

Earth Observation Mission CFI Software

EO_VISIBILITY SOFTWARE USER MANUAL

Code: EO-MA-DMS-GS-0006

Issue: 4.10

Date: 29/10/2015

Name Function Signature

Prepared by: José Antonio González Abeytua Project Manager

Juan José Borrego Bote Project Engineer
Carlos Villanueva Muñoz Project Engineer
Rubén Castro Project Engineer
José Antonio González Abeytua Project Manager

Checked by: José Antonio González Abeytua Project Manager

Approved by: José Antonio González Abeytua Project Manager

DEIMOS Space S.L.U Ronda de Poniente, 19 Edificio Fiteni VI, Portal 2, 2ª Planta 28760 Tres Cantos (Madrid), SPAIN Tel.: +34 91 806 34 50

Fax: +34 91 806 34 51 E-mail: deimos@deimos-space.com

© DEIMOS Space S.L.U

All Rights Reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of DEIMOS Space S.L.U or ESA.

DOCUMENT INFORMATION

Contract Data		Classification	n
Contract Number:	15583/01/NL/GS	Internal	
		Public	
O and the state of the same	ESA / ESTEC	Industry	Х
Contract Issuer:		Confidential	

External Distribution		
Name	Organisation	Copies

	Electronic handling
Word Processor:	LibreOffice 3.6
Archive Code:	P/SUM/DMS/01/026-029
Electronic file name:	eo-ma-dms-gs-006-21

DOCUMENT STATUS LOG

	DOCUMENT STAT	03 LOG	
Issue	Change Description	Date	Approval
1.0	Unreleased	19/06/02	
2.0	Complete document	29/11/02	
2.1	Maintenance release with the following main changes: • xv_multizones_vis_time added. • xv_multistation_vis_time added. • xv_time_segment_mapping added. • xv_orbit_extra added.	13/05/03	
2.2	Maintenance release	30/09/03	
2.2.2	Small interface chance in xv_time_segments_delta and xv_orbit_extra	26/04/04	
3.0	New initialisation strategy and interfaces.	21/07/04	
3.1	New features for xv_zone_vis_time function:Use of Predicted Orbit/Orbit event files.Use of Swath Definition files.	13/10/04	
3.2	Maintenance release	15/11/04	
3.3	Vee of Predicted Orbit/Orbit event files for all visibility functions. Use of Swath Definition files for all visibility functions. ENVISAT ASCII files are no longer supported	11/07/05	
3.4	Maintenance release.gen_swath executable moved to this library.Changes in the xv_swath_pos interface	18/11/05	
3.5	Maintenance release.	26/05/06	
3.6	Maintenance release.	24/11/06	
•	<u> </u>		

3.7	 Maintenance release. New features: xv_gen_scf expcfi_check_libs xv_zone_vis_time_no_file xv_station_vis_time_no_file xv_gen_swath_no_file library version for Mac OS X on Intel (32 and 64 bits) 	13/07/07
3.7.2	 Maintenance release. New features: Curved and closed swaths for xv_zone_vis_time 	31/07/08
4.0	Maintenance release.	19/01/09
4.1	Maintenance release New features: - AOS/LOS mask mode from Ground Station DB 1.4 file - Visibility across orbital changes Maintenance release New features: - Support of visibility functions with TLE and precise propagator	07/05/10
4.3	Maintenance release	
4.4	Maintenance release New features: - Function xv_sc_vis_time	05/07/12
4.5	Maintenance release	01/03/13
4.6	 Maintenance release New features: Support for new swath ID. New functions: xv_zonevistime_compute xv_stationvistime_compute 	03/10/13

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 5

	xv_swathpos_compute xv_tiesegments_xxx_compute	
4.7	 Maintenance release New features: New function xv_zonevistime_coverage Support for satellites Jason-CS, MetOp-SG and Sentinel_5P 	28/03/2014
4.8	Maintenance release	29/10/2014
4.9	Maintenance release	23/04/2015
4.10	Maintenance release	29/10/2015

Code: EO-MA-DMS-GS-0006 Date: 29/10/2015

Issue: 4.10 6

Page:

TABLE OF CONTENTS

DOCUMENT INFORMATION	2
DOCUMENT STATUS LOG	3
TABLE OF CONTENTS	6
LIST OF TABLES	16
LIST OF FIGURES	19
1 SCOPE	20
2 ACRONYMS, NOMENCLATURE AND TERMINOLOGY	21
2.1 Acronyms	21
2.2 Nomenclature	21
2.3 Note on Terminology	22
3 APPLICABLE AND REFERENCE DOCUMENTS	23
3.1 Applicable Documents	23
3.2 Reference Documents	23
4 INTRODUCTION	24
4.1 Functions Overview	24
4.2 Calling Sequence	26
5 LIBRARY INSTALLATION	27
6 LIBRARY USAGE	28
6.1 Usage hints	30
6.2 General enumerations	30
6.3 Data Structures	32

Code:	EO-MA-DMS-GS-0006
Date:	29/10/2015
Issue:	4.10
Dage.	7

7 CFI FUNCTIONS DESCRIPTION	39
7.1 xv_zone_vis_time	40
7.1.1 Overview	40
7.1.2 Swath Definition	43
7.1.2.1 Earth-observing Instruments Swath Definition	43
7.1.2.2 Limb-sounding Instruments Swath Definition	44
7.1.2.3 Limb-sounding Instruments Inertial Swath Definition	46
7.1.2.4 Swath Definition for Envisat	46
7.1.3 Zone Borders and Projection	48
7.1.4 Zone Definition	48
7.1.5 Intersection Definition	50
7.1.6 Intersection Algorithm	51
7.1.6.1 Intersection with a point swath	51
7.1.6.2 Intersection with a segment swath	51
7.1.6.3 Intersection with a multi-segment swath	52
7.1.7 Usage Hints	53
7.1.7.1 Limb-sounding Instruments Intersection.	53
7.1.7.2 Zone Coverage	53
7.1.7.3 Combined use of xv_swath_pos and the coverage flag	54
7.1.8 Calling sequence	55
7.1.9 Input parameters	57
7.1.10 Output parameters	60
7.1.11 Warnings and errors	62
7.2 xv_zone_vis_time_no_file	67
7.2.1 Overview	67
7.2.2 Calling sequence.	67
7.2.3 Input parameters	69
7.2.4 Output parameters	72
7.2.5 Warnings and errors	74
7.3 xv_zonevistime_compute	75
7.3.1 Overview	75
7.3.2 Swath Definition	78
7.3.2.1 Earth-observing Instruments Swath Definition	78

Code:	EO-MA-DMS-GS-0006
Date:	29/10/2015
Issue:	4.10
Page.	8

7.3.2.2 Limb-sounding Instruments Swath Definition.	79
7.3.2.3 Limb-sounding Instruments Inertial Swath Definition	81
7.3.2.4 Swath Definition for Envisat.	81
7.3.3 Zone Borders and Projection	84
7.3.4 Zone Definition	84
7.3.5 Intersection Definition	86
7.3.6 Intersection Algorithm	87
7.3.6.1 Intersection with a point swath	87
7.3.6.2 Intersection with a segment swath	87
7.3.6.3 Intersection with a multi-segment swath	88
7.3.7 Usage Hints	89
7.3.7.1 Limb-sounding Instruments Intersection.	89
7.3.7.2 Zone Coverage	89
7.3.7.3 Combined use of xv_swathpos_compute and the coverage flag	90
7.3.7.4 Use of input xp_attitude_def struct	90
7.3.7.5 Use of input xv_zone_info_list struct	90
7.3.8 Calling sequence	91
7.3.9 Input parameters	92
7.3.10 Output parameters.	93
7.3.11 Warnings and errors	94
7.4 xv_station_vis_time	97
7.4.1 Overview	97
7.4.2 Calling interface	99
7.4.3 Input parameters	101
7.4.4 Output parameters.	104
7.4.5 Warnings and errors	106
7.5 xv_station_vis_time_no_file	109
7.5.1 Overview	109
7.5.2 Calling interface	109
7.5.3 Input parameters	111
7.5.4 Output parameters.	114
7.5.5 Warnings and errors	116
7.6 xv_stationvistime_compute	117

Code:	EO-MA-DMS-GS-0006
Date:	29/10/2015
Issue:	4.10
Page:	9

7.6.1 Overview	117
7.6.2 Usage Hints	118
7.6.2.1 Use of input xp_attitude_def struct	118
7.6.2.2 Use of input xv_station_info_list struct	118
min_duration: indicates the minimum duration for the segments (seconds)	119
7.6.3 Calling interface	120
7.6.4 Input parameters	121
7.6.5 Output parameters.	122
7.6.6 Warnings and errors	123
7.7 xv_sc_vis_time	126
7.7.1 Overview	126
7.7.2 Calling interface	127
7.7.3 Input parameters	130
7.7.4 Output parameters.	132
7.7.5 Warnings and errors	134
7.8 xv_swath_pos	135
7.8.1 Overview	135
7.8.2 Calling sequence of xv_swath_pos	137
7.8.3 Input parameters xv_swath_pos	138
7.8.4 Output parameters xv_swath_pos	138
7.8.5 Warnings and errors	140
7.9 xv_swathpos_compute	142
7.9.1 Overview	142
7.9.2 Calling sequence of xv_swathpos_compute	143
7.9.3 Input parameters xv_swathpos_compute	144
7.9.4 Output parameters xv_swathpos_compute	144
7.9.5 Warnings and errors	145
7.10 xv_star_vis_time	147
7.10.1 Overview	147
7.10.2 Swath Definition	149
7.10.2.1 Inertial Swaths.	149
7.10.2.2 Splitting swaths	150

Code:	EO-MA-DMS-GS-0006
Date:	29/10/2015
Issue:	4.10
Page:	10

7.10.2.3 Orbital Changes	150
7.10.2.4 Format of Swath Template File	151
7.10.2.5 MLST non linear drift	151
7.10.3 Calling sequence xv_star_vis_time	152
7.10.4 Input parameters xv_star_vis_time	154
7.10.5 Output parameters xv_star_vis_time	156
7.10.6 Warnings and errors	158
7.11 xv_multizones_vis_time	161
7.11.1 Overview	
7.11.2 Calling sequence xv_multizones_vis_time	164
7.11.3 Input parameters xv_multizones_vis_time	166
7.11.4 Output parameters xv_multizones_vis_time	169
7.11.5 Warnings and errors	171
7.12 xv_multistations_vis_time	172
7.12.1 Overview	172
7.12.2 Calling sequence xv_multistations_vis_time	174
7.12.3 Input parameters xv_multistations_vis_time	176
7.12.4 Output parameters xv_multistations_vis_time	178
7.12.5 Warnings and errors	180
7.13 xv_orbit_extra	181
7.13.1 Overview	181
7.13.2 Calling sequence xv_orbit_extra	182
7.13.3 Input parameters xv_orbit_extra	183
7.13.4 Output parameters xv_orbit_extra	184
7.13.5 Warnings and errors	186
7.14 xv_time_segments_not	187
7.14.1 Overview	187
7.14.2 Calling sequence xv_time_segments_not	188
7.14.3 Input parameters xv_time_segments_not	190
7.14.4 Output parameters xv_time_segments_not	191
7.14.5 Warnings and errors	192
7.15 xv_timesegments_compute_not	193

Code:	EO-MA-DMS-GS-0006
Date:	29/10/2015
ssue:	4.10
Page:	11

7.15.1 Overview	193
7.15.2 Calling sequence xv_timesegments_compute_not	194
7.15.3 Input parameters xv_timesegments_compute_not	195
7.15.4 Output parameters xv_timesegments_compute_not	196
7.15.5 Warnings and errors.	197
7.16 xv_time_segments_or	198
7.16.1 Overview	198
7.16.2 Calling sequence xv_time_segments_or	199
7.16.3 Input parameters xv_time_segments_or	201
7.16.4 Output parameters xv_time_segments_or	203
7.16.5 Warnings and errors	204
7.17 xv_timesegments_compute_or	205
7.17.1 Overview	205
7.17.2 Calling sequence xv_timesegments_compute_or	206
7.17.3 Input parameters xv_timesegments_compute_or	207
7.17.4 Output parameters xv_timesegments_compute_or	208
7.17.5 Warnings and errors.	209
7.18 xv_time_segments_and	210
7.18.1 Overview	210
7.18.2 Calling sequence xv_time_segments_and	211
7.18.3 Input parameters xv_time_segments_and	213
7.18.4 Output parameters xv_time_segments_and	215
7.18.5 Warnings and errors	216
7.19 xv_timesegments_compute_and	217
7.19.1 Overview	217
7.19.2 Calling sequence xv_timesegments_compute_and	218
7.19.3 Input parameters xv_timesegments_compute_and	219
7.19.4 Output parameters xv_timesegments_compute_and	220
7.19.5 Warnings and errors.	221
7.20 xv_time_segments_sort	222
7.20.1 Overview	222
7.20.2 Calling sequence xv time segments sort	223

Code:	EO-MA-DMS-GS-0006
Date:	29/10/2015
ssue:	4.10
Page:	12

7.20.3 Input parameters xv_time_segments_sort	224
7.20.4 Output parameters xv_time_segments_sort	225
7.20.5 Warnings and errors	226
7.21 xv_timesegments_compute_sort	227
7.21.1 Overview	227
7.21.2 Calling sequence xv_timesegments_compute_sort	228
7.21.3 Input parameters xv_timesegments_compute_sort	229
7.21.4 Output parameters xv_timesegments_compute_sort	230
7.21.5 Warnings and errors	231
7.22 xv_time_segments_merge	232
7.22.1 Overview	232
7.22.2 Calling sequence xv_time_segments_merge	233
7.22.3 Input parameters xv_time_segments_merge	235
7.22.4 Output parameters xv_time_segments_merge	236
7.22.5 Warnings and errors	237
7.23 xv_timesegments_compute_merge	238
7.23.1 Overview	238
7.23.2 Calling sequence xv_timesegments_compute_merge	239
7.23.3 Input parameters xv_timesegments_compute_merge	240
7.23.4 Output parameters xv_timesegments_compute_merge	241
7.23.5 Warnings and errors	242
7.24 xv_time_segments_delta	243
7.24.1 Overview	243
7.24.2 Calling sequence xv_time_segments_delta	244
7.24.3 Input parameters xv_time_segments_delta	246
7.24.4 Output parameters xv_time_segments_delta	247
7.24.5 Warnings and errors	248
7.25 xv_timesegments_compute_delta	249
7.25.1 Overview	249
7.25.2 Calling sequence xv_timesegments_compute_delta	250
7.25.3 Input parameters xv_timesegments_compute_delta	251
7.25.4 Output parameters xv_timesegments_compute_delta	251

Code:	EO-MA-DMS-GS-0006
Date:	29/10/2015
ssue:	4.10
Page:	13

7.25.5 Warnings and errors	252
7.26 xv_time_segments_mapping	254
7.26.1 Overview	
7.26.2 Calling sequence xv_time_segments_mapping	256
7.26.3 Input parameters xv_time_segments_mapping	258
7.26.4 Output parameters xv_time_segments_mapping	261
7.26.5 Warnings and errors	263
7.27 xv_timesegments_compute_mapping	265
7.27.1 Overview	
7.27.2 Calling sequence xv_timesegments_compute_mapping	267
7.27.3 Input parameters xv_timesegments_compute_mapping	268
7.27.4 Output parameters xv_timesegments_compute_mapping	269
7.27.5 Warnings and errors	270
7.28 xv_gen_swath	273
7.28.1 Overview	
7.28.2 Calling interface	274
7.28.3 Input parameters	
7.28.4 Output parameters	276
7.28.5 Warnings and errors	277
7.28.6 Executable Program.	278
7.29 xv_gen_swath_no_file	280
7.29.1 Overview	280
7.29.2 Calling interface	280
7.29.3 Input parameters	281
7.29.4 Output parameters	281
7.29.5 Warnings and errors	282
7.30 xv_gen_scf	283
7.30.1 Overview	283
7.30.2 Calling interface	283
7.30.3 Input parameters	284
7.30.4 Output parameters	285
7.30.5 Warnings and errors	286

Code:	EO-MA-DMS-GS-0006
Date:	29/10/2015
ssue:	4.10
Page.	14

7.31 xv_swath_id_init	287
7.31.1 Overview	287
7.31.2 Calling sequence of xv_swath_id_init	288
7.31.3 Input parameters xv_swath_id_init	289
7.31.4 Output parameters xv_swath_id_init	289
7.31.5 Warnings and errors	290
7.32 xv_swath_id_close	291
7.32.1 Overview.	291
7.32.2 Calling sequence of xv_swath_id_close	292
7.32.3 Input parameters xv_swath_id_close	293
7.32.4 Output parameters xv_swath_id_close	293
7.32.5 Warnings and errors	294
7.33 xv_swath_set_id_data	295
7.33.1 Overview	295
7.33.2 Calling sequence of xv_swath_set_id_data	296
7.33.3 Input parameters xv_swath_set_id_data	297
7.33.4 Output parameters xv_swath_set_id_data	297
7.33.5 Warnings and errors.	298
7.34 xv_swath_get_id_data	299
7.34.1 Overview	299
7.34.2 Calling sequence of xv_swath_get_id_data	300
7.34.3 Input parameters xv_swath_get_id_data	301
7.34.4 Output parameters xv_swath_get_id_data	301
7.34.5 Warnings and errors	302
7.35 xv_zonevistime_coverage	303
7.35.1 Overview	303
7.35.2 Calling sequence of xv_zonevistime_coverage	307
7.35.3 Input parameters xv_zonevistime_coverage	308
7.35.4 Output parameters xv_zonevistime_coverage	308
7.35.5 Warnings and errors	309
8 RUNTIME PERFORMANCES	310

Code:	EO-MA-DMS-GS-0006
Date:	29/10/2015
Issue:	4.10
Page:	15

9 LIBRARY PRECAUTIONS.......312

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 16

LIST OF TABLES

Table 1: Correspondence of current functions and deprecated functions	25
Table 2: CFI functions included within EO_VISIBILITY library	29
Table 3: Some enumerations within EO_VISIBILITY library	31
Table 4: EO_VISIBILITY structures	
Table 5: Envisat Swaths	46
Table 6: Zone definition	48
Table 7: Input parameters of xv_zone_vis_time function	57
Table 8: Output parameters of xv_zone_vis_time function	
Table 9: Error messages and codes for xv zone vis time	
Table 10: Input parameters of xv zone vis time no file function	
Table 11: Output parameters of xv_zone_vis_time_no_file function	
Table 12: Envisat Swaths	
Table 13: Zone definition (for xd zone rec)	
Table 14: Input parameters of xv zonevistime compute function	92
Table 15: Output parameters of xv_zonevistime_compute function	93
Table 16: Error messages and codes for xv_zonevistime_compute	
Table 17: Input parameters of xv station vis time	
Table 18: Output parameters of xv_station_vis_time function	104
Table 19: Error messages and codes for xv station vis time	
Table 20: Input parameters of xv station vis time no file	111
Table 21: Output parameters of xv_station_vis_time_no_file function	
Table 22: Input parameters of xv_stationvistime_compute	
Table 23: Output parameters of xv_stationvistime_compute function	
Table 24: Error messages and codes for xv_stationvistime_compute	
Table 25: Input parameters of xv sc vis time	
Table 26: Output parameters of xv_sc_vis_time function	132
Table 27: Error messages of xv_sc_vis_time	
Table 28: Input parameters of xv_swath_pos	138
Table 29: Output parameters of xv_swath_pos	138
Table 30: Error messages and codes	
Table 31: Input parameters of xv_swathpos_compute	144
Table 32: Output parameters of xv_swathpos_compute	
Table 33: Error messages and codes	145
Table 34: Input parameters of xv_star_vis_time	154
Table 35: Output Parameters of xv_star_vis_time	156
Table 36: Error messages and codes	158
Table 37: Input parameters of xv_multizones_vis_time	166
Table 38: Output parameters of xv_multizones_vis_time	
Table 39: Error messages and codes	171
Table 40: Input parameters of xv_multistations_vis_time	176
Table 41: Output parameters of xv_multistations_vis_time	178
Table 42: Error messages and codes	180
Table 43: Input parameters of xv_orbit_extra	183
Table 44: Output parameters of xv_orbi_extra	
Table 45: Error messages and codes	
Table 46: Input parameters of xv_time_segments_not	190

Code:	EO-MA-DMS-GS-0006
Date:	29/10/2015
Issue:	4.10
Page:	17

Table 47: Output parameters of xv_time_segments_not	191
Table 48: Error messages and codes	192
Table 49: Input parameters of xv_timesegments_compute_not	
Table 50: Output parameters of xv_timesegments_compute_not	
Table 51: Error messages and codes.	
Table 52: Input parameters of xv time segments or	201
Table 53: Output parameters of xv_time_segments_or	
Table 54: Error messages and codes	
Table 55: Input parameters of xv_timesegments_compute_or	
Table 56: Output parameters of xv_timesegments_compute_or	
Table 57: Error messages and codes	209
Table 58: Input parameters of xv_time_segments_and	
Table 59: Output parameters of xv_time_segments_and	
Table 60: Error messages and codes	
Table 61: Input parameters of xv_timesegments_compute_and	
Table 62: Output parameters of xv_timesegments_compute_and	
Table 63: Error messages and codes	221
Table 64: xv_time_segments_sort function	
Table 65: Input parameters of xv_time_segments_sort	
Table 66: Output parameters of xv_time_segments_sort	
Table 67: Error messages and codes	226
Table 68: xv timesegments compute sort function	
Table 69: Input parameters of xv_timesegments_compute_sort	
Table 70: Output parameters of xv_timesegments_compute_sort	
Table 71: Error messages and codes	231
Table 72: Input parameters of xv_time_segments_merge	
Table 73: Output parameters of xv_time_segments_merge.	
Table 74: Error messages and codes	237
Table 75: Input parameters of xv_timesegments_compute_merge	
Table 76: Output parameters of xv_timesegments_compute_merge	
Table 77: Error messages and codes	
Table 78: Input parameters of xv_time_segments_delta	
Table 79: Output parameters of xv time segments delta	
Table 80: Error messages and codes	248
Table 81: Input parameters of xv_timesegments_compute_delta	251
Table 82: Output parameters of xv_timesegments_compute_delta	251
Table 83: Error messages and codes	
Table 84: Input parameters of xv_time_segments_mapping	
Table 85: Output parameters of xv_time_segments_mapping	
Table 86: Error messages and codes	
Table 87: Input parameters of xv_timesegments_compute_mapping	268
Table 88: Output parameters of xv_timesegments_compute_mapping	
Table 89: Error messages and codes	270
Table 90: Swath geometry definition (algorithm)	273
Table 91: Input parameters of xv gen swath function	275
Table 92: Output parameters of xv_gen_swath function	276
Table 93: Error messages of xv_gen_swath function	277
Table 94: Input parameters of xv_gen_swath_no_file function	
Table 95: Output parameters of xv gen swath no file function	

ode:	EO-MA-DMS-GS-0006
Date:	29/10/2015
ssue:	4.10
Page:	18

Table 96: Input parameters of xv gen scf function	284
Table 97: Output parameters of xv gen scf function	285
Table 98: Error messages of xv gen scf function	286
Table 99: Input parameters of xv swath id init	289
Table 100: Output parameters of xv swath id init	289
Table 101: Error messages and codes	290
Table 102: Input parameters of xv swath id close	293
Table 103: Output parameters of xv_swath_id_close	293
Table 104: Error messages and codes	294
Table 105: Input parameters of xv_swath_set_id_data	297
Table 106: Output parameters of xv_swath_set_id_data	297
Table 107: Input parameters of xv_swath_get_id_data	301
Table 108: Output parameters of xv swath get id data	
Table 109: Input parameters of xv_zonevistime_coverage	308
Table 110: Output parameters of xv_zonevistime_coverage	308
Table 111: Error messages and codes	309

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 19

LIST OF FIGURES

Figure 1: EO_VISIBILITY Data Flow	26
Figure 2: Segment Definition xv_zone_vis_time	40
Figure 3: Earth-observing instrument: swath definition	44
Figure 4: Limb-sounding instrument: swath definition (1)	45
Figure 5: Limb-sounding instrument: swath definition (2)	45
Figure 6: Zone examples	49
Figure 7: Intersection examples	50
Figure 8: Swath points	52
Figure 9: Swath coverage definition	
Figure 10: Segment Definition xv_zonevistime_compute	75
Figure 11: xv_zonevistime_compute function (more than one zone)	76
Figure 12: Earth-observing instrument: swath definition	
Figure 13: Limb-sounding instrument: swath definition (1)	80
Figure 14: Limb-sounding instrument: swath definition (2)	80
Figure 15: Zone examples	
Figure 16: Intersection examples	86
Figure 17: Swath points	
Figure 18: Swath coverage definition	
Figure 19: Two tangent altitudes over the ellipsoid	149
Figure 20: Instantaneous FOV projected on the celestial sphere	
Figure 21: xv_multizones_vis_time function	
Figure 22: xv_time_segment_not_function	
Figure 23: xv_timesegments_compute_not function	
Figure 24: xv_time_segments_or_function	
Figure 25: xv_timesegments_compute_or_function	
Figure 26: xv_time_segments_and_function	
Figure 27: xv_timesegments_compute_and_function	
Figure 28: xv_time_segments_merge function	
Figure 29: xv_timesegments_compute_merge function	
Figure 30: Different mappings with common segments	
Figure 31: Different mappings with common segments	265

1 SCOPE

The EO_VISIBILITY Software User Manual provides a detailed description of usage of the CFI functions included within the EO_VISIBILITY CFI software library.

