast

machine code. Numba is particularly useful for functions that perform heavy numerical

computations. It works by decorating Python functions with @jit to indicate they should

be optimized. Numba then compiles these functions at runtime, resulting in performance

that can approach that of C or Fortran.

https://numba.pydata.org/
https://www.taichi-lang.org/

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 18/24

- Taichi: An open-source computer graphics library that provides a Pythonic interface for

writing highly parallel computations. Taichi is designed to simplify the development

process by abstracting away the complexities of parallel computing, while also offering

JIT compilation for performance optimization.

Both Numba and Taichi can be seamlessly integrated into Python workflows, allowing

developers to maintain the readability and simplicity of Python code while benefiting from the

performance improvements of JIT compilation. These tools are particularly advantageous

when dealing with large-scale numerical simulations or data processing tasks that require high

computational efficiency

However, using JIT technologies like Numba and Taichi also has some drawbacks, such as:

- They are complex dependencies that may be difficult to install and manage in different

environments.

- They usually support only a subset of Python and NumPy features and syntax and may

not be compatible with the latest versions or other libraries.

- They require modifying the Python code to use specific decorators, data types, or

functions, which can reduce the readability, expressiveness, and idiomaticity of the

code.

- They may introduce unexpected errors or bugs due to the runtime compilation or the

differences between the Python and the native code.

Therefore, developers should weigh the pros and cons of using JIT technologies and consider

their specific use cases and requirements before adopting them. Alternatively, they can explore

other options for improving the performance of Python code, such as Cython, PyPy, or C

extensions.

3.2.3. Just-in-Time compilation of low-level code

For just-in-time compilation of low-level code, several tools are available:

- PyOpenCL offers Pythonic access to the OpenCL parallel computation API, allowing

the construction of OpenCL kernels and buffers, complete with support for a NumPy-

like array type.

https://pypi.org/project/pyopencl/

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 19/24

- PyCUDA provides a straightforward interface to Nvidia’s CUDA parallel computation

API, enabling the building of CUDA kernels and buffers, also supporting a numpy-like

array type.

- cppyy stands as an automatic, run-time Python-C++ bindings generator, facilitating the

calling of C++ from Python and vice versa. It boasts features like run-time generation

for higher performance, lazy loading, Python-side cross-inheritance, and callbacks for

C++ frameworks, among others.

- xobjects offers in-memory serialization of structured types with C-API generation and

compiles run-time C code using cffi, cupy, and pyopencl under a unified API.

These tools collectively empower developers to optimize Python code by leveraging the

capabilities of low-level programming, ensuring that applications run at the highest possible

efficiency.

Compile Python modules and extensions

- Cython: Cython is an optimising static compiler for both the Python programming

language and the extended Cython programming language. It makes writing C/C++

extensions for Python as easy as Python itself. Cython allows to access and use

C/C++ libraries easily and hence it is also used to generate wrappers/bindings for

libraries written in such languages.

- Pythran: Pythran is an ahead of time compiler for a subset of the Python language,

with a focus on scientific computing. It takes a Python module annotated with a few

interface descriptions and turns it into a native Python module with the same

interface, but (hopefully) faster. It is meant to efficiently compile scientific programs

and takes advantage of multi-cores and SIMD instruction units.

- Mypyc: Mypyc compiles Python modules to C extensions. It uses standard Python

type hints to generate fast code.

- Nuitka: Nuitka is the optimizing Python compiler written in Python that creates

executables that run without a need for a separate installer. Data files can both be

included or put alongside.

- Codon: Codon is a high-performance Python compiler that compiles Python code to

native machine code without any runtime overhead.

https://pypi.org/project/pycuda/
https://cppyy.readthedocs.io/en/latest/
https://pypi.org/project/xobjects/
https://cython.org/
https://pythran.readthedocs.io/en/latest/
https://mypyc.readthedocs.io/en/latest/
https://nuitka.net/
https://github.com/exaloop/codon

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 20/24

Bind Low-Level Code Modules to Python

A keyway to boost performance in Python development is to connect Python to modules that

use low-level code. Here are some tools that can assist with this task:

- Pybind11 is a lightweight, header-only library that exposes C++ types in Python and

vice versa, primarily to create Python bindings of existing C++ code.

- Cython is an optimising static compiler for both the Python programming language

and the extended Cython programming language. It makes writing C extensions for

Python as easy as Python itself. Cython allows to access and use C/C++ libraries

easily and hence it is also used to generate wrappers/bindings for libraries written in

such languages.