2 ACRONYMS, NOMENCLATURE AND TERMINOLOGY

2.1 Acronyms

ANX Ascending Node Crossing

AOCS Attitude and Orbit Control Subsystem

CFI Customer Furnished Item

EF Earth Fixed reference frame

ESA European Space Agency

ESTEC European Space Technology and Research Centre

FOS Flight Operations Segment

GS Ground Station

OSF Orbit Scenario File
SCF Swath Control File
SDF Swath Definition File

SRAR Satellite Relative Actual Reference

SSP Sub-Satellite Point
STF Swath Template File

SUM Software User Manual

TOD True of Date reference frame UTC Universal Time Coordinated

UT1 Universal Time UT1

WGS[84] World Geodetic System 1984

2,2 Nomenclature

CFI A group of CFI functions, and related software and documentation that will be distributed

by ESA to the users as an independent unit

CFI function A single function within a CFI that can be called by the user

Library A software library containing all the CFI functions included within a CFI plus the

supporting functions used by those CFI functions (transparently to the user)

2.3 Note on Terminology

In order to keep compatibility with legacy CFI libraries, the Earth Observation Mission CFI Software makes use of terms that are linked with missions already or soon in the operational phase like the Earth Explorers.

This may be reflected in the rest of the document when examples of Mission CFI Software usage are proposed or description of Mission Files is given.

3 APPLICABLE AND REFERENCE DOCUMENTS

3.1 Applicable Documents

No applicable documents.

3.2 Reference Documents

[GEN_SUM]	Earth Observation Mission CFI Software. General Software User Manual. EO-MA- DMS-GS-0002.
[F_H_SUM]	Earth Observation Mission CFI Software. EO_FILE_HANDLING Software User Manual. EO-MA-DMS-GS-0008.
[D_H_SUM]	Earth Observation Mission CFI Software. EO_DATA_HANDLING Software User Manual. EO-MA-DMS-GS-007.
[LIB_SUM]	Earth Observation Mission CFI Software. EO_LIB Software User Manual. EO-MA-DMS-GS-003.
[ORBIT_SUM]	Earth Observation Mission CFI Software. EO_ORBIT Software User Manual. EO-MA-DMS-GS-0004.
[POINT_SUM]	Earth Observation Mission CFI Software. EO_POINTING Software User Manual. EO-MA-DMS-GS-0005.
[FORMATS]	Earth Explorer File Format Guidelines. CS-TN-ESA-GS-0148.

The latest applicable version of [MCD], [F_H_SUM], [LIB_SUM], [ORBIT_SUM], [POINT_SUM], [VISIB_SUM], [GEN_SUM] is v4.10 and can be found at: http://eop-cfi.esa.int/REPO/PUBLIC/DOCUMENTATION/CFI/EOCFI/BRANCH 4X

4 INTRODUCTION

4.1 Functions Overview

This software library contains the CFI functions required to compute time segments at which an Earth Observation satellite, or one of its instruments is in view of various targets:

- zones (defined as polygons or circles, on the earth ellipsoid or at a given altitude)
- ground stations
- data relay satellites
- stars

This library is to be used for planning of Earth Observation operations. It includes, the following CFI functions:

- xv stationvistime compute: compute visibility time segments for one or several ground stations.
- xv sc vis time: computes visibility time segments for a target satellite
- xv_zonevistime_compute: compute visibility time segments for an instrument swath in visibility of one or several zones.
- xv_swathpos_compute: computes location of a swath at a given time (additional routine to help refine the results of xv_zonevistime_compute)
- xv_star_vis_time: computes visibility time segments for a star.
- xv_gen_swath and xv_gen_swath_no_file generate the instrument swath template file for a given satellite, instrument mode and orbit.
- xv_gen_scf generates a swath control file for the ESOV tool.
- Time Segments Manipulation Routines:
 - xv timesegments compute not: returns the complement of 1 vector of time segments.
 - xv_timesegments_compute_and: returns the intersection segments from 2 vectors of time segments.
 - xv_timesegments_compute_or: returns the joined segments from 2 vectors of time segments
 - xv_timesegments_compute_delta: add or subtract time durations at the beginning and end of each time segment in a vector.
 - xv_timesegments_compute_sort: returns the vector of time segments sorted according to absolute or relative orbits.
 - xv_timesegments_compute_merge: merges all the overlapped segments in a list.
 - xv_timesegments_compute_mapping: returns a subset of the time segments vector, such that this subset covers entirely a zone or line swath.

Several files are required to operate properly the above functions:

- Orbit Scenario File (all functions)
- Swath Template Files (xv_stationvistime_compute, xv_zonevistime_compute, xv swathpos compute)
- Ground Stations Database File (xv stationvistime compute)
- (optionally) Zones Database File (xv zonevistime compute)
- (optionally) Star Database File (xv star vis time)

Note that all the above routines use orbit-relative time parameters (i.e. the time parameters are represented as orbit number + time since ascending node). Two functions from EO_ORBIT will be very useful to process the input/outputs:

- **xo_time_to_orbit**: converts from TAI/UTC/UT1 time to orbit-relative time
- xo orbit to time: converts from orbit-relative time to TAI/UTC/UT1 time

Since version of EOCFI 4.6, some of the visibility functions have been substituted by newer functions, which have an equivalent functionality. The older versions have been declared deprecated, although they can still be used; anyway, it is recommended to use the new functions. In the table 1 you can find the correspondence between the old (deprecated) functions and the new ones which have an equivalent functionality.

Table 1: Correspondence of current functions and deprecated functions

Current function	Corresponding deprecated function(s)
xv_stationvistime_compute	xv_station_vis_time
	xv_station_vis_time_no_file
	xv_multistations_vis_time
xv_swathpos_compute	xv_swath_pos
xv_timesegments_compute_and	xv_time_segments_and
xv_timesegments_compute_or	xv_time_segments_delta
xv_timesegments_compute_not	xv_time_segments_mapping
xv_timesegments_compute_sort	xv_time_segments_merge
xv_timesegments_compute_merge	xv_time_segments_not
xv_timesegments_compute_delta	xv_time_segments_or
xv_timesegments_compute_mapping	xv_time_segments_sort
xv_zonevistime_compute	xv_zone_vis_time
	xv_zone_vis_time_no_file
	xv_multizones_vis_time

Code: EO-MA-DMS-GS-0006 Date: 29/10/2015

Issue: 4.10 Page: 26

4.2 Calling Sequence

An overview of the data flow is presented in Figure 1,

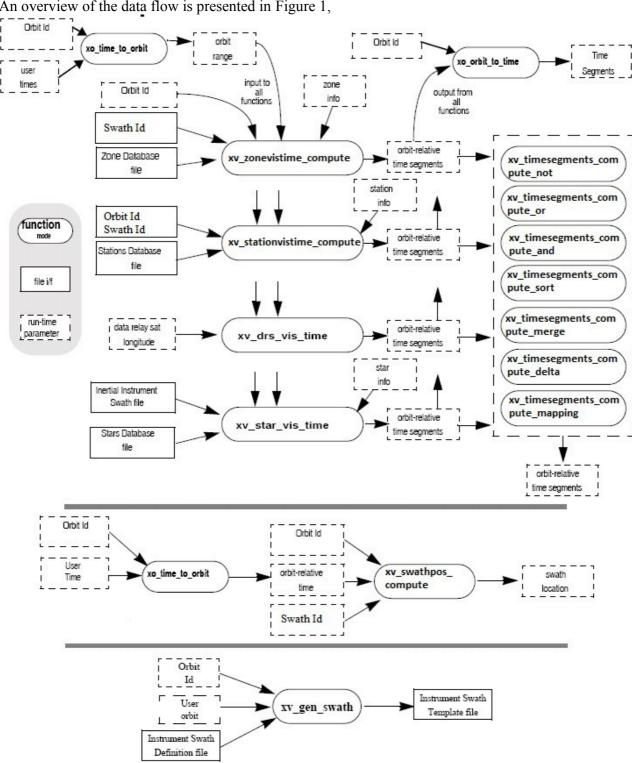


Figure 1: EO_VISIBILITY Data Flow

5 LIBRARY INSTALLATION

For a detailed description of the installation of any CFI library, please refer to [GEN_SUM]. Note that example data files are provided with this CFI.

6 LIBRARY USAGE

The EO_VISIBILITY software library has the following dependencies:

- Other EOCFI libraries:
 - EO FILE HANDLING (See [F H SUM]).
 - EO_DATA_HANDLING (See [D_H_SUM]).
 - EO LIB (See [LIB SUM]).
 - EO ORBIT (See [ORBIT SUM]).
 - EO POINTING (See [POINT SUM]).
- Third party libraries:
 - POSIX thread library: libpthread.so (Note: this library is normally pre-installed in Linux and MacOS platforms. For Windows platforms, pthread.lib is included in the distribution package, with license LGPL);
 - GEOTIFF, TIFF, PROJ, LIBXML2 libraries (these libraries are included in the distribution package. Their usage terms and conditions are available in the file "TERMS AND CONDITIONS.TXT" which is part of the distribution package).

In order to improve run-time performance, Some pointing functions (see section 7.88, 7.90, 7.92 of [POINT SUM]) perform their computations in multi-threading mode.

The multi-threading code of the Pointing functions uses the OpenMP API (see http://en.wikipedia.org/wiki/OpenMP).

OpenMP is not supported in the clang compiler, therefore such functions work in single-thread mode in MacOS.

The following is required to compile and link a Software application that uses the EO_VISIBILITY software library functions (it is assumed that the required EOCFI and third-part libraries are located in directory *cfi_lib_dir* and the required header files are located in *cfi_include*, see [GEN_SUM] for installation procedures):

- 1) include the following header files in the source code:
 - explorer visibility.h (for a C application)
- 2) use the following compile and link options:

Linux platforms:

- -Icfi_include_dir -Lcfi_lib_dir -lexplorer_visibility
- -lexplorer_pointing -lexplorer_orbit -lexplorer_lib lexplorer_data_dandling -lexplorer_file_handling -lgeotiff -ltiff -lproj -lxml2 -lm -lc -lpthread -fopenmp

MacOS platforms (openmp is not supported)

- -Icfi include dir -Lcfi lib dir -lexplorer visibility
- -lexplorer pointing -lexplorer orbit -lexplorer lib lexplorer data dandling -lexplorer file handling
- -lgeotiff -ltiff -lproj -lxml2 -lm -lc -lpthread

Windows platforms:

/I "cfi include dir" /libpath: "cfi lib dir" libexplorer visibility.lib

libexplorer_pointing.lib libexplorer_orbit.lib libexplorer_lib.lib libexplorer_data_handling.lib libexplorer_file_handling.lib libgeotiff.lib libtiff.lib libproj.lib libxml2.lib pthread.lib Ws2_32.lib /openmp

All functions described in this document have a name starting with the prefix xy.

To avoid problems in linking a user application with the EO_VISIBILITY software library due to the existence of names multiple defined, the user application should avoid naming any global software item beginning with either the prefix XV $\,$ or $\,$ xv $\,$.

This is summarized in Table 2.

Table 2: CFI functions included within EO_VISIBILITY library

Function Name	Enumeration value	long		
	Main CFI Functions			
xv_zone_vis_time	XV_ZONE_VIS_TIME_ID	0		
xv_zone_vis_time_no_file				
xv_station_vis_time	XV_STATION_VIS_TIME_ID	1		
xv_station_vis_time_no_file				
xv_sc_vis_time	XV_SC_VIS_TIME_ID	2		
xv_swath_pos_id	XV_SWATH_POS_ID	3		
xv_star_vis_time	XV_STAR_VIS_TIME_ID	4		
xv_multizones_vis_time	XV_MULTIZONES_VIS_TIME_ID	5		
xv_multistations_vis_time	XV_MULTISTATIONS_VIS_TIME_ID	6		
xv_time_segments_not	XV_TIME_SEGMENTS_NOT_ID	7		
xv_time_segments_or	XV_TIME_SEGMENTS_OR_ID	8		
xv_time_segments_and	XV_TIME_SEGMENTS_AND_ID	9		
xv_time_segments_sort	XV_TIME_SEGMENTS_SORT_ID	10		
xv_time_segments_merge	XV_TIME_SEGMENTS_MERGE_ID	11		
xv_time_segments_delta	XV_TIME_SEGMENTS_DELTA_ID	12		
xv_time_segments_mapping	XV_TIME_SEGMENTS_MAPPING_ID	13		
xv_orbit_extra	XV_ORBIT_EXTRA_ID	14		
xv_gen_scf	XV_GEN_SCF_ID	15		
xv_gen_swath	XV_GEN_SWATH_ID	16		
xv_gen_swath_no_file				

ATLL ID INIT ID	l
ATH_ID_INIT_ID	17
ATH_ID_CLOSE_ID	18
IEVISTIME_COMPUTE_ID	19
TIONVISTIME_COMPUTE_ID	20
ATHPOS_COMPUTE_ID	21
ESEGMENTS_COMPUTE_NOT_ID	22
ESEGMENTS_COMPUTE_OR_ID	23
ESEGMENTS_COMPUTE_AND_ID	24
ESEGMENTS_COMPUTE_SORT_ID	25
ESEGMENTS_COMPUTE_MERGE_ID	26
ESEGMENTS_COMPUTE_DELTA_ID	27
ESEGMENTS_COMPUTE_MAPPING_ID	28
dling Functions	
icable	
	ATH_ID_CLOSE_ID NEVISTIME_COMPUTE_ID TIONVISTIME_COMPUTE_ID ATHPOS_COMPUTE_ID ESEGMENTS_COMPUTE_NOT_ID ESEGMENTS_COMPUTE_AND_ID ESEGMENTS_COMPUTE_SORT_ID ESEGMENTS_COMPUTE_MERGE_ID ESEGMENTS_COMPUTE_MERGE_ID ESEGMENTS_COMPUTE_DELTA_ID ESEGMENTS_COMPUTE_MAPPING_ID Idling Functions

Notes about the table:

- To transform the status vector returned by a CFI function to either a list of error codes or list of error messages, the enumeration value (or the corresponding integer value) described in the table must be used.
- The error handling functions have no enumerated value.

6.1 Usage hints

Every CFI function has a different length of the Error Vector, used in the calling I/F examples of this SUM and defined at the beginning of the library header file. In order to provide the user with a single value that could be used as Error Vector length for every function, a generic value has been defined (XV_ERR_VECTOR_MAX_LENGTH) as the maximum of all the Error Vector lengths. This value can therefore be safely used for every call of functions of this library.

6.2 General enumerations

The aim of the current section is to present the enumeration values that can be used rather than integer parameters for some of the input parameters of the EO_VISIBILITY routines, as shown in the table below. The enumerations presented in [GEN_SUM] are also applicable.

Table 3: Some enumerations within EO_VISIBILITY library

Input	Description	Enumeration value	Long
Orbit type /	Absolute Orbit	XV_ORBIT_ABS	0
Order Criteria			
	Relative Orbit	XV_ORBIT_REL	1
zone_vis_time cover age outputs	Zone completely covered by swath	XV_COMPLETE	0
	Left extreme transition found by ZONE_VIS_TIME	XV_LEFT	1
	Right extreme transition found by ZONE_VIS_TIME	XV_RIGHT	2
	Both extreme transition found by ZONE_VIS_TIME	XV_BOTH	3
stat_vis_time mask inputs	AOS, LOS and physical masks	XV_COMBINE	0
	AOS, LOS masks	XV_AOS_LOS	1
	Physical mask only	XV_PHYSICAL	2
	Mask as from Station file	XV_FROM_FILE	3
star_vis_time cover age outputs	Visibility stars/ends at the first/last FOV in star_vis_time	XV_STAR_UNDEFINED	0
	Visibility stars/ends at the upper FOV in star_vis_time	XV_STAR_UPPER	1
	Visibility stars/ends at the lower FOV in star_vis_time	XV_STAR_LOWER	2
	Visibility stars/ends at the left FOV in star_vis_time	XV_STAR_LEFT	3
	Visibility stars/ends at the right FOV in star_vis_time	XV_STAR_RIGHT	4
Order enumeration	Input Segments ordered by start time	XV_TIME_ORDER	0
	Input Segments not ordered by start time	XV_NO_TIME_ORDER	1
Segments direction	Ascending segment	XV_ASCENDING	0
	Descending segment	XV_DESCENDING	1
Swath flag	Swath Template File	XV_STF	0
	Swath Definition File	XV_SDF	1
Swath id initialization	File automatic	XV_FILE_AUTO	0
	Swath definition file	XV_FILE_SDF	1
	Swath template file	XV_FILE_STF	2
	Swath definition data	XV_SDF_DATA	3

	Swath template data	XV_STF_DATA	4
Zone type	Use zone database	XV_USE_ZONE_DB_FILE	0
	Use zone data	XV_USE_ZONE_DATA	1
Extra information computation	Do not compute extra information	XV_DO_NOT_COMPUTE	0
	Compute extra information	XV_COMPUTE	1
Station type	Use station file	XV_USE_STATION_FILE	0
	Use station data	XV_USE_STATION_DATA	1
	Use station file and default mask	XV_USE_STATION_FILE_AND_MASK_O VERRIDE	2
	Use station data and default mask	XV_USE_STATION_DATA_AND_MASK_O VERRIDE	3
Segment time type	UTC time provided	XV_UTC_TYPE	0
	Orbit data provided	XV_ORBIT_TYPE	1
	UTC time and orbit data provided	XV_BOTH_TYPE	2
Coverage computation type	Coverage computation of point database done with a fixed distance between points	XV_COVERAGE_FIXED_DISTANCE	0
	Coverage computation performance aiming a given percentage of precision	XV_COVERAGE_PERCENTAGE_PRECIS ION	1

The use of the previous enumeration values could be restricted by the particular usage within the different CFI functions. The actual range to be used is indicated within a dedicated reference named **allowed range**. When there are not restrictions to be mentioned, the allowed range column is populated with the label **complete**.

6.3 Data Structures

The aim of the current section is to present the data structures that are used in the EO_LIB library. The structures are currently used for the CFI Identifiers accessor functions. The following table show the structures with their names and the data that contain:

Table 4: EO_VISIBILITY structures

Structure name	Data			
	Variable Name	C type	Description	
xv_az_el_mask	num_mask_pt	long	Number of azimuth and elevation pairs defining the antenna mask	
	status	long	Allow the user to enable/disable masks;	
			The behaviour of the status field is described below for each type of mask:	
			Inclusive mask:	
			Status = XL_FALSE: no constraints (regardless of number of points)	
			Status = XL_TRUE and number of points = 0 : no constraints	
			Exclusive mask:	
			Status = XL_FALSE: mask is ignored (regardless of number of points)	
			Status = XL_TRUE and number of points = 0 : mask is ignored	
			Combining the two above:	
			Each mask define a polygon.	
			Forbidden areas are:	
			1) the area OUTSIDE the inclusive polygon;	
			the area INSIDE the exclusive polygon;	
	azimuth	double [XD_VERTICES]	Azimuth defining the antenna mask	
	elevation	double [XD_VERTICES]	Elevation defining the antenna mask	
xv_link_mask	incl_mask	xv_az_el_mask	List of azimuth and elevation pairs in Instrument Frame defining an inclusive zone	
	excl_mask	xv_az_el_mask	List of azimuth and elevation pairs in Instrument Frame defining an exclusive zone	
xv_link_data	mask_data	xv_link_mask	List of azimuth and elevation pairs in Instrument Frame	
	min_tg_height	double	Minimum tangent height	

Structure name	Data			
	Variable Name	C type	Description	
xv_swath_info	type	long	Initialization type (Swath initialization type enum)	
	filename	char*	File name	
	sdf_file	xd_sdf_file*	Swath definition data	
	stf_file	xd_stf_file*	Swath template data	
	nof_regen_orbits	long	Number of orbit for STF regeneration (for SDF initializations)	
xv_time	type	long	Time type (see Segment time type enum)	
	utc_time	double	UTC time (processing days)	
	orbit_type	long	Orbit type (see Orbit type enum)	
	orbit_num	long	Orbit number	
	cycle	long	Cycle number	
	sec	long	Seconds since ascending node	
	msec	long	Microseconds since ascending node	
xv_time_interval	tstart	xv_time	Interval start time	
	tstop	xv_time	Interval stop time	
xv_zone_coverage_ info	zone_id	char*	Zone name	
	coverage	long	Zone coverage flag for segment	
			 = 0 Zone completely covered by swath 	
			 1 Zone not completely covered by swath, extending over the left edge of the swath. 	
			= 2 Zone not completely covered by swath, extending over the right edge of the swath.	
			= 3 Zone not completely covered by swath, extending over both edges of the swath	

Structure name	Data			
	Variable Name	C type	Description	
xv_zone_coverage_ info_list	num_rec	long	Number of zones	
	zone_coverage_info	xv_zone_coverage_info	List of zones with coverage	
xv_zonevisibility_int erval	time_interval	xv_time_interval	Segment start and stop	
	zone_coverage_info_lis	xv_zone_coverage_info_li st	Coverage information	
xv_zonevisibility_int erval_list	num_rec	long	Number of segments	
	visibility_interval	xv_zonevisibility_interval	List of segments	
xv_zone_info	zone_id	char*	Zone name	
	type	type	Zone type (see Zone type enum)	
	zone_db_filename	char*	Zone database name	
	zone_data	xd_zone_rec*	Zone record information	
	projection	long	Projection (see projection enum)	
	min_duration	double	Minimum segment duration (seconds)	
xv_zone_info_list	calc_flag	long	Flag to tell if extra information must be computed (see extra information compute flag enum)	
	num_rec	long	Number of zones	
	zone_info	xv_zone_info*	List of zones.	

Structure name	Data			
	Variable Name	C type	Description	
xv_station_info	type	long	See station type enum.	
	station_id	char*	Station name	
	station_db_filename	char*	Station database	
	station_data	xd_station_rec*	Station data	
	default_aos	double	Default AOS elevation	
	default_los	double	Default LOS elevation	
	default_mask	long	Default mask	
	min_duration	double	Minimum segment duration	
xv_station_info_list	calc_flag	long	Flag to tell if extra information must be computed (see extra information compute flag enum)	
	num_rec	long	Number of stations	
	station_info	xv_station_info*	List of stations.	
xv_station_coverag e_info	station_id	char*	Name of the station	
	zdop_time	xv_time	Zero doppler time	
xv_station_coverag e_info_list	num_rec	long	Number of stations with coverage information	
	station_coverage_info	xv_station_coverage_info*	List of stations	
xv_stationvisibility_i nterval	time_interval	xv_time_interval	Segment start/stop information	
	station_coverage_info_l	xv_station_coverage_info _list	Segment extra information	
xv_stationvisibility_i nterval_list	num_rec	long	Number of segments	
_	visibility_interval	xv_stationvisibility_interval	List of segments	

G4 4	Data						
Structure name	Variable Name	C type	Description				
xv_swath_point	lon	double	Longitude				
	lat	double	Latitude				
	alt	double	Altitude				
xv_swath_point_list	num_rec	long	Number of points				
	swath_point	xv_swath_point*	List of swath points				
xv_visibility_interval	time_interval	xv_time_interval	Time interval				
xv_visibility_interval _list	num_rec	long	Number of segments				
	visibility_interval	xv_visibility_interval*	List of segments				
xv_zonevisibility_co verage_in	type_coverage	long	Coverage type (see XV_Type_Coverage_enum)				
	point_geod_distance	double	Geodetic distance between points [km]				
	percent_precision	double	Expected precision. The closer to 100%, the more accurate the computations				
	orbit_id	xo_orbit_id*	Orbit id				
	attitude_def	xp_attitude_def*	Attitude definition				
	swath_id	xv_swath_id*	Swath id				
	zone_info	xv_zone_info*	Zone where the computation must be performed				
	visibility_interval_list	xv_zonevisibility_interval_ ist*	Visibility segments whose percentage of zone coverage must be computed				

Structure name	Data					
Structure name	Variable Name	C type	Description			
xv_zonevisibility_co verage_out	zone_area	double	Zone area in km ²			
	total_coverage	double	Percentage of zone covered by all intervals, i.e. 100% - percentage of zone not covered by any interval			
	coverage_per_interval	double*	Array, item with index i (0,1,2,N-1) is the percentage of zone covered by interval i+1 (1,2,N) only			
	coverage_by_N_interva ls	double*	Array, item with index i (0,1,2,N-1) is the percentage of the zone covered by exactly i+1 (1,2,N) intervals			
	cumulative_coverage	double*	Array, with index i (0,1,2,N-1) is the percentage of zone covered by intervals 1,2i+1 considered together			

7 CFI FUNCTIONS DESCRIPTION

The following sections describe each CFI function.

Input and output parameters of each CFI function are described in tables, where C programming language syntax is used to specify:

- Parameter types (e.g. long, double)
- Array sizes of N elements (e.g. param[N])
- Array element M (e.g. [M])

7.1 xv_zone_vis_time

7.1.1 Overview

Note: this function is deprecated. Use xv zonevistime compute instead.

The xv_zone_vis_time function computes all the orbital segments for which a given instrument swath intercepts a user-defined zone at the surface of the Earth ellipsoid.

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as seconds (and microseconds) elapsed since the ascending node crossing.

A user-defined zone can be:

- a polygon specified by a set of latitude and longitude points
- a circle specified by the centre latitude, longitude, and the diameter

Note that particular cases of the above can be used to define the zone as:

- a point
- a line

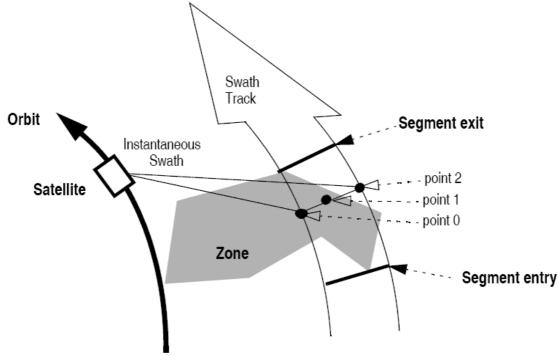


Figure 2: Segment Definition xv_zone_vis_time

xv zone vis time requires access to several data structures and files to produce its results:

- the orbit_id (xo_orbit_id) providing the orbital data. The orbit_id can be initialized with the following data or files, also with precise propagator initialization if applicable (see [ORBIT SUM]):
 - data for an orbital change
 - Orbit scenario files
 - Predicted orbit files

- Orbit Event Files (Note: Orbit Event File is deprecated, only supported for CRYOSAT mission).
- Restituted orbit files
- DORIS Preliminary orbit files
- DORIS Navigator files
- TLE files

Note: if the orbit is initialized for precise propagation, the execution of the visibility function can be very slow. As alternative, a POF can be generated with the precise propagator (function xo_gen_pof) for the range of orbits the user usually needs, and use this generated file to initialize the orbit id. The execution time performance will be much better for the visibility function and it will not have a big impact on the precision of the calculations.

- the Instrument Swath File, excluding inertial swath files, describing the area seen by the relevant instrument all along the current orbit. The Swath data can be provided by:
 - A swath template file produced off-line by the EO_VISIBILITY library (**xv_gen_swath** function).
 - A swath definition file, describing the swath geometry. In this case the **xv_zone_vis_time** generates the swath points for a number of orbits given by the user.
- optionally, a Zone Database File, containing the zone description. The user can either specify a zone identifier referring to a zone in the file, or provide the zone parameters directly to xv_zone_vis_time.

The time intervals used by **xv_zone_vis_time** are expressed in absolute orbit numbers or in relative orbit and cycle numbers. This is valid for both:

- input parameter "Orbit Range": first and last orbit to be considered. In case of using relative orbits, the corresponding cycle number should be used, otherwise, this the cycle number will be a dummy parameter.
- output parameter "Zone Visibility Segments": time segments with time expressed as {absolute orbit number (or relative orbit number and cycle number), number of seconds since ascending node, number of microseconds}

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. Moreover, the segments will be ordered chronologically.

Users who need to use processing times must make use of the conversion routines provided in EO_ORBIT (xo time to orbit and xo orbit to time functions).

NOTE: If **xv_zone_vis_time** is used with a range of orbits that includes an orbital change (e.g. change in the repeat cycle or cycle length), the behaviour depends on the swath file introduced as input:

- •If a **swath template file** is used, **xv_zone_vis_time** automatically will ignore the orbits that do not correspond with the template file (i.e. no visibility segments will be generated for those orbits), since swath template file is generated from a reference orbit with a particular geometry, so it is not valid for a different geometry.
- •If a **swath definition file** is introduced, **xv_zone_vis_time** will perform the computations across orbital changes, and will return the visibility segments corresponding to the whole orbital range. Internally, swath template files valid for every orbital change are generated to perform the calculations.

NOTE 2:If a swath template file with the variable header tags *Start_Validity_Range* and *Stop_Validity_Range* is used as input, only the segments belonging to that orbit range will be returned.

NOTE 3: If a swath definition file is introduced, it can be also introduced every how many orbits the swath template file must be recomputed (swath_flag parameter, see section 57). If the orbit_id has been initialized with an OSF file with MLST non linear terms and the parameter swath_flag is greater than the linear approximation validity, the recomputation of swath template file will be done every linear approximation validity orbits.

7.1.2 Swath Definition

The swath file is generated using the xv_gen_swath function, within the EO_VISIBILITY library. There are 3 different types of swaths:

- earth-observing instruments ('nadir curve', 'nadir point' or "area swaths")
- limb-sounding instruments ('limb', narrow or wide)
- limb-sounding instruments observing inertial objects ('inertial')

The following sub-sections provide some details on the various swath definitions.

7.1.2.1 Earth-observing Instruments Swath Definition

The term swath must be clearly defined to understand the explanations in this document:

- instantaneous swath: the part of the earth surface observed by an instrument at a given time
- swath track: represents the track made on the earth surface by the instantaneous swath over a period of time

For instruments observing the surface of the earth, the instantaneous swath is constituted by the point/curve/area on the ground observed by the instrument at a given time. It is calculated taking the earth ellipsoid as a reference for the earth surface. The wider the field-of-view of the instrument, the wider the swath on the ground.

When the satellite moves over a period of time, this point/curve/area defines a band on the earth surface. This constitutes the swath track.

See next figure for an illustration of these definitions.

Note that the terms curve or point are an idealized view of the instrument FOV, which usually have a thickness.

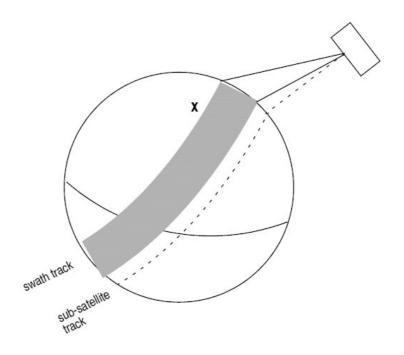


Figure 3: Earth-observing instrument: swath definition

7.1.2.2 Limb-sounding Instruments Swath Definition

For limb sounding instruments, the concept can be generalized to define a "thick swath". This is obtained by defining a minimum and a maximum altitude, and considering the tangent points to these altitudes as the edges of the swath. Two cases have to be considered:

- deterministic (narrow) azimuth field of view (e.g. MIPAS sideward-looking): the swath projection on the earth surface is similar to a regular sideward-looking swath, with the lower altitude defining the further swath edge and the higher altitude defining the closer swath edge. See Figure 4.
- non-deterministic (potentially wide) azimuth field of view (e.g. MIPAS rearward-looking): due to the potentially wide azimuth field of view, each altitude defines a swath projection on the earth surface. Depending on the altitude, these swaths are of different width across-track, and also at different distance from the satellite. See Figure 5.

For these, 2 Instrument Swath Files are provided:

- one at the highest altitude
- one at the lowest altitude

The user must handle both swath himself to determine his required visibility time segments

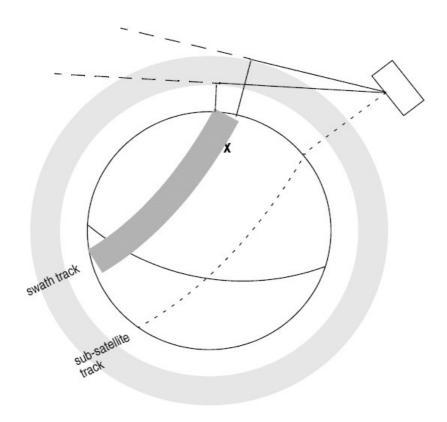


Figure 4: Limb-sounding instrument: swath definition (1)

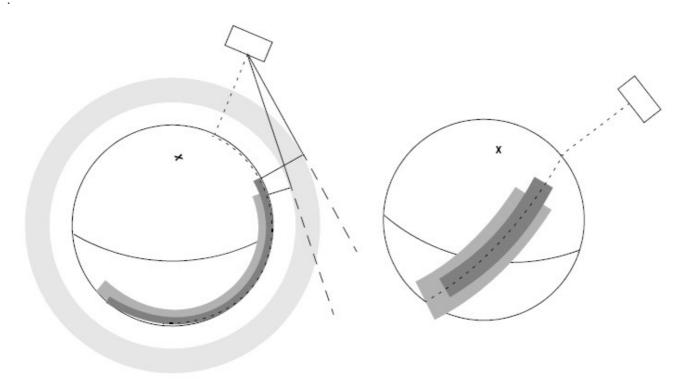


Figure 5: Limb-sounding instrument: swath definition (2)

7.1.2.3 Limb-sounding Instruments Inertial Swath Definition

This type corresponds to the observation of inertial targets (e.g. Gomos occultation mode and Mipas Line of Sight mode in Envisat). For the CFI function **xv_star_vis_time** the FOV direction in inertial coordinates must be available. Therefore for these instrument modes the direction in inertial space, for a given tangent altitude, is given in the swath template file.

7.1.2.4 Swath Definition for Envisat

Next table lists all instrument modes and the relevance of the swaths for Envisat. It shows also:

- the prefix to be used when generating the swath template file name
- the different types of algorithms to be used by xv_gen_swath (this is transparent to the user)

Table 5: Envisat Swaths

instrument	Mode	File Prefix = swath	Swath geometry (Table 90)	Swath Type	Remarks
RA		RA_2	POINTING (1 point)	Nadir point	Modeled as sub-satellite track
MERIS	Averaging / Direct & Averaging	MERIS_	POINTING (3 points)	Nadir line	
ASAR	Image Modes (IS1 IS7)	SARxIM (x=17)	ASAR	Nadir line	
	Alt. Polarization (IS1 IS7)				
	Wide Swath	SARWIM			
	Global Monitoring				
	Wave (IS1 IS7)	SARxWV (x=17)			Modeled as a continuous swath any where within the image swath
GOMOS	Occultation	GOMOIL GOMOIH	INERTIAL	Inertial direction	IFOV much smaller than swath. IFOV Very dependent on star avail ability.
					2 swaths defined:
					- 1 for high altitude (GOMOIH)
					- 1 for low altitude (GOMOIL)
	Occultation	GOMO_H GOMO_L	LIMB	Limb wide	Same mode as above, now swath defined as Earth-fixed location.
					IFOV much smaller than swath. IFOV Very dependent on star avail ability.

					2 swaths defined:
					- 1 for high altitude (GOMO_H)
					- 1 for low altitude (GOMO_L)
SCIAMACHY	Nadir /	SCIAN_	POINTING (3	Nadir line	Continuous Nadir swath modeled
	Nadir of Nadir & Limb		points)		
	Limb /	SCIALH		Limb wide	2 swaths defined:
	Limb of Nadir &	SCIALL			- 1 for high altitude (SCIALH)
	Limb				- 1 for low altitude (SCIALL)
AATSR		ATSR_N	POINTING (3	Nadir line	2 swaths defined:
		ATSR_F	points)		- 1 for nadir swath
					- 1 for forward swath
MWR		MWR	POINTING (1 points)	Nadir point	Modeled as sub-satellite track
MIPAS	Nominal	MIPN_H	LIMB	Limb narrow	2 swaths defined:
		MIPN_L			- 1 for high altitude (MIPN_H)
					- 1 for low altitude (MIPN_L)
	Special Event Mode (across)	MIP_X_	LIMB	Limb narrow	Modeled as an across track swath, in the middle of the MIPAS SEM acquisition scan.
	Special Event	MIP_RH	LIMB	Limb wide	IFOV much smaller than swath.
	Mode	MIP_RL			2 swaths defined:
	(rearward)	_			- 1 for high altitude (MIP_RH)
					- 1 for low altitude (MIP_RL)
	Rearward	MIPIRH MIPIRL	INERTIAL	Inertial direction	2 swaths defined for rearward mode:
		IVIII II XL			- 1 for high altitude (MIPIRH)
	Sideward	MIPIXH			- 1 for low altitude (MIPIRL)
	Cideward	MIPIXL			3 swaths defined for sideward mode:
					- 1 for high altitude (MIPIXH)
					- 1 for back mode (MIPIXB)
					- 1 for forward mode (MIPIXF)

7.1.3 Zone Borders and Projection

When defining a polygon zone, the user is assumed to wish polygon sides as straight lines. But on the earth surface, a straight line is, at best, a confusing concept.

The only way to define unambiguously straight lines is to work in a 2-dimensional projection of the earth surface. There are many possible projections, each having advantages and drawbacks.

xv_zone_vis_time can handle zone borders in 2 different projections:

- rectangular projection, using longitude and latitude as the X and Y axis; this is appropriate to express zones where (some of) the edges follow constant latitude lines, and provide a reasonable approximation for straight lines at low-medium-latitudes
- <u>azimuthal gnomonic projection</u>, where great circles are always projected as straight lines; this is better for <u>high latitudes</u>, where the rectangular projection suffers from too much distortion and the singularity at the poles.

xv_zone_vis_time allows the user to specify which projection he wants to work in, i.e. in which projection the polygon sides will be represented by **xv_zone_vis_time** as straight lines. The user is assumed to be aware of how the polygon sides behave on the Earth surface.

7.1.4 Zone Definition

The user-defined zone can be either (see Table 6);

- a point
- a line
- a polygon
- a circle

A zone is defined by the area of the earth surface enclosed by the zone borders:

- in the case of a circular zone, the area inside the circle
- in the case of a polygonal zone, the area which is always to the right of any polygon side; if the polygon is defined as a sequence of N points, each polygon side is considered as a line <u>from</u> point i <u>to</u> point i+1; this unambiguously defines the right side of the polygon sides.

Table 6: Zone definition

Zone definition	Zone_num	Zone_long Zone_lat	Zone_diam	Description
Circular Zone	1	[0]: centre point	yes zone_diam > 0.0	The zone is represented as a circle, around the centre point
Point Zone	1	[0]: Point	yes zone_diam = 0.0	The zone is defined by the point. Resulting segments will have a zero duration. The zone will always be completely covered by the swath.
Line Zone	2	[0], [1]: Line	no	The zone is defined by the line from point [0] to point [1].
Polygon Zone	>2	[i]	no	The zone is defined by the area right of the line from point [i] to point [i+1].

For the gnomonic projection, a side of a zone is always smaller than a half great circle, because two polygon points are considered to be joined by the shortest line.

For the rectangular projection, two consecutive points of the zone are also joined by the shortest line; so the difference in longitude must be less than 180 degrees.

The polygon zone can be closed (i.e. the first and last points are the same) or not. If the zone is not closed, **xv_zone_vis_time** closes it by joining the last point with the first one in its internal computations.

See Figure 6 for examples of zone definitions.

xv_zone_vis_time will issue an error on the zone definition if the polygon has intersecting sides ("butterfly" zone).

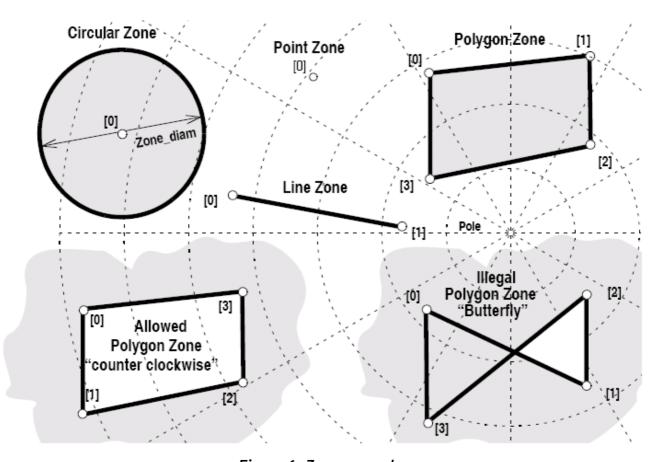


Figure 6: Zone examples

7.1.5 Intersection Definition

The xv_zone_vis_time intersection times between the instrument swath and the user-defined zone are defined as the first and last occurrence, in chronological order with respect to the satellite direction, of the geometrical super-position of any point belonging to the instrument swath with any single point belonging to the zone (including the zone border).

The entry and exit times for each intersection are given as elapsed seconds (and microseconds) since the ascending node crossing.

Next figure shows some typical intersections.

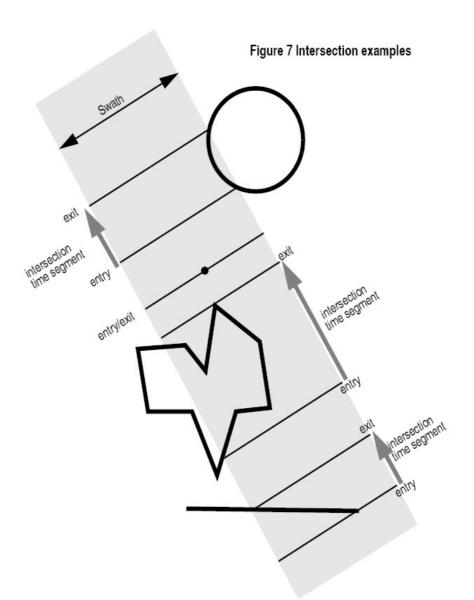


Figure 7: Intersection examples

7.1.6 Intersection Algorithm

The intersection of a swath and a user-defined zone is to be performed on the Earth projected to a map plane in one of the following projections:

- Rectangular projection
- Gnomonic projection

Although the projections are quite different, the intersection rules are identical. The algorithm can however be different, in order to take advantage of a particular feature of a projection.

The purpose of the CFI function ZONEVISTIME is to obtain quickly, accurate intersection segments with a low precision (1 second).

The algorithms assume that the polygon zones are closed and expects a wrap around between the first and the last point. Thus ZONEVISTIME must first close the polygon if necessary.

For ZONEVISTIME the following swath types are defined:

- point swath: instantaneous swath is a point.
- segment swath: instantaneous swath is a segment.
- multi-segment swath: it can be open or closed.
- inertial swath: not used by ZONEVISTIME

The main concept in the algorithm is the transition, defined as the change in coverage of (part of) the swath and the zone (e.g. edge of the swath crosses one polygon side).

7.1.6.1 Intersection with a point swath

The vertices of the polygon defining the area are connected by straight lines in the chosen projection, along track swath points are also connected by straight lines in the same projection.

Transitions are located by linear intersection of the zone sides and the swath along track lines. A transition is only valid if the intersection occurs inside both line segments. The polygon side from <i> to <j> is defined in a clockwise manner inclusive point <i> but exclusive point <j>. The swath line from time <k> to <l> is defined inclusive the template point at <k> but exclusive the template point at <l>.

The fraction of the swath along track line determines the precise timing since time <k> of the intersection. Also the determination if the transition is a on- or off-transition is quite trivial. First a vector is defined, perpendicular to the along track swath line, such that the vector points left. Then, the dot product of the polygon side and this vector is calculated. If the dot product is positive, the transition is on, i.e. the swath enters the zone. If the result is negative, then the swath leaves the zone. If the result equals zero then the transition can be ignored (polygon side and swath overlay, a proper transition will be found with another pair of polygon side - swath line.).

7.1.6.2 Intersection with a segment swath

The left and right side of the swath, are located using the same algorithm as for the point swath. Even left and right time segments can be made based on the left and right hand transitions.

The polygon vertices (and not the sides) are intersected with the along track moving line swath, in order to catch zones smaller than the swath, etc. Swaths for intermediate times between two consecutive times in Swath Template File are considered straight segments, joining an intermediate point of the Left swath line from time <k> to time <l>, with an intermediate point in Right swath line.

7.1.6.3 Intersection with a multi-segment swath

The algorithm used for segment swath is repeated for every segment of the swath, and the visibility segments obtained in each case are merged with the ones of the other swath segments.

For a closed swath further calculations are done: it is checked if the zone is completely inside the swath area in the interval between contiguous visibility segments, or between the beginning of the first orbit and the first visibility segment, or between the last visibility segment and the end of the last orbit computed. If it is inside, segments must be merged because the zone was visible in the interval.

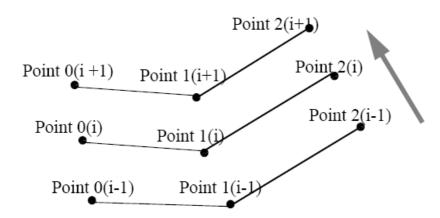


Figure 8: Swath points

7.1.7 Usage Hints

7.1.7.1 Limb-sounding Instruments Intersection

In the case of limb-sounding instrument with a potentially wide azimuth field of view, 2 swaths have to be considered (1 for minimum altitude, 1 for maximum altitude). Furthermore, these 2 swaths are offset in time (i.e. their projection on the earth intersect with a given point at different times). To cope with this, the user must do the following:

- call xv_zone_vis_time twice (once for each extreme altitude swath)
- merge/filter the 2 sets of time segments, depending on what he wants to achieve

7.1.7.2 Zone Coverage

xv_zone_vis_time computes purely geometrical intersections. The resulting zone visibility segments might need some additional filtering by the user. In particular, instrument constraints (e.g. only working outside of sun eclipse) have to be considered by the user.