- Nanobind offers similar functionality to Pybind11 and Boost.Python but with quicker

compilation times, smaller binaries, and improved runtime performance.

- Maturin is a build system for Rust-based Python packages, utilizing PyO3 for

seamless bindings.

- Nimporter compiles Nim extensions for Python on import, leveraging nimpy for on-

the-fly compilation.

- SWIG connects C and C++ programs with various high-level languages, including

Python.

- ctypes is a foreign function library in Python that allows calling functions in DLLs or

shared libraries.

- cffi provides the ability to interact with almost any C code from Python, based on C-

like declarations. These tools collectively enable developers to maintain the high-

level expressiveness of Python while harnessing the power of low-level languages,

ensuring that applications run with optimal efficiency.

It is strongly recommended to use the same method for creating bindings from Python to other

languages for each set of software modules in a project.

4. RECOMMENDED PACKAGES

https://github.com/pybind/pybind11
https://cython.org/
https://github.com/wjakob/nanobind
https://github.com/PyO3/maturin
https://github.com/Pebaz/nimporter
https://www.swig.org/Doc1.3/Python.html
https://docs.python.org/3/library/ctypes.html
https://cffi.readthedocs.io/en/stable/

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 21/24

4.1. Packages based on Python array types

Many packages have been developed to enhance the functionality and performance of Python

arrays, offering various features and benefits for different use cases. Here are some of the

most recommended packages based on Python array types:

- Numpy: Numpy is the fundamental package for scientific computing with Python. It

provides N-dimensional arrays with comprehensive vectorized operations:

mathematical functions, random number generators, linear algebra routines, Fourier

transforms written in low-level C code.

- Xarray: Xarray introduces labels in the form of dimensions, coordinates and

attributes on top of raw NumPy-like multidimensional arrays, which allows for a more

intuitive, more concise, and less error-prone developer experience.

- Dask: Dask is a flexible library for parallel computing in Python. It provides dynamic

task scheduling and out-of-memory big data collections.

- JAX: JAX uses an improved Autograd implementation in combination with XLA to

compile and run your Python/NumPy programs on CPUs, GPUs and TPUs. It

enables composable function transformations and can differentiate through loops,

branches, recursion, closures, and it can take derivatives of derivatives of

derivatives.

- PyTorch: PyTorch is a tensor computation (like NumPy) library with strong GPU

acceleration that enables building deep neural networks on a tape-based autograd

system. It includes data structures for multi-dimensional tensors and defines

mathematical operations over these tensors, as well as utilities for efficient serializing

of Tensors and arbitrary types, efficient compiling of ML models, and other useful

utilities.

- CuPy: CuPy is a NumPy/SciPy-compatible array library for GPU-accelerated

computing with Python. It acts as a drop-in replacement to run existing NumPy/SciPy

code on NVIDIA CUDA or AMD ROCm platforms. It is essentially NumPy & SciPy

for GPU. You can also easily make a custom CUDA kernel if you want to make your

code run faster, requiring only a small code snippet of C++.

https://numpy.org/
https://docs.xarray.dev/en/stable/
https://docs.dask.org/en/stable/
https://github.com/google/jax
https://pytorch.org/
https://cupy.dev/

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 22/24

A consistent way of dealing with array types should be used throughout the project's software

components, e.g. using both Xarray arrays and NumPy arrays should be discouraged.

Required dependencies shall be kept to a minimum.

4.2. Fast DataFrame-type computations

For those who need to work with large-scale tabular data in Python, some packages that offer

DataFrame-type computations on GPU or out-of-core memory may be of interest. These

packages can manage massive datasets that exceed the available RAM and offer high-

performance operations such as filtering, grouping, aggregating, joining, and more. Here are

some of the most recommended packages

- Pandas: is a fast, powerful, flexible and easy to use open-source data analysis and

manipulation tool.

- Polars: Polars is a lightweight, fast multi-threaded, hybrid streaming DataFrame

library written in Rust using the Apache Arrow columnar format. It enables fast out-

of-memory operations, lazy/eager execution, query optimization and more.

- cuDF: cuDF is a Python GPU DataFrame library built on the Apache Arrow columnar

memory format with a pandas-like API.

- Vaex: Vaex is a highly performant library for lazy out-of-core DataFrames, to

visualize and explore big tabular datasets. It can apply operations on an N-

dimensional grid up to a billion (109) objects/rows per second and provides a set of

sub-packages for various applications (visualisation, jupyter integration, data

formats support, machine learning etc.)

- PySpark: PySpark is an interface for Apache Spark in Python, with support for most

of Spark’s features such as Spark SQL, DataFrame, Streaming, MLlib (Machine

Learning) and Spark Core.