Furthermore, to help users to deal with zones wider than the swath (i.e. requiring several orbits to cover the whole zone), **xv_zone_vis_time** produces for each zone visibility segment an indication of the coverage type (see Figure 9);

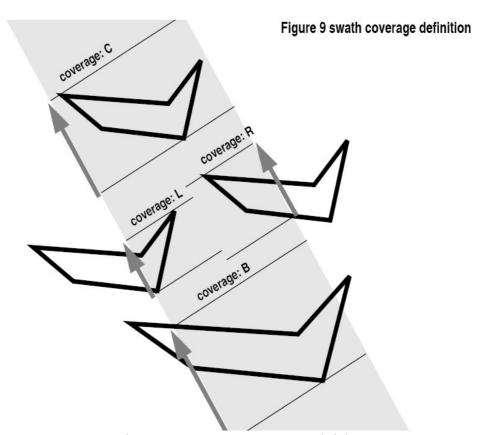


Figure 9: Swath coverage definition

- coverage = C: zone completely covered by the swath
- coverage = R: zone partially covered by the swath, extending over the right edge of the swath
- coverage = L: zone partially covered by the swath, extending over the left edge of the swath
- coverage = B: zone partially covered by the swath, extending over both edges of the swath

7.1.7.3 <u>Combined use of xv_swath_pos and the coverage flag</u>

The EO_VISIBILITY function xv_swath_pos can be used to refine the work performed with xv_zone_vis_time.

7.1.8 Calling sequence

For C programs, the call to xv zone vis time is (input parameters are underlined):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
               swath flag, orbit type,
      long
               start orbit, start cycle,
               stop orbit, stop cycle,
               zone num, projection,
               number segments,
               *bgn orbit, *bgn second,
               *bgn microsec, *bgn cycle,
               *end orbit, *end second,
               *end microsec, *end cycle,
               *coverage, ierr[XV NUM ERR ZONE VIS TIME],
               status;
      double
               *zone long, *zone lat,
               zone diam, min duration;
      char
               *swath file;
               *zone id, *zone db file;
      char
      status = xv zone vis time(&orbit id,
                            &orbit type,
                            &start orbit, &start cycle,
                            &stop orbit, &stop cycle,
                            &swath flag, swath file,
                            zone id, zone db file,
                            &projection, &zone num,
                            zone long, zone lat, &zone diam,
                            &min duration,
                            &number segments,
                            &bgn orbit, &bgn second,
                            &bgn microsec, &bgn cycle,
                            &end orbit, &end second,
                            &end microsec, &end cycle,
                            &coverage, ierr);
```


}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 56

```
/* Or, using the run id */
long run id;
status = xv zone vis time run(&run id,
                      &orbit type,
                      &start orbit, &start cycle,
                      &stop orbit, &stop cycle,
                      &swath flag, swath_file,
                     zone id, zone db file,
                      &projection, &zone_num,
                     zone long, zone lat, &zone diam,
                     &min duration,
                      &number_segments,
                      &bgn orbit, &bgn second,
                     &bgn microsec, &bgn cycle,
                     &end orbit, &end second,
                      &end microsec, &end cycle,
                      &coverage, ierr);
```


7.1.9 Input parameters

The xv_zone_vis_time CFI function has the following input parameters:

Table 7: Input parameters of xv_zone_vis_time function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
orbit_type	long*	-	Define the type of orbit representation, i.e. absolute or relative orbits in the input/output parameters. Relative orbits only can be used when the orbit_id was initialized with orbital changes (with xo_orbit_init_def or with xo_orbit_init_file plus an OSF file).	-	Complete.
			In other cases, only the value XV_ORBIT_ABS can be used.		
start_orbit	long	-	First orbit, segment filter. Segments will be filtered as from the beginning of first orbit. First Orbit for the orbit initialization will be used when: Absolute orbit is set to zero. Relative orbit and cycle number set to zero.	absolute or relative orbit number	= 0 or: • absolute orbits ≥ start_osf • relative orbits ≤repeat cycle
start_cycle	long	-	Cycle number corresponding to the start_orbit. Dummy when using absolute orbits	cycle number	= 0 or ≥ first cycle in osf
stop_orbit	long	-	Last orbit, segment filter. For orbit_id initialized with orbital changes, when: • stop_orbit = 0 (for orbit_type = XV_ORBIT_ABS) or • stop_orbit = 0 and stop_cycle = 0 (for orbit_type = XV_ORBIT_REL) the stop_orbit will be set to the minimum value between: • the last orbit within the orbital	absolute or relative orbit number	= 0 or: • absolute orbits ≥ start_osf • relative orbits ≤repeat cycle

			change of the start_orbit.		
			start_orbit+cycle_length-1 (i.e. the input orbit range will be a complete cycle)		
stop_cycle	long	-	Cycle number corresponding to the stop_orbit. Dummy when using absolute orbits	cycle number	= 0 or ≥ first cycle in osf
swath_flag	long*	_	Define the use of the swath file:	-	XV_STF = 0
			• 0 = (XV_STF) if the swath file is a swath template file.		XV_SDF = 1 > 0
			 > 0 if the swath files is a swath definition file. In this case the swath points are generated for every "swath_flag" orbits 		
swath_file	char *	-	File name of the swath-file for the appropriate instrument mode		
zone_id	char*		Identification of the zone, as defined in zone_db_file.		
			This parameter is used ONLY IF zone_num = 0		
zone_db_file	char *		File name of the zone-database-file.		
			This file is used ONLY IF zone_num = 0		
projection	long		projection used to define polygon sides as straight lines:		
			= 0 Read projection from Zones DB		
			= 1 Azimuthal gnomonic		
			= 2 Rectangular lat/long		
zone_num	long		Number of vertices of the zone provided in zone_long, zone_lat:		≥ 0
			= 0 no vertices provided, use zone_id / zone_db_file		
			= 1 Point / Circular zone,		
			= 2 Line zone		
			> 2 Polygon zone		
zone_long	double*	all	zone_long[i-1]		
			Geocentric longitude of		
			- circle centre, for circ. zone, i =1		
			- point, for point zone, i = 1		
			- line-end, for line zone, i = 1 or 2		

			- vertices, for polygon zone,		
			i = 1 zone_num		
zone_lat	double*	all	zone_lat[i-1]		
			Geodetic latitude of		
			- circle centre, for circ. zone, i =1		
			- point, for point zone, i = 1		
			- line-end, for line zone, i = 1 or 2		
			- vertices, for polygon zone,		
			i = 1 zone_num		
zone_diam	double		Zone diameter for circular zones,	m	≥ 0.0
			dummy for other zones		
			If diameter equals 0.0 then zone is Point Zone		
min_duration	double		Minimum duration for segments.	s	≥ 0
			Only segments with a duration longer than min_duration will be given on output.		

It is also possible to use enumeration values rather than integer values for some of the input arguments, as shown in the table below:

Input	Description	Enumeration value	long
projection	Read projection from the zones DB file	XD_READ_DB	0
(defined in	Azimuthal Gnomonic	XD_GNOMONIC	1
[D_H_SUM])	Rectangular long/lat	XD_RECTANGULAR	2

7.1.10 Output parameters

The output parameters of the xv_zone_vis_time CFI function are:

Table 8: Output parameters of xv_zone_vis_time function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xv_zone_vis_time	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
number_segments	long		Number of visibility segments returned to the user.		≥ 0
bgn_orbit	long*	all	Orbit number,		> 0
			begin of visibility segment i		
			bgn_orbit[i-1],		
			i = 1, number_segments		
bgn_second	long*	all	Seconds since ascending node,	s	≥ 0
			begin of visibility segment i		< orbital period
			bgn_second[i-1],		
			i = 1, number_segments		
bgn_microsec	long*	all	Micro seconds within second	μs	≥0
			begin of visibility segment i		999999
			bgn_microsec[i-1],		
			i = 1, number_segments		
bgn_cycle	long*	all	Cycle number,		>0
			begin of visibility segment i		NULL when using
			bgn_orbit[i-1],		absolute orbits
			i = 1, number_segments		
end_orbit	long*	all	Orbit number,		> 0
			end of visibility segment i		
			end_orbit[i-1],		
			i = 1, number_segments		
end_second	long*	all	Seconds since ascending node,	s	≥ 0
			end of visibility segment i		< orbital period
			end_second[i-1],		
			i = 1, number_segments		

	1			1	
end_microsec	long*	all	Micro seconds within second	μs	≥0
			end of visibility segment i		999999
			end_microsec[i-1],		
			i = 1, number_segments		
end_cycle	long*	all	Cycle number,		>0
			end of visibility segment i		NULL when using
			end_orbit[i-1],		absolute orbits
			i = 1, number_segments		
coverage	long*	all	Zone coverage flag for segment		
			= 0 Zone completely covered by swath		
			= 1 Zone not completely covered by swath, extending over the left edge of the swath.		
			= 2 Zone not completely covered by swath, extending over the right edge of the swath.		
			= 3 Zone not completely covered by swath, extending over both edges of the swath		
			coverage[i], i = 0,		
			(number_segments-1)		
ierr[XV_NUM_ERR_Z ONE_VIS_TIME]	long		Error status flags		

It is also possible to use enumeration values rather than integer values for some of the output arguments, as shown in the table below:

Input	Description	Enumeration value	long
coverage	Zone completely covered by swath	XV_COMPLETE	0
	Left extreme transitions found	XV_LEFT	1
	Right extreme transitions found	XV_RIGHT	2
	Both extreme transitions found	XV_BOTH	3

<u>Memory Management:</u> Note that the output visibility segments arrays are pointers to integers instead of static arrays. The memory for these dynamic arrays is allocated within the **xv_zone_vis_time** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.1.11 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_zone_vis_time** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_zone_vis_time** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 9: Error messages and codes for xv_zone_vis_time

Error type	Error message	Error message Cause and impact		Error No
ERR	Input parameter "Number of ZONE points" is wrong.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_NEGATIVE_NUM _ZONE_ERR	0
ERR	Input parameter "Orbit Id" is wrong.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_ORBIT_STATUS_ ERR	1
ERR	Input parameter "orbit_type" is out of range.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_ORBIT_TYPE_ER R	2
ERR	duration" cannot be ME_		XV_CFI_ZONE_VIS_TI ME_NEGATIVE_MIN_ DURATION_ERR	3
ERR	Input parameter "Projection" out of range.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_PROJECTION_OU T_OF_RANGE_ERR	4
ERR	Wrong swath_flag value	Computation not performed	XV_CFI_ZONE_VIS_TI ME_SWATH_FLAG_E RR	5
ERR	Swath file is not compatible with the orbit file	Computation not performed	XV_CFI_ZONE_VIS_TI ME_WRONG_SWATH _ERR	6
ERR	Could not generate the swath template file	Computation not performed	XV_CFI_ZONE_VIS_TI ME_GENSWATH_ERR	7
ERR	Error generating visibility segments for orbit "%d"		XV_ZONE_VIS_TIME_ IN_ORBIT_ERR	8
ERR	Error reading Swath Template File.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_READ_SWATH_FI LE_ERR	9
ERR	Swath type not allowed	Computation not performed	XV_CFI_ZONE_VIS_TI ME_INCORRECT_SW ATH_TYPE_ERR	10
ERR	Cannot allocate memory for	Computation not performed	XV_CFI_ZONE_VIS_TI	11

	the Swath Template File		ME_ALLOCATE_SWA TH_MEMORY_ERR	
ERR	Input parameter "start_orbit" cannot be negative.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_NEGATIVE_STAR T_ORBIT_ERR	12
ERR	Error reading OEF/OSF file.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_READ_OSF_ERR	13
WAR N	"start_orbit" is before the first orbit in "orbit_event_file".	Computation performed. Message to inform the user.	XV_CFI_ZONE_VIS_TI ME_EARLIER_START _ORBIT_WARN	14
WAR N	"stop_orbit" is after the last orbit in "orbit_event_file".	Computation performed. Message to inform the user.	XV_CFI_ZONE_VIS_TI ME_LATER_STOP_OR BIT_WARN	15
ERR	Input parameter "start_orbit" cannot be greater than "stop_orbit".	Computation not performed	XV_CFI_ZONE_VIS_TI ME_WRONG_ORBIT_ RANGE_ERR	16
ERR	Error calling "xv_orbitinfo".	Computation not performed	XV_CFI_ZONE_VIS_TI ME_ORBITINFO_CAL L_ERR	17
ERR	"cycle_length" read from the input "Swath Template File" is not equal to that of any orbits within the orbit range	Computation not performed	XV_CFI_ZONE_VIS_TI ME_INCONSISTENT_S WATH_ERR	18
WAR N	There is at least one orbital change within the requested orbit range.	Computation performed. Message to inform the user.	XV_CFI_ZONE_VIS_TI ME_ORBITAL_CHAN GE_WARN	19
ERR	Input parameter "zone_id" is an empty string.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_ZONE_ID_EMPTY _ERR	20
ERR	Number of characters in input string "zone_id" is different from %li.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_WRONG_ZONE_I D_LENGTH_ERR	21
ERR	Error reading the ZONE Database file.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_READ_ZONE_DB_ FILE_ERR	22
WAR N	"Projection" parameter set to default.	Computation performed. Message to inform the user.	XV_CFI_ZONE_VIS_TI ME_DEFAULT_PROJE CTION_WARN	23
ERR	Cannot allocate memory for the ZONE records."	Computation not performed	XV_CFI_ZONE_VIS_TI ME_ALLOCATE_ZON E_MEMORY_ERR	24
ERR	Latitude must be in the range [-90.0, 90.0].	Computation not performed	XV_CFI_ZONE_VIS_TI ME_WRONG_LATITU	25

			DE_RANGE_ERR	
WAR N	Two consecutive points are equal, only one is used.	Computation performed. Message to inform the user.	XV_CFI_ZONE_VIS_TI ME_TWO_EQUAL_POI NTS_WARN	26
ERR	Difference in longitude for 2 consecutive ZONE points is equal to 180.0 degrees (RECTANGULAR projection). Zone definition is ambiguous.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_DIFF_LONG_180_ ERR	27
ERR	Two consecutive ZONE points are antipodal (GNOMONIC projection). Zone definition is ambiguous.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_ANTIPODAL_POI NTS_ERR	28
ERR	Error precomputing intersection of two segments.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_SEGMENT_INTER SECT_PREC_ERR	32
ERR	Error computing intersection of two segments.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_SEGMENT_INTER SECT_COMP_ERR	33
ERR	Error computing gnomonic coordinates.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_GNOMONIC_COO RD_ERR	34
ERR	Two ZONE segments intersect.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_TWO_SEGMENTS _INTERSECT_ERR	35
ERR	Two consecutive ZONE segments are aligned in the same direction.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_ALLIGNED_SEG MENTS_ERR	36
ERR	Input parameter "ZONE diameter" cannot be negative (POINT or CIRCLE zone).	Computation not performed	XV_CFI_ZONE_VIS_TI ME_ZONE_DIAM_NE GATIVE_ERR	37
ERR	SWATH contains the POLE (RECTANGULAR projection).	Computation not performed	XV_CFI_ZONE_VIS_TI ME_POLE_IN_SWATH _ERR	38
ERR	Not convex SWATH quadrilateral for the specified latitude range.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_CUADRILATERA L_NOT_CONVEX_ERR	39
ERR	Error checking if a point is inside a quadrilateral.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_POINT_IN_CUAD RILATERAL_ERR	40
ERR	Error sorting intersections.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_SORT_INTERSEC TIONS_ERR	41

ERR	Cannot (re)allocate memory for the segments.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_SEGMENTS_MEM ORY_ERR	42
ERR	Too many time segments (more than MAX_ORBITS).	Computation not performed	XV_CFI_ZONE_VIS_TI ME_MAX_ORBITS_ER R	43
ERR	Cannot allocate memory for the coverage.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_COVERAGE_ME MORY_ERR	44
WAR N	Warning checking the visibility segments.	Computation performed. Message to inform the user.	XV_CFI_ZONE_VIS_TI ME_CHECK_SEGMEN TS_WARN	45
ERR	Error checking the visibility segments.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_CHECK_SEGMEN TS_ERR	46
ERR	Error computing final segments for the POINT swath and POINT zone.	Computation not performed	XV_CFI_ZONE_VIS_TI ME_ORBIT_TO_TIME_ CALL_ERR	47
ERR	Wrong input Orbit Id. Unknown orbit initialization mode	Computation not performed	XV_CFI_ZONE_VIS_TI ME_ORBIT_MODEL_E RR	48
WAR N	"stop_orbit" is after the last orbit in the orbit file.	Computation performed. Message to inform the user.	XV_CFI_ZONE_VIS_TI ME_STOP_ORBIT_WARN	49
ERR	Error computing the ANX longitude	Computation not performed	XV_CFI_ZONE_VIS_TI ME_COMPUTE_ANX_ ERR	50
ERR	Error calling "orbit info"	Computation not performed	XV_CFI_ZONE_VIS_TI ME_ORBIT_INFO_ERR	51
ERR	Error computing Multi- Point swath visibilities	Computation not performed	XV_CFI_ZONE_VIS_TI ME_MULTI_POINT_S WATH_INTERS_ERR	52
ERR	Error computing Point swath visibilities	Computation not performed	XV_CFI_ZONE_VIS_TI ME_POINT_SWATH_I NTERS_ERR	53
ERR	Error checking visibility segments	Computation not performed	XV_CFI_ZONE_VIS_TI ME_ON_OFF_CHECKI NG_ERR	54
ERR	Error merging visibility segments	Computation not performed	XV_CFI_ZONE_VIS_TI ME_MERGE_SWATH_ SEGMENTS_VISIBILIT IES_ERR	55
ERR	Error trying to allocate memory	Computation not performed	XV_CFI_ZONE_VIS_TI ME_MEMORY_ALLO CATION_ERR	56
ERR	Error calling "swath_pos"	Computation not performed	XV_CFI_ZONE_VIS_TI	57

			ME_SWATH_POS_ER R	
ERR	Error calling "Polygon_inner_point"	Computation not performed	XV_CFI_ZONE_VIS_TI ME_POLYGON_INNE R_POINT_ERR	58
ERR	Error comparing orbits orbital changes	Computation not performed	XV_CFI_ZONE_VIS_TI ME_CHECK_ORBITAL_CH ANGE_ERR	59
ERR	Error converting zone point arrays to zone record	Computation not performed	XV_CFI_ZONE_VIS_TI ME_CONVERT_ZONE_ER R	64
ERR	No suitable zone found for orbit interval	Computation not performed	XV_CFI_ZONE_VIS_TI ME_ZONE_ORBIT_ERR	65
ERR	Error cloning zone	Computation not performed	XV_CFI_ZONE_VIS_TI ME_CLONE_ZONE_ERR	66
ERR	Input orbit interval is completely outside STF validity interval	Computation not performed	XV_CFI_ZONE_VIS_TIME_ ORBIT_INTERVAL_STF_ER R	67
WARN	Input orbit interval is partially outside STF validity interval	Computation performed	XV_CFI_ZONE_VIS_TIME_ ORBIT_INTERVAL_STF_W ARN	68
ERR	Input OSF has non-trivial MLST non linear terms but STF was generated without them	Computation not performed	XV_CFI_ZONE_VIS_TIME_ OSF_NON_LIN_STF_OLD_ WARN	69
WARN	Swath flag larger than MLST linear approximation validity. MLST linear approximation validity used.	Computation performed	XV_CFI_ZONE_VIS_TIME_ SWATH_FLAG_LARGER_T HAN_LIN_APPROX_VAL_W ARN	70
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_ZONE_VIS_TIME_ GEO_SAT_ERR	71
WARN	This function is deprecated. Use xv_zonevistime_compute instead	Computation performed	XV_CFI_ZONE_VIS_TIME_ DEPRECATED_WARN	72
WARN	Visibility computations with precise propagator can be very slow	Computation performed	XV_CFI_ZONE_VIS_TIME_ PRECISE_PROPAG_WARN	73

Note that error codes and messages have been completely modified since the last issue due to a completely new implementation of the CFI function.

7.2 xv_zone_vis_time_no_file

7.2.1 Overview

Note: this function is deprecated. Use **xv_zonevistime_compute** instead.

The xv_zone_vis_time_no_file function computes all the orbital segments for which a given instrument swath intercepts a user-defined zone at the surface of the Earth ellipsoid.

The aim of this function is to provide another interface for the function **xv_zone_vis_time** in which the zone and the swath are not provided with files but with the data structures (see section 7.2.2).

Information about zones, swaths and intersection algorithms can be found in section 7.1.

7.2.2 Calling sequence

For C programs, the call to xv_zone_vis_time_no_file is (<u>input</u> parameters are <u>underlined</u>):