- Modin: Modin is a drop-in replacement for pandas to instantly speed up your

workflows by scaling pandas, so it uses all your cores. It is most likely the slowest

barrier to entry for performance improvements on DataFrame operations: changing

the import line is enough.

https://pandas.pydata.org/
https://www.pola.rs/
https://docs.rapids.ai/api/cudf/stable/
https://vaex.io/docs/index.html
https://spark.apache.org/docs/latest/api/python/
https://modin.readthedocs.io/en/stable/

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 23/24

4.3. Geo-spatial and satellite data processing tools

Python has many tools for working with geospatial data in raster or vector formats, and for

doing some of the usual steps in satellite data processing. This section gives a summary of the

available tools:

- SentiNel Application Program (SNAP): SNAP is a software platform developed by

ESA. It consists of multiple toolboxes that can be used for image processing,

modelling and visualization. Although the toolboxes are oriented towards Sentinel

missions, they can be used with other Earth observation missions. SNAP is

accessible from python through the snappy package.

- Orfeo Toolbox (OTB): OTB is a software library for processing images from Earth

observation satellites accessible from python through an API. It is an open-source

development, and it can process high resolution optical, multispectral and radar

images at the terabyte scale. A wide variety of applications are available including,

among others, ortho-rectification, pansharpening, classification and SAR

processing.

- Geospatial Data Abstraction Library (GDAL): GDAL is a translator library for raster

and vector geospatial data formats that is released under an MIT style Open-Source

License. It handles raster and vector formats and can apply a variety of data

translation and processing algorithms. Projections and transformations are

supported by the PROJ library. Tools for programming and manipulating the GDAL

are available as a Python package.

- Rasterio: Geographic information systems use GeoTIFF and other formats to

organize and store gridded raster datasets such as satellite imagery and terrain

models. Rasterio reads and writes these formats and provides a Python API based

on Numpy N-dimensional arrays and GeoJSON.

- Fiona: Fiona streams simple feature data to and from GIS formats like GeoPackage

and Shapefile. Fiona can read and write using multi-layered GIS formats, zipped and

in-memory virtual file systems. This project includes Python modules and a

command line interface (CLI).

https://earth.esa.int/eogateway/tools/snap
https://earth.esa.int/eogateway/tools/snap
https://www.orfeo-toolbox.org/
https://gdal.org/
https://rasterio.readthedocs.io/en/latest/index.html
https://pypi.org/project/fiona/

ESA UNCLASSIFIED – Releasable to the Public

ESA UNCLASSIFIED – Releasable to the Public

Page 24/24

5. CONCLUSIONS

In this document, we have introduced some of the guidelines and best practices for Python

development. These are not mandatory rules, but rather recommendations that can help

Python developers write code that is consistent, readable, maintainable, and adheres to the

principles and idioms of the Python language.

By following these guidelines and best practices, Python developers can improve the quality

of their code, avoid common errors and pitfalls, and make their code easier to understand,

reuse, and collaborate with others. Moreover, they can benefit from the tools and frameworks

that support and enforce these standards, such as code formatters, linters, testing frameworks,

and code editors.

Python is a powerful and expressive language that offers many features and possibilities for

various applications and domains. However, with great power comes great responsibility, and

Python developers should strive to use the language in a way that respects its philosophy and

enhances its beauty and elegance.

	1. Introduction
	1.1. Reference Documents

	2. Development Workflow
	2.1. Organising the source code and packaging the application
	2.2. Virtual environments
	2.3. Writing, running, and debugging Python code
	2.3.1. Logging
	2.3.2. Type hints and type checking
	2.3.3. Exception handling
	2.3.4. Code style
	2.3.5. Documenting code
	2.3.6. Object-oriented programming

	2.4. Test-driven development
	2.5. Configuration management
	2.6. Deployment
	2.6.1. Python packages
	2.6.2. Dependencies
	2.6.3. Containers

	3. Quality and Performance
	3.1. Code quality
	3.1.1. Formatting
	3.1.2. Quality metrics
	3.1.3. Security

	3.2. Performance optimisation
	3.2.1. Code Syntax
	3.2.2. Just-in-time Compilation of Python Code
	3.2.3. Just-in-Time compilation of low-level code
	Compile Python modules and extensions
	Bind Low-Level Code Modules to Python

	4. Recommended packages
	4.1. Packages based on Python array types
	4.2. Fast DataFrame-type computations
	4.3. Geo-spatial and satellite data processing tools

	5. Conclusions