```
#include"explorer visibility.h"
      xo_orbit_id orbit_id = {NULL};
      long
               orbit type,
               start orbit, start cycle,
               stop orbit, stop cycle,
               zone num, projection,
               number segments,
               *bgn orbit, *bgn second,
               *bgn microsec, *bgn cycle,
               *end orbit, *end second,
               *end microsec, *end cycle,
               *coverage, ierr[XV_NUM_ERR_ZONE_VIS_TIME],
               status;
               *zone long, *zone lat,
      double
               zone diam, min duration;
      xd stf file stf data;
      xd zone rec zone data;
      status = xv zone vis time no file(&orbit id,
                            &orbit type,
                            &start orbit, &start cycle,
                            &stop orbit, &stop cycle,
                            &stf data,
                            &zone data,
                            &projection, &zone_num,
```


}

&<u>min_duration</u>, &number_segments,

zone long, zone lat, &zone diam,

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 68

&bgn orbit, &bgn second, &bgn microsec, &bgn cycle, &end orbit, &end second, &end microsec, &end cycle, &coverage, ierr); /* Or, using the run id */long run id; status = xv zone vis time no file run(&run id, &orbit type, &start orbit, &start cycle, &stop orbit, &stop cycle, &stf data, &zone data, &projection, &zone num, zone long, zone lat, &zone diam, &min duration, &number segments, &bgn orbit, &bgn second, &bgn microsec, &bgn cycle, &end orbit, &end second, &end microsec, &end cycle, &coverage, ierr);

7.2.3 Input parameters

The xv_zone_vis_time_no_file CFI function has the following input parameters:

Table 10: Input parameters of xv_zone_vis_time_no_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
orbit_type	long*	-	Define the type of orbit representation, i.e. absolute or relative orbits in the input/output parameters.	-	Complete.
			Relative orbits only can be used when the orbit_id was initialized with orbital changes (with xo_orbit_init_def or with xo_orbit_init_file plus an OSF file). In other cases, only the value XV_ORBIT_ABS can be used.		
start_orbit	long	-	First orbit, segment filter.	absolute or	= 0
			Segments will be filtered as from the beginning of first orbit.	relative orbit number	OI.
			First Orbit for the orbit initialization		 absolute orbits
			will be used when:		≥start_osf
			Absolute orbit is set to zero.		 relative orbits
			Relative orbit and cycle number set to zero.		≤repeat cycle
start_cycle	long	-	Cycle number corresponding to	cycle	= 0 or
			the start_orbit. Dummy when using absolute orbits	number	≥first cycle in osf
stop_orbit	long	-	Last orbit, segment filter.	absolute or	= 0
			For orbit_id initialized with orbital changes, when:	relative orbit number	or: • absolute
			stop_orbit = 0 (for orbit_type = XV_ORBIT_ABS)		orbits ≥ start_osf
			or		relative orbits
			stop_orbit = 0 and stop_cycle= 0 (for orbit_type = XV_ORBIT_REL)		≤repeat cycle
			the stop_orbit will be set to the minimum value between:		
			the last orbit within the orbital		

			change of the start_orbit.		
			start_orbit+cycle_length-1 (i.e. the input orbit range will be a complete cycle)		
			If it is not initialized with orbital changes, stop orbit will be set to the last orbit in orbit_id initialization.		
stop_cycle	long	-	Cycle number corresponding to	cycle	= 0 or
			the stop_orbit. Dummy when using absolute orbits	number	≥ first cycle in osf
stf_data	xd_stf_f ile	-	Swath template data (structure described in [D_H_SUM]).	-	-
			The swath structure can be got by:		
			 Reading a swath template file with the CFI function xd_read_stf. 		
			 Generating the swath data with the CFI function xv_gen_swath_no_file 		
zone_data	xd_zone _read	-	Zone data (structure described in [D_H_SUM]) that can be got by reading a zone from a zone database file with the CFI function xd_read_zone.	-	-
projection	long		projection used to define polygon sides as straight lines:	-	-
			= 0 Read projection from Zones DB		
			= 1 Azimuthal gnomonic		
			= 2 Rectangular lat/long		
zone_num	long		Number of vertices of the zone provided in zone_long, zone_lat:		≥ 0
			= 0 no vertices provided, use zone_id / zone_db_file		
			= 1 Point / Circular zone,		
			= 2 Line zone		
			> 2 Polygon zone		
zone_long	double*	all	zone_long[i-1]		
			Geocentric longitude of		
			- circle centre, for circ. zone, i =1		
			- point, for point zone, i = 1		

			line-end, for line zone, i = 1 or 2vertices, for polygon zone,i = 1 zone_num		
zone_lat	double*	all	zone_lat[i-1] Geodetic latitude of - circle centre, for circ. zone, i =1 - point, for point zone, i = 1 - line-end, for line zone, i = 1 or 2 - vertices, for polygon zone, i = 1 zone_num		
zone_diam	double		Zone diameter for circular zones, dummy for other zones If diameter equals 0.0 then zone is Point Zone	m	≥ 0.0
min_duration	double		Minimum duration for segments. Only segments with a duration longer than min_duration will be given on output.	S	≥ 0

It is also possible to use enumeration values rather than integer values for some of the input arguments, as shown in the table below:

Input	Description	Enumeration value	long
projection	Read projection from the zones DB file	XD_READ_DB	0
(defined in	Azimuthal Gnomonic	XD_GNOMONIC	1
[D_H_SUM])	Rectangular long/lat	XD_RECTANGULAR	2

7.2.4 Output parameters

The output parameters of the xv_zone_vis_time_no_file CFI function are:

Table 11: Output parameters of xv_zone_vis_time_no_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xv_zone_vis_time_no_fil	long		Function status flag,		
е			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
number_segments	long		Number of visibility segments returned to the user.		≥ 0
bgn_orbit	long*	all	Orbit number,		> 0
			begin of visibility segment i		
			bgn_orbit[i-1],		
			i = 1, number_segments		
bgn_second	long*	all	Seconds since ascending node,	s	≥ 0
			begin of visibility segment i		< orbital period
			bgn_second[i-1],		
			i = 1, number_segments		
bgn_microsec	long*	all	Micro seconds within second	μs	≥0
			begin of visibility segment i		999999
			bgn_microsec[i-1],		
			i = 1, number_segments		
bgn_cycle	long*	all	Cycle number,		>0
			begin of visibility segment i		NULL when using
			bgn_orbit[i-1],		absolute orbits
			i = 1, number_segments		
end_orbit	long*	all	Orbit number,		> 0
			end of visibility segment i		
			end_orbit[i-1],		
			i = 1, number_segments		
end_second	long*	all	Seconds since ascending node,	s	≥ 0
			end of visibility segment i		< orbital period
			end_second[i-1],		
			i = 1, number_segments		

end_microsec	long*	all	Micro seconds within second	μs	≥ 0
			end of visibility segment i		999999
			end_microsec[i-1],		
			i = 1, number_segments		
end_cycle	long*	all	Cycle number,		>0
			end of visibility segment i		NULL when using
			end_orbit[i-1],		absolute orbits
			i = 1, number_segments		
coverage	long*	all	Zone coverage flag for segment		
			= 0 Zone completely covered by swath		
			= 1 Zone not completely covered by swath, extending over the left edge of the swath.		
			= 2 Zone not completely covered by swath, extending over the right edge of the swath.		
			= 3 Zone not completely covered by swath, extending over both edges of the swath		
			coverage[i], i = 0,		
			(number_segments-1)		
ierr[XV_NUM_ERR_Z ONE_VIS_TIME]	long		Error status flags		

It is also possible to use enumeration values rather than integer values for some of the output arguments, as shown in the table below:

Input	Description	Enumeration value	long
coverage	Zone completely covered by swath	XV_COMPLETE	0
	Left extreme transitions found	XV_LEFT	1
	Right extreme transitions found	XV_RIGHT	2
	Both extreme transitions found	XV_BOTH	3

Memory Management: Note that the output visibility segments arrays are pointers to integers instead of static arrays. The memory for these dynamic arrays is allocated within the **xv_zone_vis_time_no_file** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.2.5 Warnings and errors

The error and warning messages and codes for **xv_zone_vis_time_no_file** are the same than for **xv zone vis time** (see Table 9).

The error messages/codes can be returned by the CFI function xv_get_msg/xv_get_code after translating the returned status vector into the equivalent list of error messages/codes. The function identifier to be used in that functions is XV ZONE VIS TIME ID (from Table 2).

7.3 xv_zonevistime_compute

7.3.1 Overview

The xv_zonevistime_compute function computes all the orbital segments for which a given instrument swath intercepts a one or more user-defined zones at the surface of the Earth ellipsoid.

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as seconds (and microseconds) elapsed since the ascending node crossing.

A user-defined zone can be:

- a polygon specified by a set of latitude and longitude points
- a circle specified by the centre latitude, longitude, and the diameter

Note that particular cases of the above can be used to define the zone as:

- a point
- a line

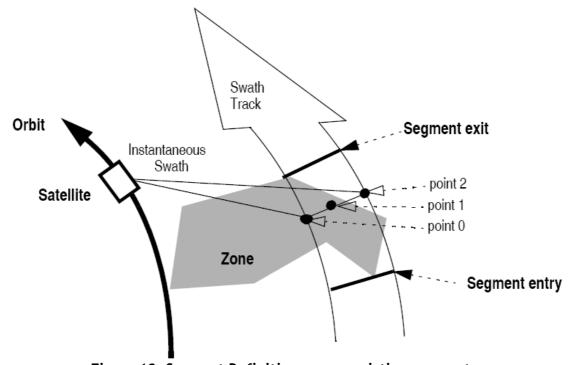


Figure 10: Segment Definition xv_zonevistime_compute

If more than one zone is used as input, the visibilities are internally computed for each zone, and the segments are merged and ordered by start time. In the output visibility list, the zones where the segment has visibility are provided, and also the coverage of the segment for each zone (see Figure 11).

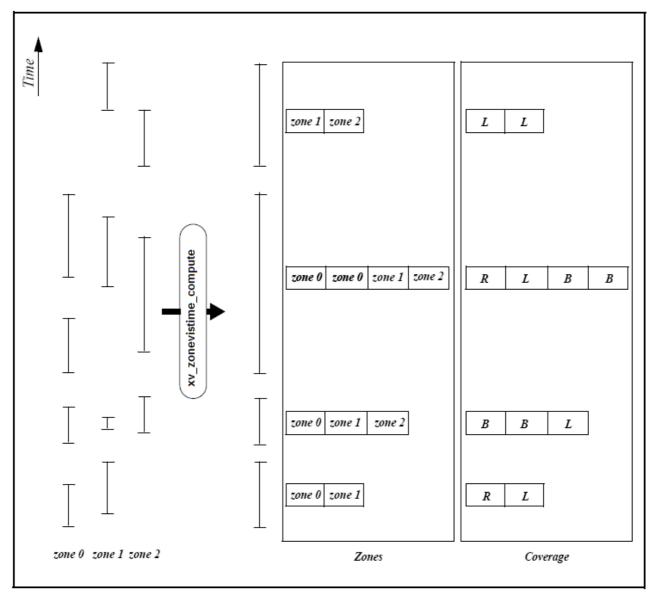


Figure 11: xv_zonevistime_compute function (more than one zone)

xv zonevistime compute requires access to several data structures and files to produce its results:

- the orbit_id (xo_orbit_id) providing the orbital data. The orbit_id can be initialized with the following data or files, also with precise propagator initialization if applicable (see [ORBIT SUM]):
 - data for an orbital change
 - Orbit scenario files
 - Predicted orbit files
 - Orbit Event Files (Note: Orbit Event File is deprecated, only supported for CRYOSAT mission).
 - Restituted orbit files
 - DORIS Preliminary orbit files
 - DORIS Navigator files
 - TLE files

Note: if the orbit is initialized for precise propagation, the execution of the visibility function can be very slow. As alternative, a POF can be generated with the precise propagator (function xo_gen_pof) for the range of orbits the user usually needs, and use this generated file to initialize the orbit id. The execution time performance will be much better for the visibility function and it will not have a big impact on the precision of the calculations.

- the swath_id (xv_swath_id, initialized using xv_swath_id_init -section 7.31-) providing the Instrument Swath information, excluding inertial swath files, describing the area seen by the relevant instrument all along the current orbit. If the swath_id is initialized with a Swath definition file or Swath definition data, xv_zonevistime_compute generates the swath points for a number of orbits given by the user.
- The information of the zone or zones (xv zone info list).

The time intervals (xv_time_interval) used by xv_zonevistime_compute can be expressed as UTC times or orbit times (orbit plus seconds and microseconds since ascending node). This intervals express the start time/orbit and last time/orbit for the computations.

In case the time intervals are expressed as orbits, they can be expressed as absolute orbit numbers or in relative orbit and cycle numbers.

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. The output segments will contain UTC times and orbit times. Moreover, the segments will be ordered chronologically.

NOTE: If **xv_zonevistime_compute** is used with a range of orbits that includes an orbital change (e.g. change in the repeat cycle or cycle length), the behavior depends on the type of the data used to initialize the swath_id (via xv_swath_id_init, section 7.31):

- •If a **swath template file** is used, **xv_zonevistime_compute** automatically will ignore the orbits that do not correspond with the template file (i.e. no visibility segments will be generated for those orbits), since swath template file is generated from a reference orbit with a particular geometry, so it is not valid for a different geometry.
- •If a **swath definition file** is introduced, **xv_zonevistime_compute** will perform the computations across orbital changes, and will return the visibility segments corresponding to the whole orbital range. Internally, swath template files valid for every orbital change are generated to perform the calculations.
- **NOTE 2**: If a swath template file with the variable header tags *Start_Validity_Range* and *Stop Validity Range* is used as input, only the segments belonging to that orbit range will be returned.
- **NOTE 3**: If a swath definition file is introduced, it can be also introduced every how many orbits the swath template file must be recomputed (the number of orbit for regeneration is introduced in swath_id initialization). If the orbit_id has been initialized with an OSF file with MLST non linear terms and the number of orbits for regeneration is greater than the linear approximation validity, the recomputation of swath template file will be done every linear approximation validity orbits.

7.3.2 Swath Definition

The swath file that can be used to initialize the swath id is generated using the xv_gen_swath function, within the EO VISIBILITY library. There are 3 different types of swaths:

- earth-observing instruments ('nadir curve', 'nadir point' or "area swaths")
- limb-sounding instruments ('limb', narrow or wide)
- limb-sounding instruments observing inertial objects ('inertial')

The following sub-sections provide some details on the various swath definitions.

7.3.2.1 Earth-observing Instruments Swath Definition

The term swath must be clearly defined to understand the explanations in this document:

- instantaneous swath: the part of the earth surface observed by an instrument at a given time
- swath track: represents the track made on the earth surface by the instantaneous swath over a period of time

For instruments observing the surface of the earth, the instantaneous swath is constituted by the point/curve/area on the ground observed by the instrument at a given time. It is calculated taking the earth ellipsoid as a reference for the earth surface. The wider the field-of-view of the instrument, the wider the swath on the ground.

When the satellite moves over a period of time, this point/curve/area defines a band on the earth surface. This constitutes the swath track.

See next figure for an illustration of these definitions.

Note that the terms curve or point are an idealized view of the instrument FOV, which usually have a thickness.

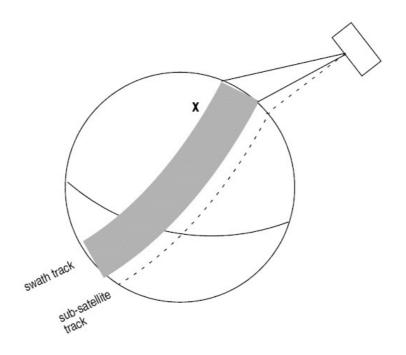


Figure 12: Earth-observing instrument: swath definition

7.3.2.2 Limb-sounding Instruments Swath Definition

For limb sounding instruments, the concept can be generalized to define a "thick swath". This is obtained by defining a minimum and a maximum altitude, and considering the tangent points to these altitudes as the edges of the swath. Two cases have to be considered:

- deterministic (narrow) azimuth field of view (e.g. MIPAS sideward-looking): the swath projection on the earth surface is similar to a regular sideward-looking swath, with the lower altitude defining the further swath edge and the higher altitude defining the closer swath edge. See Figure 13.
- non-deterministic (potentially wide) azimuth field of view (e.g. MIPAS rearward-looking): due to the potentially wide azimuth field of view, each altitude defines a swath projection on the earth surface. Depending on the altitude, these swaths are of different width across-track, and also at different distance from the satellite. See Figure 14.

For these, 2 Instrument Swath Files are provided:

- one at the highest altitude
- one at the lowest altitude

The user must handle both swath himself to determine his required visibility time segments

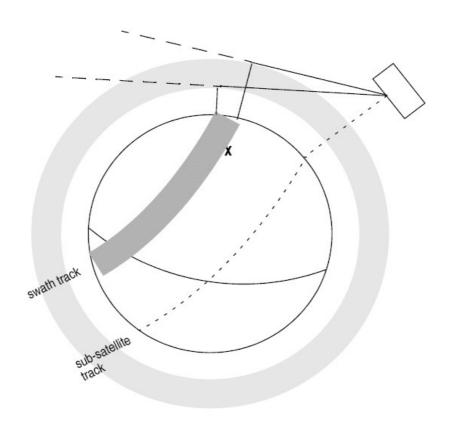


Figure 13: Limb-sounding instrument: swath definition (1)

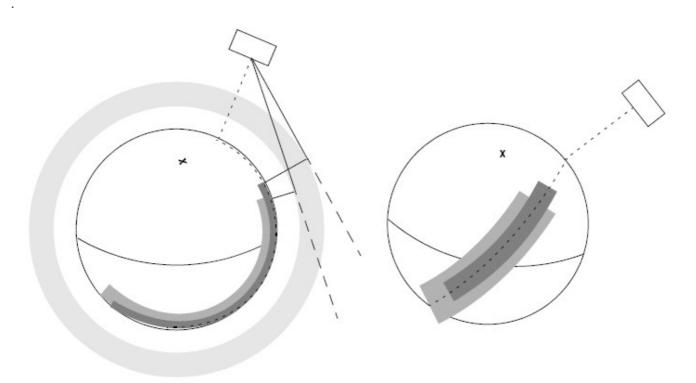


Figure 14: Limb-sounding instrument: swath definition (2)

7.3.2.3 Limb-sounding Instruments Inertial Swath Definition

This type corresponds to the observation of inertial targets (e.g. Gomos occultation mode and Mipas Line of Sight mode in Envisat). For the CFI function **xv_star_vis_time** the FOV direction in inertial coordinates must be available. Therefore for these instrument modes the direction in inertial space, for a given tangent altitude, is given in the swath template file.

7.3.2.4 Swath Definition for Envisat

Next table lists all instrument modes and the relevance of the swaths for Envisat. It shows also:

- the prefix to be used when generating the swath template file name
- the different types of algorithms to be used by xv_gen_swath (this is transparent to the user)

Table 12: Envisat Swaths

instrument	Mode	File Prefix = swath	Swath geometry (Table 90)	Swath Type	Remarks
RA		RA_2	POINTING (1 point)	Nadir point	Modeled as sub-satellite track
MERIS	Averaging / Direct & Averaging	MERIS_	POINTING (3 points)	Nadir line	
ASAR	Image Modes (IS1 IS7) Alt. Polarization (IS1 IS7)	SARxIM (x=17)	ASAR	Nadir line	
	Wide Swath	SARWIM			
	Global Monitoring				
	Wave (IS1 IS7)	SARxWV (x=17)			Modeled as a continuous swath any where within the image swath

GOMOS	Occultation	GOMOIL GOMOIH	INERTIAL	Inertial direction	IFOV much smaller than swath. IFOV Very dependent on star avail ability.
					2 swaths defined:
					- 1 for high altitude (GOMOIH)
	0 " "	00110 11			- 1 for low altitude (GOMOIL)
	Occultation	GOMO_H GOMO_L	LIMB	Limb wide	Same mode as above, now swath defined as Earth-fixed location.
					IFOV much smaller than swath. IFOV Very dependent on star avail ability.
					2 swaths defined:
					- 1 for high altitude (GOMO_H)
					- 1 for low altitude (GOMO_L)
SCIAMACHY	Nadir /	SCIAN_	POINTING (3	Nadir line	Continuous Nadir swath modeled
	Nadir of Nadir & Limb		points)		
	Limb /	SCIALH		Limb wide	2 swaths defined:
	Limb of Nadir &	SCIALL			- 1 for high altitude (SCIALH)
	Limb				- 1 for low altitude (SCIALL)
AATSR		ATSR_N	POINTING (3	Nadir line	2 swaths defined:
		ATSR_F	points)		- 1 for nadir swath
					- 1 for forward swath
MWR		MWR	POINTING (1 points)	Nadir point	Modeled as sub-satellite track
MIPAS	Nominal	MIPN_H	LIMB	Limb narrow	2 swaths defined:
		MIPN_L			- 1 for high altitude (MIPN_H)
					- 1 for low altitude (MIPN_L)
	Special Event Mode (across)	MIP_X_	LIMB	Limb narrow	Modeled as an across track swath, in the middle of the MIPAS SEM acquisition scan.
	Special Event	MIP_RH	LIMB	Limb wide	IFOV much smaller than swath.
	Mode	MIP_RL			2 swaths defined:
	(rearward)				- 1 for high altitude (MIP_RH)
					- 1 for low altitude (MIP_RL)
	Rearward	MIPIRH MIPIRL	INERTIAL	Inertial direction	2 swaths defined for rearward mode:
		IVIIFIKL			- 1 for high altitude (MIPIRH)
	Sideward	MIPIXH			- 1 for low altitude (MIPIRL)

MIPIXL	3 swaths defined for sideward mode:
	- 1 for high altitude (MIPIXH)
	- 1 for back mode (MIPIXB)
	- 1 for forward mode (MIPIXF)

7.3.3 Zone Borders and Projection

When defining a polygon zone, the user is assumed to wish polygon sides as straight lines. But on the earth surface, a straight line is, at best, a confusing concept.

The only way to define unambiguously straight lines is to work in a 2-dimensional projection of the earth surface. There are many possible projections, each having advantages and drawbacks.

xv_zonevistime_compute can handle zone borders in 2 different projections:

- rectangular projection, using longitude and latitude as the X and Y axis; this is appropriate to express zones where (some of) the edges follow constant latitude lines, and provide a reasonable approximation for straight lines at low-medium-latitudes
- <u>azimuthal gnomonic projection</u>, where great circles are always projected as straight lines; this is better for <u>high latitudes</u>, where the rectangular projection suffers from too much distortion and the singularity at the poles.

xv_zonevistime_compute allows the user to specify which projection he wants to work in, i.e. in which projection the polygon sides will be represented by **xv_zonevistime_compute** as straight lines. The user is assumed to be aware of how the polygon sides behave on the Earth surface.

7.3.4 Zone Definition

The user-defined zone can be either (see Table 13);

- a point
- a line
- a polygon
- a circle

A zone is defined by the area of the earth surface enclosed by the zone borders:

- in the case of a circular zone, the area inside the circle
- in the case of a polygonal zone, the area which is always to the right of any polygon side; if the polygon is defined as a sequence of N points, each polygon side is considered as a line <u>from</u> point i to point i+1; this unambiguously defines the right side of the polygon sides.

Table 13: Zone definition (for xd_zone_rec)

Zone definition	num_points	zone_point (long, lat)	zone_diam	Description
Circular Zone	1	[0]: centre point	yes zone_diam > 0.0	The zone is represented as a circle, around the centre point
Point Zone	1	[0]: Point	yes zone_diam = 0.0	The zone is defined by the point. Resulting segments will have a zero duration. The zone will always be completely covered by the swath.
Line Zone	2	[0], [1]: Line	no	The zone is defined by the line from point [0] to point [1].
Polygon Zone	>2	[i]	no	The zone is defined by the area right of the line from point [i] to point [i+1].

For the gnomonic projection, a side of a zone is always smaller than a half great circle, because two polygon points are considered to be joined by the shortest line.

For the rectangular projection, two consecutive points of the zone are also joined by the shortest line; so the difference in longitude must be less than 180 degrees.

The polygon zone can be closed (i.e. the first and last points are the same) or not. If the zone is not closed, **xv zonevistime compute** closes it by joining the last point with the first one in its internal computations.

See Figure 15 for examples of zone definitions.

xv_zonevistime_compute will issue an error on the zone definition if the polygon has intersecting sides ("butterfly" zone).

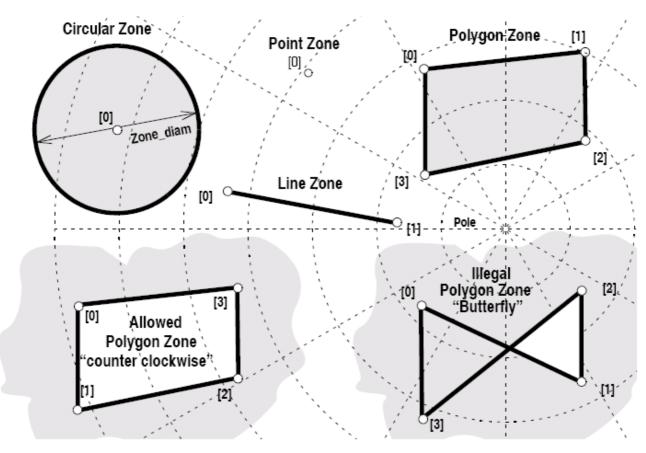


Figure 15: Zone examples

7.3.5 Intersection Definition

The xv_zonevistime_compute intersection times between the instrument swath and the user-defined zone are defined as the first and last occurrence, in chronological order with respect to the satellite direction, of the geometrical super-position of any point belonging to the instrument swath with any single point belonging to the zone (including the zone border).

The entry and exit times for each intersection are given as elapsed seconds (and microseconds) since the ascending node crossing.

Next figure shows some typical intersections.

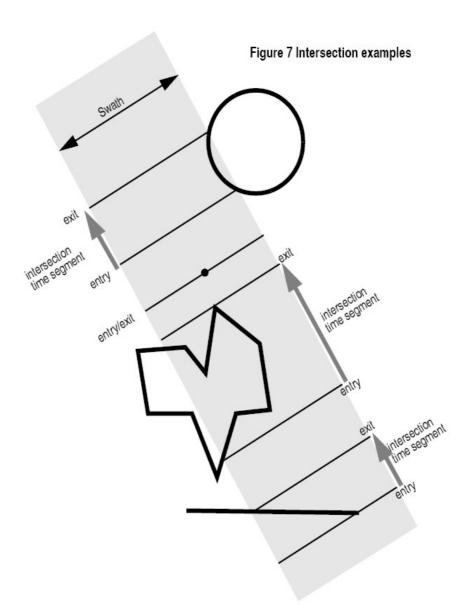


Figure 16: Intersection examples

7.3.6 Intersection Algorithm

The intersection of a swath and a user-defined zone is to be performed on the Earth projected to a map plane in one of the following projections:

- Rectangular projection
- Gnomonic projection

Although the projections are quite different, the intersection rules are identical. The algorithm can however be different, in order to take advantage of a particular feature of a projection.

The purpose of the CFI function ZONEVISTIME_COMPUTE is to obtain quickly, accurate intersection segments with a low precision (1 second).

The algorithms assume that the polygon zones are closed and expects a wrap around between the first and the last point. Thus ZONEVISTIME COMPUTE must first close the polygon if necessary.

For ZONEVISTIME the following swath types are defined:

- point swath: instantaneous swath is a point.
- segment swath: instantaneous swath is a segment.
- multi-segment swath: it can be open or closed.
- inertial swath: not used by ZONEVISTIME

The main concept in the algorithm is the transition, defined as the change in coverage of (part of) the swath and the zone (e.g. edge of the swath crosses one polygon side).

7.3.6.1 Intersection with a point swath

The vertices of the polygon defining the area are connected by straight lines in the chosen projection, along track swath points are also connected by straight lines in the same projection.

Transitions are located by linear intersection of the zone sides and the swath along track lines. A transition is only valid if the intersection occurs inside both line segments. The polygon side from <i> to <j> is defined in a clockwise manner inclusive point <i> but exclusive point <j>. The swath line from time <k> to <l> is defined inclusive the template point at <k> but exclusive the template point at <l>.

The fraction of the swath along track line determines the precise timing since time <k> of the intersection. Also the determination if the transition is a on- or off-transition is quite trivial. First a vector is defined, perpendicular to the along track swath line, such that the vector points left. Then, the dot product of the polygon side and this vector is calculated. If the dot product is positive, the transition is on, i.e. the swath enters the zone. If the result is negative, then the swath leaves the zone. If the result equals zero then the transition can be ignored (polygon side and swath overlay, a proper transition will be found with another pair of polygon side - swath line.).

7.3.6.2 Intersection with a segment swath

The left and right side of the swath, are located using the same algorithm as for the point swath. Even left and right time segments can be made based on the left and right hand transitions.

The polygon vertices (and not the sides) are intersected with the along track moving line swath, in order to catch zones smaller than the swath, etc. Swaths for intermediate times between two consecutive times in Swath Template File are considered straight segments, joining an intermediate point of the Left swath line from time <k> to time <l>, with an intermediate point in Right swath line.

7.3.6.3 Intersection with a multi-segment swath

The algorithm used for segment swath is repeated for every segment of the swath, and the visibility segments obtained in each case are merged with the ones of the other swath segments.

For a closed swath further calculations are done: it is checked if the zone is completely inside the swath area in the interval between contiguous visibility segments, or between the beginning of the first orbit and the first visibility segment, or between the last visibility segment and the end of the last orbit computed. If it is inside, segments must be merged because the zone was visible in the interval.

Figure 17: Swath points

7.3.7 Usage Hints

7.3.7.1 Limb-sounding Instruments Intersection

In the case of limb-sounding instrument with a potentially wide azimuth field of view, 2 swaths have to be considered (1 for minimum altitude, 1 for maximum altitude). Furthermore, these 2 swaths are offset in time (i.e. their projection on the earth intersect with a given point at different times). To cope with this, the user must do the following:

- call xv_zonevistime_compute twice (once for each extreme altitude swath)
- merge/filter the 2 sets of time segments, depending on what he wants to achieve

7.3.7.2 Zone Coverage

xv_zonevistime_compute computes purely geometrical intersections. The resulting zone visibility segments might need some additional filtering by the user. In particular, instrument constraints (e.g. only working outside of sun eclipse) have to be considered by the user.

Furthermore, to help users to deal with zones wider than the swath (i.e. requiring several orbits to cover the whole zone), **xv_zonevistime_compute** produces for each zone visibility segment an indication of the coverage type (see Figure 18) and the name of the zone (or a lists in case several zones are seen by that segment9;

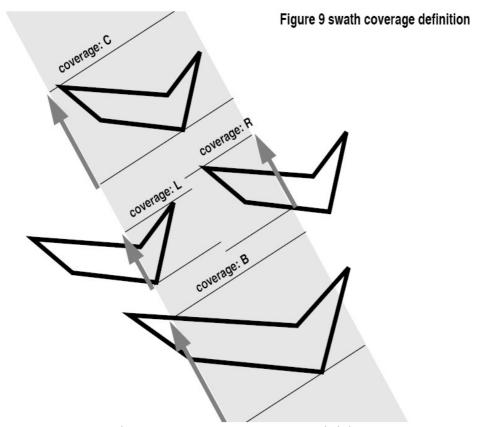


Figure 18: Swath coverage definition

- coverage = C: zone completely covered by the swath
- coverage = R: zone partially covered by the swath, extending over the right edge of the swath
- coverage = L: zone partially covered by the swath, extending over the left edge of the swath
- coverage = B: zone partially covered by the swath, extending over both edges of the swath

7.3.7.3 Combined use of xv swathpos compute and the coverage flag

The EO_VISIBILITY function xv_swathpos_compute can be used to refine the work performed with xv_zonevistime_compute.

7.3.7.4 Use of input xp attitude def struct

The definition of the input structure xp attitude def can be consulted in section 6.3 of [POINT SUM].

The "type" field defines how this struct is used, and it can take the following values:

- XP_NONE_ATTITUDE: no attitude defined in struct. In this case, when the Swath Template File must be computed internally, the attitudes defined in Swath Definition File are used.
- XP_SAT_NOMINAL_ATT, XP_SAT_ATT, XP_INSTR_ATT: the attitudes defined in the structure are used in internal Swath Template File generation. The "type" field in this case indicates the target frame for the computation.

7.3.7.5 Use of input xv zone info list struct

The zone or zones to be used in algorithm are passed to xv_zonevistime_compute function with the struct xv zone info list (see section 6.3 for description). It contains the following fields:

- *calc_flag*: it can take the enumeration values XV_COMPUTE or XV_DO_NOT_COMPUTE. This flag indicates if the extra information regarding the zones (coverage) must be computed or not.
- num rec: Indicates the number of input zones where the visibility is going to be computed.
- zone_info: description of the zones to be computed. Every position of the array is a xv_zone_info struct. The value of type field indicates the type of zone data:
 - If *type* is equal to enum value XV_USE_ZONE_DB_FILE, then the zone *zone_id* is read from *zone_db_filename* zone file and *projection* projection (possible values are the following enums: XD READ DB, XD GNOMONIC or XD RECTANGULAR) is used.
 - If *type* is equal to enum value XV_USE_ZONE_DATA, then the information contained in *zone data* field is used (see [D H SUM] for description of *xd zone rec*).
 - *min duration*: indicates the minimum duration for the segments (seconds).

}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 91

7.3.8 Calling sequence

For C programs, the call to **xv_zonevistime_compute** is (<u>input</u> parameters are <u>underlined</u>):

7.3.9 Input parameters

The xv_zonevistime_compute CFI function has the following input parameters:

Table 14: Input parameters of xv_zonevistime_compute function

C name	C type	Array Eleme nt	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
attitude_def	xp_attitude _def*	-	Structure with the definition of the attitudes.	-	-
swath_id	xv_swath_i d*	-	Swath id.	-	-
zone_info_list	xv_zone_in fo_list*	-	List of zones where the visibility is going to be computed.	-	-
search_interval	xv_time_int erval*	-	Interval where the computations are performed	-	-

7.3.10 Output parameters

The output parameters of the xv_zonevistime_compute CFI function are:

Table 15: Output parameters of xv_zonevistime_compute function

C name	C type	Array Eleme nt	_	Unit (Format)	Allowed Range
xv_zonevistime_compute	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
visibility_interval_list	xv_zonevi sibility_int erval_list*		List of visibility segments and additional information	-	-
ierr[XV_NUM_ERR_Z ONEVISTIME_COMPUT E]	long		Error status flags		

It is also possible to use enumeration values rather than integer values for some of the output arguments, as shown in the table below:

Input	Description	Enumeration value	long
coverage	Zone completely covered by swath	XV_COMPLETE	0
	Left extreme transitions found	XV_LEFT	1
	Right extreme transitions found	XV_RIGHT	2
	Both extreme transitions found	XV_BOTH	3

<u>Memory Management:</u> Note that the output visibility segment list (xv_zonevisibility_interval_list>visibility_interval) is a pointer to the list of segments computed inside xv_zonevistime_compute. The memory for these dynamic array is allocated within the **xv_zonevistime_compute** function. So the user will only have to declare the variable xv_zonevisibility_interval_list. However, once the function has returned without error, the user will have the responsibility of freeing the memory for the pointers inside that variable and the rest of structs inside xv zone coverage info list struct.

7.3.11 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_zonevistime_compute** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_zonevistime_compute** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 16: Error messages and codes for xv_zonevistime_compute

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Input parameter \"Number of ZONE points\" is wrong.	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_NEGATIVE_NUM _ZONE_ERR	0
ERR	Input parameter \"Orbit Id\" is wrong.	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_ORBIT_STATUS_ ERR	1
ERR	Input parameter \"orbit_type\" is out of range.	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_ORBIT_TYPE_E RR	2
ERR	Input parameter \"Minimum duration\" cannot be negative.	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_NEGATIVE_MIN_ DURATION_ERR	3
ERR	Input parameter \"Projection\" out of range.	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_PROJECTION_O UT_OF_RANGE_ERR	4
ERR	Swath id not initialized	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_SWATH_STATUS _ERR	5
ERR	Swath file is not compatible with the orbit file	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_WRONG_SWAT H_ERR	6
ERR	Error reading Swath File: %s	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_READ_SWATH_ FILE_ERR	7
ERR	Input parameter \"start_orbit\" cannot be negative.	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_NEGATIVE_STA RT_ORBIT_ERR	8
WARN	\"start_orbit\" is before the first orbit in \"orbit_event_file\".	Computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_EARLIER_STAR T_ORBIT_WARN	9

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 95

ERR Input parameter "start_orbit" cannot be greater than "stop_orbit". ERR Error calling "xv_orbitinfo". No computations performed. XV_CFI_ZONEVISTIME_C on MPUTE_GRBITINFO_CAL LERR Error linput parameter "zone_id" is an empty string. No computations performed. XV_CFI_ZONEVISTIME_C of MPUTE_COMPUTE_CANDE_UD_EMPTY_ERR Error reading the ZONE Database file: %s ERR Error feading the ZONE Database file: %s ERR Cannot (re)allocate memory for the segments. No computations performed. XV_CFI_ZONEVISTIME_C of MPUTE_READ_ZONE_D B_FILE_ERR ERR Wrong input Orbit Id. Unknown orbit initialization mode with the orbit file. Computations performed. XV_CFI_ZONEVISTIME_C of MPUTE_SEGMENTS_ME MORY_ERR in MORY					
ERR Input parameter "zone_id" is an empty string. ERR Input parameter "zone_id" is an empty string. ERR Error reading the ZONE Database file: %s ERR Cannot (re)allocate memory for the segments. ERR Wrong input Orbit Id. Unknown orbit initialization mode WARN Vistop_orbit" is after the last orbit in the orbit file. ERR Error calling v"orbit infov" No computations performed. ERR Error cloning zone No computations performed. ERR Input orbit interval is completely outside STF validity interval outside STF validity interval outside STF validity interval interval is The Warn outside STF validity interval interv	ERR	parameter \"start_orbit\" cannot be greater	No computations performed.	OMPUTE_WRONG_ORBIT	10
is an empty string. Compute Computations performed Compute Compute	ERR	Error calling \"xv_orbitinfo\".	No computations performed.	OMPUTE_ORBITINFO_CAL	11
Database file: %s Cannot (re)allocate memory for the segments. ERR Cannot (re)allocate memory for the segments. No computations performed. Wrong input Orbit Id. Unknown orbit initialization mode WARN Wistop_orbit's is after the last orbit in the orbit file. ERR Error calling Vorbit infov' No computations performed. ERR Error calling vorbit infov' No computations performed. WARN Input orbit interval is completely outside STF validity interval WARN Input OSF has non-trivial MLST linear approximation validity. MLST linear approximation validity wised. ERR Geostationary satellite not allowed for this function. ERR Cannot (re)allocate memory for the segments. No computations performed. WACPI_ZONEVISTIME_C OMPUTE_STOP_ORBIT_W ARN WACPI_ZONEVISTIME_C OMPUTE_CONE_ZONE_ERR 17 Computations performed. WACPI_ZONEVISTIME_C OMPUTE_CONE_ZONE_ERR 19 Computations performed. WY_CFI_ZONEVISTIME_C OMPUTE_CORBIT_INTERVA L_STF_ERR WACPI_ZONEVISTIME_C OMPUTE_ORBIT_INTERVA L_STF_ERR WACPI_ZONEVISTIME_C OMPUTE_ORBIT_INTERVA L_STF_WARN WARN Input orbit interval is partially outside STF validity interval Computations performed. WY_CFI_ZONEVISTIME_C OMPUTE_ORBIT_INTERVA L_STF_WARN Computations performed. WY_CFI_ZONEVISTIME_C OMPUTE_ORBIT_INTERVA L_STF_WARN WACPI_ZONEVISTIME_C OMPUTE_ORBIT_INTERVA L_STF_WARN WACPI_ZONEVISTIME_C OMPUTE_ORBIT_INTERVA L_STF_WARN WACPI_ZONEVISTIME_C OMPUTE_ORBIT_INTERVA L_STF_OLD_WARN Computations performed. WY_CFI_ZONEVISTIME_C OMPUTE_SWATH_FLAG_L ARGER_THAN_LIN_APPR OX_VAL_WARN ERR Geostationary satellite not allowed for this function. ERR Error computing overlap for No computations performed. ERR Error computing overlap for No computations performed.	ERR		No computations performed.	OMPUTE_ZONE_ID_EMPT	12
for the segments. GMPUTE_SEGMENTS_ME MORY_ERR Wrong input Orbit Id. Unknown orbit initialization mode WARN V"stop_orbit\" is after the last orbit in the orbit file. WARN V"stop_orbit\" is after the last orbit in the orbit file. ERR Error calling \"orbit info\" No computations performed. XV_CFI_ZONEVISTIME_C OMPUTE_STOP_ORBIT_W ARN ERR Error cloning zone No computations performed. XV_CFI_ZONEVISTIME_C OMPUTE_ORBIT_INFO_ER R ERR Input orbit interval is completely outside STF validity interval WARN Input orbit interval is partially outside STF validity interval WARN Input OSF has non-trivial MLST non linear terms but STF was generated without them WARN Swath flag larger than MLST linear approximation validity. MLST linear approximation validity used. ERR Geostationary satellite not allowed for this function. ERR Error computing overlap for No computations performed. XV_CFI_ZONEVISTIME_C OMPUTE_ORBIT_INTERVA L_STF_UNEXTIME_C OMPUTE_OSF_NON_LIN_STF_OLD_WARN WARN Swath flag larger than MLST linear approximation validity. MLST linear approximation validity. MLST linear approximation validity used. ERR Geostationary satellite not allowed for this function. No computations performed. XV_CFI_ZONEVISTIME_C OMPUTE_GEO_SAT_ERR ERR Error computing overlap for No computations performed. XV_CFI_ZONEVISTIME_C OMPUTE_GEO_SAT_ERR	ERR		No computations performed.	OMPUTE_READ_ZONE_D	13
Unknown orbit initialization mode WARN "stop_orbit" is after the last orbit in the orbit file. WARN "stop_orbit" is after the last orbit in the orbit file. ERR Error calling \"orbit info\" No computations performed. XV_CFI_ZONEVISTIME_C OMPUTE_STOP_ORBIT_WARN ERR Error cloning zone No computations performed. XV_CFI_ZONEVISTIME_C OMPUTE_ORBIT_INFO_ER R ERR Input orbit interval is completely outside STF validity interval Poutside STF validity interval Poutsi	ERR		No computations performed.	OMPUTE_SEGMENTS_ME	14
orbit in the orbit file. OMPUTE_STOP_ORBIT_W ARN Error calling \"orbit info\" No computations performed. ERR Error cloning zone No computations performed. ERR Error cloning zone No computations performed. ERR Input orbit interval is completely outside STF validity interval WARN Input orbit interval is partially outside STF validity interval WARN Input OSF has non-trivial MLST non linear terms but STF was generated without them WARN Swath flag larger than MLST linear approximation validity. MLST linear approximation validity used. ERR Geostationary satellite not allowed for this function. ERR Error computations performed. No computations performed. WY_CFI_ZONEVISTIME_C OMPUTE_ORBIT_INTERVA L_STF_WARN TY_CFI_ZONEVISTIME_C OMPUTE_ORBIT_INTERVA L_STF_WARN AVY_CFI_ZONEVISTIME_C OMPUTE_OSF_NON_LIN_STF_OLD_WARN TY_CFI_ZONEVISTIME_C OMPUTE_OSF_NON_LIN_STF_OLD_WARN TY_CFI_ZONEVISTIME_C OMPUTE_SWATH_FLAG_L ARGER_THAN_LIN_APPR OX_VAL_WARN ERR Geostationary satellite not allowed for this function. No computations performed. TY_CFI_ZONEVISTIME_C OMPUTE_SWATH_FLAG_L ARGER_THAN_LIN_APPR OX_VAL_WARN TY_CFI_ZONEVISTIME_C OMPUTE_SWATH_FLAG_L ARGER_THAN_LIN_APPR OX_VAL_WARN ERR Error computing overlap for No computations performed. TY_CFI_ZONEVISTIME_C OMPUTE_GEO_SAT_ERR 23	ERR	Unknown orbit initialization	No computations performed.	OMPUTE_ORBIT_MODEL_	15
ERR Error cloning zone No computations performed. XV_CFI_ZONEVISTIME_C OMPUTE_CLONE_ZONE_ERR ERR Input orbit interval is completely outside STF validity interval is partially outside STF validity interval input OSF has non-trivial MLST non linear terms but STF_WARN	WARN		Computations performed.	OMPUTE_STOP_ORBIT_W	16
ERR Input orbit interval is completely outside STF validity interval WARN Input orbit interval is partially outside STF validity interval WARN Input OSF has non-trivial MLST non linear terms but STF was generated without them WARN Swath flag larger than MLST linear approximation validity. MLST linear approximation validity used. ERR Geostationary satellite not allowed for this function. ERR Error computing overlap for No computations performed. XV_CFI_ZONEVISTIME_C OMPUTE_OSF_NON_LIN_STF_OLD_WARN XV_CFI_ZONEVISTIME_C OMPUTE_OSF_NON_LIN_STF_OLD_WARN XV_CFI_ZONEVISTIME_C OMPUTE_OSF_NON_LIN_STF_OLD_WARN XV_CFI_ZONEVISTIME_C OMPUTE_SWATH_FLAG_L ARGER_THAN_LIN_APPR OX_VAL_WARN XV_CFI_ZONEVISTIME_C OMPUTE_SWATH_FLAG_L OMPUTE_SWATH_F	ERR	Error calling \"orbit info\"	No computations performed.	OMPUTE_ORBIT_INFO_ER	
completely outside STF validity interval WARN Input orbit interval is partially outside STF validity interval WARN Input OSF has non-trivial MLST non linear terms but STF was generated without them WARN Swath flag larger than MLST linear approximation validity. MLST linear approximation validity used. ERR Geostationary satellite not allowed for this function. Computations performed. Computations performed. XV_CFI_ZONEVISTIME_C OMPUTE_OSF_NON_LIN_STF_OLD_WARN XV_CFI_ZONEVISTIME_C OMPUTE_SWATH_FLAG_L ARGER_THAN_LIN_APPR OX_VAL_WARN XV_CFI_ZONEVISTIME_C OMPUTE_SWATH_FLAG_L ARGER_THAN_LIN_APPR OX_VAL_WARN XV_CFI_ZONEVISTIME_C OMPUTE_GEO_SAT_ERR ERR Error computing overlap for No computations performed. XV_CFI_ZONEVISTIME_C 23	ERR	Error cloning zone	No computations performed.	OMPUTE_CLONE_ZONE_	18
outside STF validity interval OMPUTE_ORBIT_INTERVA L_STF_WARN WARN Input OSF has non-trivial MLST non linear terms but STF was generated without them WARN Swath flag larger than MLST linear approximation validity. MLST linear approximation validity used. ERR Geostationary satellite not allowed for this function. OMPUTE_ORBIT_INTERVA L_STF_WARN XV_CFI_ZONEVISTIME_C OMPUTE_SWATH_FLAG_L ARGER_THAN_LIN_APPR OX_VAL_WARN XV_CFI_ZONEVISTIME_C OMPUTE_SWATH_FLAG_L ARGER_THAN_LIN_APPR OX_VAL_WARN 23 WARN Seostationary satellite not allowed for this function. No computations performed. XV_CFI_ZONEVISTIME_C OMPUTE_GEO_SAT_ERR XV_CFI_ZONEVISTIME_C OMPUTE_GEO_SAT_ERR	ERR	completely outside STF	No computations performed.	OMPUTE_ORBIT_INTERVA	19
MLST non linear terms but STF was generated without them WARN Swath flag larger than MLST linear approximation validity. MLST linear approximation validity used. ERR Geostationary satellite not allowed for this function. MLST non linear terms but STF_OLD_WARN STF_OLD_WARN XV_CFI_ZONEVISTIME_C OMPUTE_SWATH_FLAG_L ARGER_THAN_LIN_APPR OX_VAL_WARN XV_CFI_ZONEVISTIME_C OMPUTE_GEO_SAT_ERR Error computing overlap for No computations performed. XV_CFI_ZONEVISTIME_C 24	WARN	, .	Computations performed.	OMPUTE_ORBIT_INTERVA	20
linear approximation validity. MLST linear approximation validity used. ERR Geostationary satellite not allowed for this function. No computations performed. No computations performed. XV_CFI_ZONEVISTIME_C OMPUTE_GEO_SAT_ERR Error computing overlap for No computations performed. XV_CFI_ZONEVISTIME_C 24	WARN	MLST non linear terms but STF was generated without	Computations performed.	OMPUTE_OSF_NON_LIN_	21
allowed for this function. OMPUTE_GEO_SAT_ERR Error computing overlap for No computations performed. XV_CFI_ZONEVISTIME_C 24	WARN	linear approximation validity. MLST linear approximation	Computations performed.	OMPUTE_SWATH_FLAG_L ARGER_THAN_LIN_APPR	22
	ERR		No computations performed.		23
	ERR		No computations performed.		24

ERR	Error computing zonevistime loop	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_ZONEVISTIME_L OOP_ERR	25
ERR	Two ZONE segments intersect.	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_TWO_SEGMENT S_INTERSECT_ERR	26
WARN	There is at least one orbital change within the requested orbit range.	Computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_ORBITAL_CHAN GE_WARN	27
ERR	\"cycle_length\" read from the input \"Swath Template File\" is not equal to that of any orbits within the orbit range	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_INCONSISTENT _SWATH_ERR	28
ERR	Input time type is not correct	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_TIME_TYPE_ER R	32
ERR	Error checking output segments	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_CHECK_SEGME NTS_ERR	33
ERR	Error transforming time to orbit	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_TIME_TO_ORBIT _ERR	34
ERR	Error computing UTC time	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_GET_UTC_TIME _ERR	35
ERR	Input file is not a swath file	No computations performed.	XV_CFI_ZONEVISTIME_C OMPUTE_DETECT_SWAT H_TYPE_ERR	36
WARN	Visibility computations with precise propagator can be very slow	Computation performed	XV_CFI_ZONEVISTIME_C OMPUTE_PRECISE_PROP AG_WARN	37

7.4 xv_station_vis_time

7.4.1 Overview

Note: this function is deprecated. Use xv stationvistime compute instead.

The **xv_station_vis_time** function computes ground station visibility segments, the orbital segments for which the satellite is visible from a ground station located at the surface of the Earth.

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as seconds elapsed since the ascending node crossing.

In addition, **xv_station_vis_time** calculates for every visibility segment the time of zero-doppler (i.e. the time at which the range-rate to the station is zero).

xv_station_vis_time requires access to several data structures and files to produce its results:

- the orbit_id (xo_orbit_id) providing the orbital data. The orbit_id can be initialized with the following data and files, also for precise propagation if applicable (see [ORBIT_SUM]):
 - data for an orbital change
 - Orbit scenario files
 - Predicted orbit files
 - Orbit Event Files (Note: Orbit Event File is deprecated, only supported for CRYOSAT mission).
 - Restituted orbit files
 - DORIS Preliminary orbit files
 - DORIS Navigator files
 - TLE files
 - Note: if the orbit is initialized for precise propagation, the execution of the visibility function can be very slow. As alternative, a POF can be generated with the precise propagator (function xo_gen_pof) for the range of orbits the user usually needs, and use this generated file to initialize the orbit id. The execution time performance will be much better for the visibility function and it will not have a big impact on the precision of the calculations.
- the Instrument Swath File, describing the area seen by the relevant instrument all along the current orbit. The Swath data can be provided by:
 - A swath template file produced off-line by the EO_VISIBILITY library (xv_gen_swath function).
 - A swath definition file, describing the swath geometry. In this case the **xv_station_vis_time** generates the swath points for a number of orbits given by the user.
- The Station Database File, describing the location and the physical mask of each ground station, and the mask parameters for a list of spacecrafts from each station (considered only when mask 'from file' option is selected).

The time intervals used by **xv_station_vis_time** are expressed in absolute or relative orbit numbers. This is valid for both:

• input parameter "Orbit Range": first and last orbit to be considered. In case of using relative orbits, the corresponding cycle number should be used, otherwise, this the cycle number will be a dummy parameter.

output parameter "Station Visibility Segments": time segments with time expressed as {absolute orbit number (or relative orbit and cycle number), number of seconds since ANX, number of microseconds}

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. Moreover, the segments will be ordered chronologically.

Users who need to use processing times must make use of the conversion routines provided in EO_ORBIT (xo time to orbit and xo orbit to time functions).

NOTE: If **xv_station_vis_time** is used with a range of orbits that includes an orbital change (e.g. change in the repeat cycle or cycle length), the behaviour depends on the swath file introduced as input:

- •If a **swath template file** is used, **xv_station_vis_time** automatically will ignore the orbits that do not correspond with the template file (i.e. no visibility segments will be generated for those orbits), since swath template file is generated from a reference orbit with a particular geometry, so it is not valid for a different geometry.
- •If a **swath definition file** is introduced, **xv_station_vis_time** will perform the computations across orbital changes, and will return the visibility segments corresponding to the whole orbital range. Internally, swath template files valid for every orbital change are generated to perform the calculations.
- **NOTE 2**:If a swath template file with the variable header tags *Start_Validity_Range* and *Stop Validity_Range* is used as input, only the segments belonging to that orbit range will be returned.
- **NOTE 3**: If a swath definition file is introduced, it can be also introduced every how many orbits the swath template file must be recomputed (swath_flag parameter, see section 101). If the orbit_id has been initialized with an OSF file with MLST non linear terms and the parameter swath_flag is greater than the linear approximation validity, the recomputation of swath template file will be done every linear approximation validity orbits.

7.4.2 Calling interface

For C programs, the call to **xv** station **vis** time is (<u>input</u> parameters are <u>underlined</u>):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
               swath flag, orbit type,
      long
               start orbit, start cycle,
               stop orbit, stop cycle,
               mask, number segments,
               *bgn orbit, *bgn second,
               *bgn microsec, *bgn cycle,
               *end orbit, *end second,
               *end microsec, *end cycle,
               *zdop orbit, *zdop second,
               *zdop microsec, *zdop cycle,
               ierr[XV NUM ERR STATION VIS TIME],
               status;
               aos elevation, los elevation, min duration;
      double
               *swath file;
      char
      char
               *sta id, *sta db file;
      status = xv station vis time(
                        &orbit id, &orbit type,
                        &start orbit, &start cycle,
                        &stop orbit, &stop cycle,
                        &swath flag, &swath file, sta id, sta db file,
                        &mask, &aos elevation, &los elevation,
                        &min duration,
                        &number segments,
                        &bgn orbit, &bgn second,
                        &bgn microsec, &bgn cycle,
                        &end orbit, &end second,
                        &end microsec, &end cycle,
                        &zdop orbit, &zdop second,
                        &zdop microsec, &zdop cycle,
                        ierr);
```


}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 100

```
/* Or, using the run id */
long run id;
status = xv_station_vis_time_run(
                 &run id, &orbit type,
                 &start orbit, &start cycle,
                 &stop orbit, &stop cycle,
                 &swath flag, &swath file, sta id, sta db file,
                 &mask, &aos elevation, &los elevation,
                 &min duration,
                 &number segments,
                 &bgn orbit, &bgn second,
                 &bgn microsec, &bgn cycle,
                 &end orbit, &end second,
                 &end microsec, &end cycle,
                 &zdop orbit, &zdop second,
                 &zdop microsec, &zdop cycle,
                 ierr);
```


 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 101

7.4.3 Input parameters

Table 17: Input parameters of xv_station_vis_time

C name	C type	Array Elemen t	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orb it_id*	-	Structure that contains the orbit data	-	-
orbit_type	long	1	Define the type of orbit representation, i.e. absolute or relative orbits in the input/output parameters	-	Complete
start_orbit	long	-	First orbit, segment filter.	absolute or	= 0
			Segments will be filtered as from the beginning of first orbit (within orbit range from orbit_scenario_file)	relative orbit number	or: • absolute orbits ≥start_osf
			First Orbit in the orbit_scenario_file will be used when:		 relative orbits ≤repeat cyc
			Absolute orbit is set to zero.		
			 Relative orbit and cycle number set to zero. 		
start_cycle	long	-	Cycle number corresponding to the	cycle	= 0 or
			start_orbit. Dummy when using relative orbits	number	≥ first cycle in osf
stop_orbit	long	-	Last orbit, segment filter.	absolute or	= 0
			When:	relative orbit	or:
			stop_orbit = 0 (for orbit_type = XV_ORBIT_ABS)	number	absolute orbits ≥start_osf
			stop_orbit = 0 and stop_cycle = 0 (for orbit_type = XV_ORBIT_REL)		 relative orbits ≤repeat cycle
			the stop_orbit will be set to the minimum value between:		
			 the last orbit within the orbital change of the start_orbit. 		
			 start_orbit+cycle_length-1 (i.e. the input orbit range will be a complete cycle) 		
			If it is not initialized with orbital changes, stop orbit will be set to the last orbit in orbit_id initialization.		
stop_cycle	long	-	Cycle number corresponding to the	cycle	= 0 or
			stop_orbit. Dummy when using relative orbits	number	≥first cycle in osf

swath_flag	long*	-	Define the use of the swath file:	-	XV_STF = 0
			• 0 = (XV_STF) if the swath file is a swath template file.		XV_SDF = 1 > 0
			> 0 if the swath files is a swath definition file. In this case the swath points are generated for every "swath_flag" orbits		
swath_file	char *	-	File name of the swath-file for the appropriate instrument mode		
sta_id	char*		identification name of the station		
station_db_file	char *		File name of the station database file		
			This file is read each time the function is called		
mask	long		mask used to define visibility		all
			= XV_COMBINE combine AOS/LOS elevations and physical mask (nominal mode)		
			= XV_AOS_LOS consider only AOS/LOS elevations		
			= XV_PHYSICAL consider only physical mask		
			= XV_FROM_FILE consider mask given in the Station Database File		
aos_elevation	double		Minimum elevation to consider at AOS (i.e. before considering start of visibility).	deg	≥ 0.0
			Not used if mask=XV_FROM_FILE		
los_elevation	double		Maximum elevation to consider at LOS (i.e. before considering end of visibility).	deg	≥ 0.0 aos_elevation
			Not used if mask=XV_FROM_FILE		
min_duration	double		Minimum duration for segments.	s	≥ 0.0
			Only segments with a duration longer than min_duration will be given on output.		

It is also possible to use enumeration values rather than integer values for some of the input arguments, as shown in the table below:

Input	Description	Enumeration value	long
mask	Combine AOS/LOS and physical mask	XV_COMBINE	0

	Use only AOS/LOS	XV_AOS_LOS	1
	Use only physical mask	XV_PHYSICAL	2
	Use mask from file	XV_FROM_FILE	3

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 104

7.4.4 Output parameters

Table 18: Output parameters of xv_station_vis_time function

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_station_vis_time	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
number_segments	long		Number of visibility segments returned to the user		≥ 0
bgn_orbit	long*	all	Orbit number,		> 0
			begin of visibility segment i		
			bgn_orbit[i-1],		
			i = 1, number_segments		
bgn_second	long*	all	Seconds since ascending node,	s	≥0
			begin of visibility segment i		< orbital
			bgn_second[i-1],		period
			i = 1, number_segments		
bgn_microsec	long*	all	Micro seconds within second	μs	≥0
			begin of visibility segment i		≤ 999999
			bgn_microsec[i-1],		
			i = 1, number_segments		
bgn_cycle	long*	all	Cycle number,		>0
			begin of visibility segment i		NULL when
			bgn_cycle[i-1],		using absolute
			i = 1, number_segments		orbits
end_orbit	long*	all	Orbit number,		> 0
			end of visibility segment i		
			end_orbit[i-1],		
			i = 1, number_segments		
end_second	long*	all	Seconds since ascending node,	s	≥ 0
			end of visibility segment i		< orbital
			end_second[i-1],		period
			i = 1, number_segments		
end_microsec	long*	all	Micro seconds within second	μs	≥0

			end of visibility segment i		≤ 999999
			end_microsec[i-1],		
			i = 1, number_segments		
end_cycle	long*	all	Cycle number,		>0
			end of visibility segment i		NULL when
			end_cycle[i-1],		using absolute
			i = 1, number_segments		orbits
zdop_orbit	long*	all	Orbit number,		> 0
			time of zero doppler (-1 if no zero doppler within corresponding visibility segment)		
			zdop_orbit[i-1],		
			i = 1, number_segments		
zdop_second	long*	all	Seconds since ascending node,	s	>= 0
			time of zero doppler (-1 if no zero doppler within corresponding visibility segment)		< orbital period
			zdop_second[i-1],		
			i = 1, number_segments		
zdop_microsec	long*	all	Micro seconds within second	μs	0 =<
			time of zero doppler (-1 if no zero doppler within corresponding visibility segment)		=< 999999
			zdop_microsec[i-1],		
			i = 1, number_segments		
zdop_cycle	long*	all	Cycle number,		>0
			time of zero doppler (-1 if no zero doppler within corresponding visibility segment)		NULL when using absolute
			zdop_second[i-1],		orbits
			i = 1, number_segments		
ierr[XV_NUM_ER R_STATION_VIS_ TIME]	long		Error status flags		

<u>Memory Management:</u> Note that the output visibility segments arrays are pointers to integers instead of static arrays. The memory for these dynamic arrays is allocated within the **xv_station_vis_time** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.4.5 Warnings and errors

Next table lists the possible error messages that can be returned by the xv_station_vis_time CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO VISIBILITY software library xv get msg.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_station_vis_time** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 19: Error messages and codes for xv_station_vis_time

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error in input parameter Orbit Id.	Computation not performed	XV_CFI_STATION_VI S_TIME_ORBIT_STAT US_ERR	0
ERR	Error in input parameter to stavistime.	Computation not performed	XV_CFI_STATION_VI S_TIME_INPUTS_CHE CK_ERR	1
ERR	Input parameter "orbit_type" is out of range.	Computation not performed	XV_CFI_STATION_VI S_TIME_ORBIT_TYPE _ERR	2
ERR	Wrong input Orbit Id. Unknown orbit initialization mode	Computation not performed	XV_CFI_STATION_VI S_TIME_ORBIT_MOD EL_ERR	3
ERR	Error transforming start orbit from relative to absolute orbits.	Computation not performed	XV_CFI_STATION_VI S_TIME_REL_TO_ABS _START_ERR	4
ERR	Error transforming stop orbit from relative to absolute orbits	Computation not performed	XV_CFI_STATION_VI S_TIME_REL_TO_ABS _STOP_ERR	5
ERR	Error reading the Orbit scenario file.	Computation not performed	XV_CFI_STATION_VI S_TIME_OSF_READ_E RR	6
ERR	Error reading the swath template file.	Computation not performed	XV_CFI_STATION_VI S_TIME_SWATH_FLA G_ERR	7
ERR	Error reading the swath template file.	Computation not performed	XV_CFI_STATION_VI S_TIME_SWATH_REA D_ERR	8
ERR	Error wrong swath type selected.	Computation not performed	XV_CFI_STATION_VI S_TIME_SWATH_TYP E_ERR	9

ERR	Swath file is not compatible with the orbit file	Computation not performed	XV_CFI_STATION_VI S_TIME_WRONG_SW ATH_ERR	10
WAR N	Warning, start orbit is outside range of OSF.	Computation performed. Message to inform the user.	XV_CFI_STATION_VI S_TIME_FIRST_ORBIT _WARN	11
WAR N	Warning, stop orbit is outside range of OSF.	Computation performed. Message to inform the user.	XV_CFI_STATION_VI S_TIME_LAST_ORBIT _WARN	12
ERR	Actual stop orbit is earlier than actual start orbit.	Computation not performed	XV_CFI_STATION_VI S_TIME_WRONG_INT ERVAL_ERR	13
ERR	Error obtaining orbital information in orbit info.	Computation not performed	XV_CFI_STATION_VI S_TIME_ORBIT_INFO _ERR	14
WAR N	Warning, there is an orbital change within the requested orbits.	Computation performed. Message to inform the user.	XV_CFI_STATION_VI S_TIME_ORBIT_CHA NGE_WARN	15
ERR	Error allocating internal memory.	Computation not performed	XV_CFI_STATION_VI S_TIME_INTERNAL_ MEMORY_ERR	16
ERR	There is a potential memory overload, try with a smaller orbital interval.	Computation not performed	XV_CFI_STATION_VI S_TIME_POTENTIAL_ MEMORY_ERR	17
ERR	Orbital information does not coincide with reference swath.	Computation not performed	XV_CFI_STATION_VI S_TIME_INCONSISTE NT_SWATH_ERR	18
ERR	Error read info the ground station's mask data file.	Computation not performed	XV_CFI_STATION_VI S_TIME_READ_STA_E RR	19
ERR	Error transforming the station's mask into an equivalent zone.	Computation not performed	XV_CFI_STATION_VI S_TIME_AZEL2LONL AT_ERR	20
ERR	Error calling ZONEVISTIME to calculate transitions.	Computation not performed	XV_CFI_STATION_VI S_TIME_ZONE_VIS_TI ME_CALL_ERR	21
ERR	Error refining intersection time.	Computation not performed	XV_CFI_STATION_VI S_TIME_CALL_STAVI S_ERR	22
WAR N	Accuracy of 0.001 deg in elevation not reached in orbit %li. Orbit too close to the mask limit.	Computation performed. Message to inform the user.	XV_CFI_STATION_VI S_TIME_CALL_STAVI S_WARN	23
ERR	Error allocating memory for the time segments.	Computation not performed.	XV_CFI_STATION_VI S_TIME_SEGMENTS_ MEMORY_ERR	24

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 108

	doppler interval.		S_TIME_ZERO_DOPPL ER_ERR	
WARN	Segment longer than half nodal period deleted.	Computation performed. Message to inform the user.	XV_CFI_STATION_VI S_TIME_LONG_SEGM _SKIPPED_WARN	26
ERR	Error transforming from absolute to relative.	Computation not performed	XV_CFI_STATION_VI S_TIME_ABS_TO_REL _ERR	27
ERR	Error in the mask type read from the mask data given in the file	Computation not perfored	XV_CFI_STATION_VIS_TIM E_MASK_FROM_FILE_MA SK_TYPE_ERR	32
ERR	Error finding the spacecraft for the station when mask data given from file	Computation not performed	XV_CFI_STATION_VIS_TIM E_MASK_FROM_FILE_NO _SC_ERR	33
ERR	Error converting zone point array to zone record	Computation not perfored	XV_CFI_STATION_VIS_TIM E_CONVERT_ZONE_ERR	34
ERR	Input orbit interval is completely outside STF validity interval	Computation not perfored	XV_CFI_STATION_VIS_TIM E_ORBIT_INTERVAL_STF_ ERR	35
WARN	Input orbit interval is partially outside STF validity interval	Computation perfored	XV_CFI_STATION_VIS_TIM E_ORBIT_INTERVAL_STF_ WARN	36
ERR	Input OSF has non-trivial MLST non linear terms but STF was generated without them	Computation not perfored	XV_CFI_STATION_VIS_TIM E_OSF_NON_LIN_STF_OL D_WARN	37
WARN	Swath flag larger than MLST linear approximation validity. MLST linear approximation validity used.	Computation perfored	XV_CFI_STATION_VIS_TIM E_SWATH_FLAG_LARGER _THAN_LIN_APPROX_VAL _WARN	38
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_STATION_VIS_TIM E_GEO_SAT_ERR	39
WARN	Deprecated function. Use xv_stationvistime_compute instead	Computation performed	XV_CFI_STATION_VIS_TIM E_DEPRECATED_WARN	40
WARN	Visibility computations with precise propagator can be very slow	Computation performed	XV_CFI_STATION_VIS_TIM E_PRECISE_PROPAG_WA RN	41

7.5 xv_station_vis_time_no_file

7.5.1 Overview

Note: this function is deprecated. Use xv stationvistime compute instead.

The **xv_station_vis_time_no_file** function computes ground station visibility segments, the orbital segments for which the satellite is visible from a ground station located at the surface of the Earth.

The aim of this function is to provide another interface for the function **xv_station_vis_time** in which the station and the swath are not provided with files but with data structures (see section 7.2.2).

7.5.2 Calling interface

For C programs, the call to xv_station_vis_time_no_file is (<u>input</u> parameters are <u>underlined</u>):

```
#include"explorer visibility.h"
      xo_orbit_id orbit_id = {NULL};
               swath flag, orbit type,
      long
               start orbit, start cycle,
               stop orbit, stop cycle,
               mask, number segments,
               *bgn orbit, *bgn second,
               *bqn microsec, *bgn cycle,
               *end orbit, *end second,
               *end microsec, *end cycle,
               *zdop orbit, *zdop second,
               *zdop microsec, *zdop cycle,
               ierr[XV NUM ERR STATION VIS TIME],
               status;
               aos elevation, los elevation, min duration;
      xd stf file stf data;
      xd station_rec station_data;
      status = xv station vis time no file(
                        &orbit id, &orbit type,
                        &start orbit, &start cycle,
                        &stop orbit, &stop cycle,
                        &stf data, &station data,
                        &mask, &aos elevation, &los elevation,
                        &min duration,
                        &number segments,
                        &bgn orbit, &bgn second,
```


}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 110

&bgn_microsec, &bgn_cycle, &end_orbit, &end_second, &end_microsec, &end_cycle, &zdop_orbit, &zdop_second, &zdop_microsec, &zdop_cycle, ierr);

/* Or, using the run id */ long run id; status = xv station vis time no file run(&run id, &orbit type, &start orbit, &start cycle, &stop orbit, &stop cycle, &stf data, &station data, &mask, &aos elevation, &los elevation, &min duration, &number segments, &bgn orbit, &bgn second, &bgn microsec, &bgn cycle, &end orbit, &end second, &end microsec, &end cycle, &zdop orbit, &zdop second, &zdop microsec, &zdop cycle, ierr);

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 111

7.5.3 Input parameters

Table 20: Input parameters of xv_station_vis_time_no_file

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orb it_id*	-	Structure that contains the orbit data	-	-
orbit_type	long	-	Define the type of orbit representation, i.e. absolute or relative orbits in the input/output parameters	-	Complete
start_orbit	long	-	First orbit, segment filter.	absolute or	= 0
			Segments will be filtered as from the beginning of first orbit (within orbit range from orbit_scenario_file)	relative orbit number	or: • absolute orbits ≥start_osf
			First Orbit in the orbit_scenario_file will be used when:		relative orbits ≤ repeat cycle
			Absolute orbit is set to zero.		
			 Relative orbit and cycle number set to zero. 		
start_cycle	long	-	Cycle number corresponding to the start_orbit. Dummy when using relative orbits	cycle number	= 0 or ≥ first cycle in osf
stop_orbit	long	-	Last orbit, segment filter. When:	absolute or relative orbit	= 0 or:
			stop_orbit = 0 (for orbit_type = XV_ORBIT_ABS)	number	absolute orbits ≥start_osf
			 stop_orbit = 0 and stop_cycle = 0 (for orbit_type = XV_ORBIT_REL) 		 relative orbits ≤ repeat cycle
			the stop_orbit will be set to the minimum value between:		
			 the last orbit within the orbital change of the start_orbit. 		
			 start_orbit+cycle_length-1 (i.e. the input orbit range will be a complete cycle) 		
			If it is not initialized with orbital changes, stop orbit will be set to the last orbit in orbit_id initialization.		
stop_cycle	long	-	Cycle number corresponding to the stop_orbit. Dummy when using relative orbits	cycle number	= 0 or ≥ first cycle in osf
stf_data	xd_stf	_	Swath template data (structure	_	_
	ou		Stratification data (official)		

	_file	described in [D_H_SUM]).		
		The swath structure can be got by:		
		Reading a swath template file with the CFI function xd_read_stf.		
		Generating the swath data with the CFI function xv_gen_swath_no_file		
station_data	xd_statio - n_rec	Station data (structure described in [D_H_SUM]) that can be got by reading a station from a station database file with the CFI function xd_read_station.	-	-
mask	long	mask used to define visibility		all
		= XV_COMBINE combine AOS/LOS elevations and physical mask (nominal mode)		
		= XV_AOS_LOS consider only AOS/LOS elevations		
		= XV_PHYSICAL consider only physical mask		
		= XV_FROM_FILE consider mask given in the Station Database File		
aos_elevation	double	Minimum elevation to consider at AOS (i.e. before considering start of visibility).	deg	≥ 0.0
		Not used if mask=XV_FROM_FILE		
los_elevation	double	Maximum elevation to consider at LOS	deg	≥0.0
		(i.e. before considering end of visibility).		≤ aos_elevation
		Not used if mask=XV_FROM_FILE		
min_duration	double	Minimum duration for segments.	s	≥ 0.0
		Only segments with a duration longer than min_duration will be given on output.		

It is also possible to use enumeration values rather than integer values for some of the input arguments, as shown in the table below:

Input	Description	Enumeration value	long
mask	Combine AOS/LOS and physical mask	XV_COMBINE	0
	Use only AOS/LOS	XV_AOS_LOS	1
	Use only physical mask	XV_PHYSICAL	2

113

Page:

Use mask from file	XV_FROM_FILE	3

Page: 114

7.5.4 Output parameters

Table 21: Output parameters of xv_station_vis_time_no_file function

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_station_vis_time	long		Function status flag,		
_no_file			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
number_segments	long		Number of visibility segments returned to the user		≥ 0
bgn_orbit	long*	all	Orbit number,		> 0
			begin of visibility segment i		
			bgn_orbit[i-1],		
			i = 1, number_segments		
bgn_second	long*	all	Seconds since ascending node,	s	≥0
			begin of visibility segment i		< orbital
			bgn_second[i-1],		period
			i = 1, number_segments		
bgn_microsec	long*	all	Micro seconds within second	μs	≥0
			begin of visibility segment i		≤999999
			bgn_microsec[i-1],		
			i = 1, number_segments		
bgn_cycle	long*	all	Cycle number,		>0
			begin of visibility segment i		NULL when
			bgn_cycle[i-1],		using absolute orbits
			i = 1, number_segments		or or or
end_orbit	long*	all	Orbit number,		> 0
			end of visibility segment i		
			end_orbit[i-1],		
			i = 1, number_segments		
end_second	long*	all	Seconds since ascending node,	s	≥ 0
			end of visibility segment i		< orbital
			end_second[i-1],		period
			i = 1, number_segments		
end_microsec	long*	all	Micro seconds within second	μs	≥0

			end of visibility segment i		≤ 999999
			, ,		399999
			end_microsec[i-1],		
			i = 1, number_segments		_
end_cycle	long*	all	Cycle number,		>0
			end of visibility segment i		NULL when
			end_cycle[i-1],		using absolute orbits
			i = 1, number_segments		
zdop_orbit	long*	all	Orbit number,		> 0
			time of zero doppler (-1 if no zero doppler within corresponding visibility segment)		
			zdop_orbit[i-1],		
			i = 1, number_segments		
zdop_second	long*	all	Seconds since ascending node,	s	>= 0
			time of zero doppler (-1 if no zero doppler within corresponding visibility segment)		< orbital period
			zdop_second[i-1],		
			i = 1, number_segments		
zdop_microsec	long*	all	Micro seconds within second	μs	0 =<
			time of zero doppler (-1 if no zero doppler within corresponding visibility segment)		=< 999999
			zdop_microsec[i-1],		
			i = 1, number_segments		
zdop_cycle	long*	all	Cycle number,		>0
			time of zero doppler (-1 if no zero doppler within corresponding visibility segment)		NULL when using absolute orbits
			zdop_second[i-1],		
			i = 1, number_segments		
ierr[XV_NUM_ER R_STATION_VIS_ TIME]	long		Error status flags		

<u>Memory Management:</u> Note that the output visibility segments arrays are pointers to integers instead of static arrays. The memory for these dynamic arrays is allocated within the **xv_station_vis_time_no_file** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.5.5 Warnings and errors

The error and warning messages and codes for **xv_station_vis_time_no_file** are the same than for **xv station vis time** (see Table 19).

The error messages/codes can be returned by the CFI function xv_get_msg/xv_get_code after translating the returned status vector into the equivalent list of error messages/codes. The function identifier to be used in that functions is XV STATION VIS TIME ID (from Table 2).

7.6 xv_stationvistime_compute

7.6.1 Overview

The **xv_stationvistime_compute** function computes ground station visibility segments, the orbital segments for which the satellite is visible from one or several ground stations located at the surface of the Earth.

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as seconds elapsed since the ascending node crossing.

If more than one ground station is provided, the visibility segments are computed internally for each of them. Those segments are merged and ordered by start time. In the output visibility segments, it is listed the stations from which the satellite is visible in each segment.

In addition, **xv_stationvistime_compute** calculates for every visibility segment the time of zero-doppler (i.e. the time at which the range-rate to the station is zero). It is computed per station, is case several stations are used as input.

xv_stationvistime_compute requires access to several data structures and files to produce its results:

- the orbit_id (xo_orbit_id) providing the orbital data. The orbit_id can be initialized with the following data and files, also for precise propagation if applicable (see [ORBIT SUM]):
 - data for an orbital change
 - Orbit scenario files
 - Predicted orbit files
 - Orbit Event Files (Note: Orbit Event File is deprecated, only supported for CRYOSAT mission).
 - Restituted orbit files
 - DORIS Preliminary orbit files
 - DORIS Navigator files
 - TLE files
 - Note: if the orbit is initialized for precise propagation, the execution of the visibility function can be very slow. As alternative, a POF can be generated with the precise propagator (function xo_gen_pof) for the range of orbits the user usually needs, and use this generated file to initialize the orbit id. The execution time performance will be much better for the visibility function and it will not have a big impact on the precision of the calculations.
- The swath_id (xv_swath_id, initialized using xv_swath_id_init -section 7.31-), which provides the Instrument Swath data, describing the area seen by the relevant instrument all along the current orbit.
- The Station data (xv_station_info_list), describing the location and the physical mask of each ground station, and the mask parameters for a list of spacecrafts from each station (considered only when mask 'from file' option is selected).

The time intervals (xv_time_interval) used by xv_stationvistime_compute can be expressed as UTC times or orbit times (orbit plus seconds and microseconds since ascending node). This intervals express the start time/orbit and last time/orbit for the computations.

In case the time intervals are expressed as orbits, they can be expressed as absolute orbit numbers or in relative orbit and cycle numbers.

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. The output segments will contain UTC times and orbit times. Moreover, the segments will be ordered chronologically.

NOTE: If **xv_stationvistime_compute** is used with a range of orbits that includes an orbital change (e.g. change in the repeat cycle or cycle length), the behavior depends on the type of the data used to initialize the swath_id (via xv_swath_id_init, section 7.31):

- •If a **swath template file** is used, **xv_stationvistime_compute** automatically will ignore the orbits that do not correspond with the template file (i.e. no visibility segments will be generated for those orbits), since swath template file is generated from a reference orbit with a particular geometry, so it is not valid for a different geometry.
- •If a **swath definition file** is introduced, **xv_stationvistime_compute** will perform the computations across orbital changes, and will return the visibility segments corresponding to the whole orbital range. Internally, swath template files valid for every orbital change are generated to perform the calculations.
- **NOTE 2**:If a swath template file with the variable header tags *Start_Validity_Range* and *Stop_Validity_Range* is used as input, only the segments belonging to that orbit range will be returned.

NOTE 3: If a swath definition file is introduced, it can be also introduced every how many orbits the swath template file must be recomputed (according to the number of regeneration orbits used in swath id initialization). If the orbit_id has been initialized with an OSF file with MLST non linear terms and the number of regeneration orbits is greater than the linear approximation validity, the recomputation of swath template file will be done every linear approximation validity orbits.

7.6.2 Usage Hints

7.6.2.1 <u>Use of input xp_attitude_def struct</u>

The definition of the input structure xp attitude def can be consulted in section 6.3 of [POINT SUM].

The "type" field defines how this struct is used, and it can take the following values:

- XP_NONE_ATTITUDE: no attitude defined in struct. In this case, when the Swath Template File must be computed internally, the attitudes defined in Swath Definition File are used.
- XP_SAT_NOMINAL_ATT, XP_SAT_ATT, XP_INSTR_ATT: the attitudes defined in the structure are used in internal Swath Template File generation. The "type" field in this case indicates the target frame for the computation.

7.6.2.2 Use of input xv station info list struct

The station or stations to be used in algorithm are passed to xv_stationvistime_compute function with the struct xv station info list (see section 6.3 for description). It contains the following fields:

- calc_flag: it can take the enumeration values XV_COMPUTE or XV_DO_NOT_COMPUTE. This flag indicates if the extra information regarding the stations (zero doppler time) must be computed or not.
- *num rec*: Indicates the number of input stations where the visibility is going to be computed.
- *station_info*: description of the stations to be computed. Every position of the array is a *xv station info* struct. The value of *type* field indicates the type of station data:

- If type is equal to enum value XV_USE_STATION_FILE, then the station station_id is read from station_db_filename station file. If AOS, LOS and mask are not defined in the file, the values are taken from the fields default_aos, default_los and default_mask.
- If type is equal to enum value XV_USE_STATION_FILE_AND_MASK_OVERRIDE, then the station station_id is read from station_db_filename station file. In this case, the values used in computations for AOS, LOS and mask are taken from the fields default_aos, default_los and default mask, not from the information read from station file.
- If type is equal to enum value XV_USE_STATION_DATA, then the information contained in station_data field is used (see [D_H_SUM] for description of xd_station_rec). If AOS, LOS and mask are not defined in the struct, the values are taken from the fields default_aos, default_los and default mask.
- If type is equal to enum value XV_USE_STATION_DATA_AND_MASK_OVERRIDE, then the information contained in station_data field is used (see [D_H_SUM] for description of xd_station_rec). In this case, the values used in computations for AOS, LOS and mask are taken from the fields default_aos, default_los and default_mask, not from the information read from station file.
- *min duration*: indicates the minimum duration for the segments (seconds).

7.6.3 Calling interface

For C programs, the call to **xv_stationvistime_compute** is (<u>input</u> parameters are <u>underlined</u>):

Page: 12

7.6.4 Input parameters

Table 22: Input parameters of xv_stationvistime_compute

C name	C type	Array Elemen t	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orb it_id*	-	Structure that contains the orbit data	-	-
attitude_def	xp_attitu de_def*	-	Structure with the definition of the attitudes.	-	-
swath_id	xv_swat h_id*	-	Swath id.	-	-
station_info_list	xv_statio n_info_li st*		List of station where the visibility is going to be computed.	-	-

It is also possible to use enumeration values rather than integer values for some of the input arguments, as shown in the table below:

Input	Description	Enumeration value	long
mask	Combine AOS/LOS and physical mask	XV_COMBINE	0
	Use only AOS/LOS	XV_AOS_LOS	1
	Use only physical mask	XV_PHYSICAL	2
	Use mask from file	XV_FROM_FILE	3

Page:

7.6.5 Output parameters

Table 23: Output parameters of xv_stationvistime_compute function

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_station_vis_time	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
visibility_interval_list	xv_stationvi sibility_inter val_list*		List of visibility segments and additional information (zero doppler and station names)	-	-
ierr[XV_NUM_ER R_STATIONVISTIME_ COMPUTE]	long		Error status flags		

Memory Management: Note that the output visibility segment list (xv stationvisibility interval list->visibility interval) is a pointer to the list of segments computed inside xv stationvistime compute. The memory for this dynamic array is allocated within the xv stationvistime compute function. So the user will only have to declare the variable xv stationvisibility interval list. However, once the function has returned without error, the user will have the responsibility of freeing the memory for the pointers inside that variable and the rest of structs inside xv station coverage info list struct.

7.6.6 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_stationvistime_compute** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_stationvistime_compute** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 24: Error messages and codes for xv_stationvistime_compute

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Input parameter \"Orbit Id\" is wrong.	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_ORBIT_STATU S_ERR	0
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_GEO_SAT_ER R	1
ERR	Swath id not initialized	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_SWATH_STATU S_ERR	2
ERR	Error in input parameter to stavistime.	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_INPUTS_CHEC K_ERR	3
ERR	Input parameter \"orbit_type\" is out of range.	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_ORBIT_TYPE_ ERR	4
ERR	Input parameter \"swath_flag\" is out of range.	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_SWATH_FLAG_ ERR	5
ERR	Warning, start orbit is outside range of OSF.	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_FIRST_ORBIT_ WARN	6
ERR	Error transforming start orbit from relative to absolute orbits.	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_REL_TO_ABS_ START_ERR	7
ERR	Actual stop orbit is earlier than actual start orbit.	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_WRONG_INTE RVAL_ERR	8
ERR	Swath file is not compatible with the orbit file	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_WRONG_SWA TH_ERR	9

ERR	Error wrong swath type selected.	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_SWATH_TYPE_ ERR	10
ERR	Error obtaining orbital information in orbit info .	Computation not performed.	XV_CFI_STATIONVISTIME_ COMPUTE_ORBIT_INFO_E RR	11
ERR	Orbital information does not coincide with reference swath.	Computation not performed.	XV_CFI_STATIONVISTIME_ COMPUTE_INCONSISTEN T_SWATH_ERR	12
ERR	Warning, there is an orbital change within the requested orbits.	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_ORBIT_CHANG E_WARN	13
ERR	Error computing segments for one station	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_STA_COMPUT E_ERR	14
ERR	Error allocating memory for the time segments.	Computation not performed.	XV_CFI_STATIONVISTIME_ COMPUTE_SEGMENTS_M EMORY_ERR	15
ERR	Error transforming from absolute to relative.	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_ABS_TO_REL_ ERR	16
ERR	Wrong input Orbit Id. Unknown orbit initialization mode	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_ORBIT_MODEL _ERR	17
ERR	Error reading Swath File: %s	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_READ_SWATH _FILE_ERR	18
ERR	Input orbit interval is completely outside STF validity interval	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_ORBIT_INTERV AL_STF_ERR	19
WARN	Input orbit interval is partially outside STF validity interval	Computation performed. Message to inform the user.	XV_CFI_STATIONVISTIME_ COMPUTE_ORBIT_INTERV AL_STF_WARN	20
WARN	Input OSF has non-trivial MLST non linear terms but STF was generated without them	Computation performed. Message to inform the user.	XV_CFI_STATIONVISTIME_ COMPUTE_OSF_NON_LIN _STF_OLD_WARN	21
ERR	Error computing overlap for multistations	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_OVERLAP_ER R	22
WARN	Swath flag larger than MLST linear approximation validity. MLST linear approximation validity used.	Computation performed. Message to inform the user.	XV_CFI_STATIONVISTIME_ COMPUTE_SWATH_FLAG_ LARGER_THAN_LIN_APPR OX_VAL_WARN	23
ERR	Error transforming time to orbit	Computation not performed.	XV_CFI_STATIONVISTIME_ COMPUTE_TIME_TO_ORB IT_ERR	24

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 125

ERR	Error checking output segments	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_CHECK_SEGM ENTS_ERR	
ERR	Error computing UTC time	Computation not performed.	XV_CFI_STATIONVISTIME_ COMPUTE_GET_UTC_TIM E_ERR	26
ERR	Input file is not a swath file	Computation not performed	XV_CFI_STATIONVISTIME_ COMPUTE_DETECT_SWA TH_TYPE_ERR	32
WARN	Visibility computations with precise propagator can be very slow	Computation performed	XV_CFI_STATIONVISTIME_ COMPUTE_PRECISE_PRO PAG_WARN	

7.7 xv_sc_vis_time

7.7.1 Overview

The xv_sc_vis_time function computes all the orbital segments for which Communication Terminal of a target satellite (LEO or GEO) is visible from Communication Terminal of a source satellite (LEO).

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as seconds elapsed since the ascending node crossing.

xv_sc_vis_time requires access to the orbit_id (xo_orbit_id) data structure of both satellites. For orbit id initialization please refer to [ORBIT_SUM].

Note: if the orbit is initialized for precise propagation, the execution of the visibility function can be very slow. As alternative, a POF can be generated with the precise propagator (function xo_gen_pof) for the range of orbits the user usually needs, and use this generated file to initialize the orbit id. The execution time performance will be much better for the visibility function and it will not have a big impact on the precision of the calculations.

The time intervals used by **xv_sc_vis_time** are expressed in absolute or relative orbit numbers (with respect to source satellite). This is valid for both:

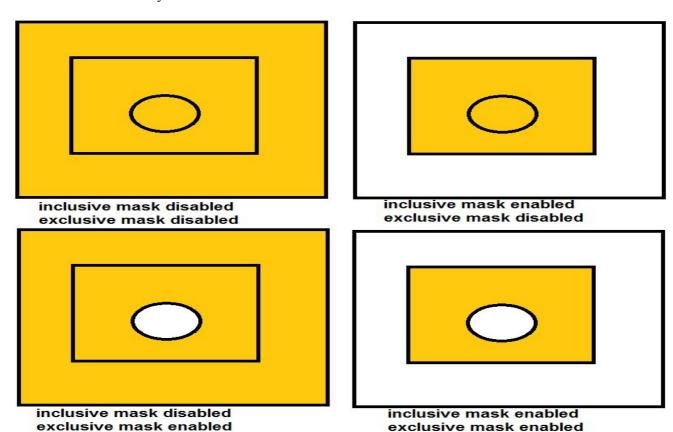
- input parameter "Orbit Range": first and last orbit to be considered. In case of using relative orbits, the corresponding cycle number should be used, otherwise, this the cycle number will be a dummy parameter.
- output parameter "Target Satellite Visibility Segments": time segments with time expressed as {absolute orbit number (or relative orbit and cycle number), number of seconds since ANX, number of microseconds}

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. Moreover, the segments will be ordered chronologically.

Users who need to use processing times must make use of the conversion routines provided in [ORBIT SUM] (xo time to orbit and xv orbit to time functions).

The xv_sc_vis_time function considers the following sources of occultation, which can be configured through xv link data input struct:

- Earth plus a minimum tangent height.
- Satellite inclusive and exclusive masks, which are zones of azimuth and elevation where visibility is possible (inclusive mask) or not possible (exclusive mask). These masks can be used to model constraints (e.g. mechanical) or occlusion of the field of view.


In the following figure, the behaviour of the mask is explained. The four mask combinations are represented:

- Inclusive mask disabled, exclusive mask disabled.
- Inclusive mask **enabled**. exclusive mask **disabled**.
- Inclusive mask disabled, exclusive mask enabled.
- Inclusive mask enabled, exclusive mask enabled.

In every case, the full field of view is represented. The internal rectangle represents the inclusive mask and the internal ellipse represents the exclusive mask. In every case, the zone in orange colour background is the field of view allowed by the enabled masks.

Notes about definition of masks:

- The masks are defined as closed zones.
- These zones are defined in the input struct xv_link_data with arrays of azimuth and elevation points that define a polygon in the azimuth-elevation plane (last point in array is closed with first point in array internally).
- It must be distinguished between azimuth = 0. deg and azimuth = 360. deg, since they are considered different in the azimuth-elevation plane; this has been done to make the definition of masks easier.
- The masks are enabled or disabled using the field status of xv_az_el_mask struct, setting its value to XL TRUE or XL FALSE respectively.

7.7.2 Calling interface

For C programs, the call to **xv_sc_vis_time** is (<u>input</u> parameters are <u>underlined</u>):


```
xp sat nom trans id sat nom trans id2 = {NULL};
                   sat trans id1 = {NULL};
xp sat trans id
xp sat trans id
                   sat trans id2 = {NULL};
xp_instr_trans_id
                    instr trans id1 = {NULL};
xp instr trans id instr trans id2 = {NULL};
long
             orbit type,
             start orbit, start_cycle,
             stop_orbit, stop_cycle,
             number segments,
             *bgn orbit, *bgn second,
             *bgn microsec, *bgn cycle,
             *end orbit, *end second,
             *end microsec, *end cycle,
             ierr[XV NUM ERR SC VIS TIME],
             status;
double
            min duration;
xv link data link data;
status = xv sc vis time(
                 &orbit id1, &sat nom trans id1,
                 &sat trans id1, &instr trans id1, &orbit type,
                 &start orbit, &start cycle,
                 &stop orbit, &stop cycle,
                 &orbit id2, &sat nom trans id2,
                 &sat trans id2, &instr trans id2,
                 &link data, &min duration,
                 &number segments,
                 &bgn orbit, &bgn second,
                 &bgn microsec, &bgn cycle,
                 &end orbit, &end second,
                 &end microsec, &end cycle,
                 ierr);
/* Or, using the run id */
long run id1, run id2;
status = xv sc vis time run(
                 &run id1, &run id2, &orbit type,
                 &start orbit, &start cycle,
                 &stop orbit, &stop cycle,
                 &link data, &min duration,
                 &number segments,
```


&bgn_orbit, &bgn_second, &bgn_microsec, &bgn_cycle, &end_orbit, &end_second, &end_microsec, &end_cycle, ierr);

}

7.7.3 Input parameters

Table 25: Input parameters of xv_sc_vis_time

C name	C type	Array Element	Description	Unit (Format)	Allowed Range	
orbit_id1	xo_orbit_id*	-	Structure that contains the orbit data of the source satellite	-	-	
sat_nom_trans _id1	xp_sat_nom_ trans_id*	-	Structure that contains the Sat. Nom Trans. of the source satellite	-	-	
sat_trans_id1	xp_sat_trans _id*	-	Structure that contains the Sat. Trans. of the source satellite	-	-	
instr_trans_id1	xp_instr_tran s_id*	-	Structure that contains the Instr. Trans. of the source satellite	-	-	
orbit_type	long	-	Define the type of orbit representation, i.e. absolute or relative orbits in the input/output parameters	-	Complete	
start_orbit	long	-	First orbit, segment filter.	absolute or	= 0	
			Segments will be filtered as from the	relative orbit number		or:
			beginning of first orbit (within orbit range from orbit_scenario_file)		• absolute orbits	
			First Orbit in the orbit_scenario_file		≥start_osf	
			will be used when:		• relative	
			Absolute orbit is set to zero.		orbits ≤ repeat	
			Relative orbit and cycle number set to zero.		cycle	
start_cycle	long	-	Cycle number corresponding to the	cycle	= 0 or	
			start_orbit. Dummy when using relative orbits	number	≤ first cycle in osf	
stop_orbit	long	-	Last orbit, segment filter.	absolute or	= 0	
			When:	relative orbit	or:	
			stop_orbit = 0 (for orbit_type = XV_ORBIT_ABS)	number	• absolute orbits	
			• stop_orbit = 0 and stop_cycle = 0		≥start_osf	
			(for orbit_type = XV_ORBIT_REL)		 relative orbits ≤ 	
			the stop_orbit will be set to the minimum value between:		repeat cycle	
			the last orbit within the orbital change of the start_orbit.			
			start_orbit+cycle_length-1 (i.e. the input orbit range will be a			

			complete cycle)		
stop_cycle	long	-	Cycle number corresponding to the stop_orbit. Dummy when using relative orbits	cycle number	= 0 or ≤first cycle in osf
orbit_id2	xo_orbit_id*	-	Structure that contains the orbit data of the target satellite	-	-
sat_nom_trans _id2	xp_sat_nom_ trans_id*	-	Structure that contains the Sat. Nom Trans. of the source satellite	-	-
sat_trans_id2	xp_sat_trans _id*	-	Structure that contains the Sat. Trans. of the target satellite	-	-
instr_trans_id2	xp_instr_tran s_id*	-	Structure that contains the Instr. Trans. of the target satellite	-	-
link_data	xv_link_data*	-	Link data (minimum tangent height and masks)	[m] for minimum height	Height ≥ 0. Azimuth range [0., 360.]
				[deg] for azimuth and	Elevation range:
				elevation	[-90., 90.]
min_duration	double	-	Minimum duration for segments. Only segments with a duration longer than min_duration will be given on output.	S	≥0.0

7.7.4 Output parameters

Table 26: Output parameters of xv_sc_vis_time function

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_sc_vis_time	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
number_segments	long		Number of visibility segments returned to the user		≥0
bgn_orbit	long*	all	Orbit number,		> 0
			begin of visibility segment i		
			bgn_orbit[i-1],		
			i = 1, number_segments		
bgn_second	long*	all	Seconds since ascending node,	s	≥ 0
			begin of visibility segment i		< orbital
			bgn_second[i-1],		period
			i = 1, number_segments		
bgn_microsec	long*	all	Micro seconds within second	ms	≥ 0
			begin of visibility segment i		≤ 999999
			bgn_microsec[i-1],		
			i = 1, number_segments		
bgn_cycle	long*	all	Cycle number,		>0
			begin of visibility segment i		NULL when
			bgn_cycle[i-1],		using absolute orbits
			i = 1, number_segments		Orbito
end_orbit	long*	all	Orbit number,		> 0
			end of visibility segment i		
			end_orbit[i-1],		
			i = 1, number_segments		
end_second	long*	all	Seconds since ascending node,	s	≥ 0
			end of visibility segment i		<orbital period<="" td=""></orbital>
			end_second[i-1],		
			i = 1, number_segments		
end_microsec	long*	all	Micro seconds within second	ms	≥ 0

			end of visibility segment i end_microsec[i-1],	≤ 999999
			i = 1, number_segments	
end_cycle	long*	all	Cycle number,	>0
			begin of visibility segment i	NULL when
			bgn_cycle[i-1],	using absolute orbits
			i = 1, number_segments	
ierr[XV_NUM_E RR_SC_VIS_TI ME]	long		Error status flags	

Memory Management: Note that the output visibility segments arrays are pointers to integers instead of static arrays. The memory for these dynamic arrays is allocated within the **xv_sc_vis_time** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.7.5 Warnings and errors

Next table lists the possible error messages that can be returned by the xv_sc_vis_time CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO VISIBILITY software library xv get msg.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_sc_vis_time** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 27: Error messages of xv_sc_vis_time

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error allocating internal memory.	No computation performed	XV_CFI_SC_VIS_TIME_INT ERNAL_MEMORY_ERR	0
ERR	Wrong input orbit ld.	No computation performed	XV_CFI_SC_VIS_TIME_OR BIT_STATUS_ERR	1
ERR	Error in input parameters.	No computation performed	XV_CFI_SC_VIS_TIME_XV _SC_INPUTS_CHECK_ER R	2
ERR	Input parameter \"orbit_type\" is out of range.	No computation performed	XV_CFI_SC_VIS_TIME_OR BIT_TYPE_ERR	3
WARN	Input \"start_orbit\" below first OSF orbit: take first OSF orbit for computations.	Computation performed	XV_CFI_SC_VIS_TIME_ST ART_ORBIT_WARN	4
ERR	Error in absolute start orbit computation.	No computation performed	XV_CFI_SC_VIS_TIME_RE L_TO_ABS_START_ERR	5
ERR	Error in absolute stop orbit computation.	No computation performed	XV_CFI_SC_VIS_TIME_RE L_TO_ABS_STOP_ERR	6
ERR	Wrong orbit range.	No computation performed	XV_CFI_SC_VIS_TIME_WR ONG_ORBIT_RANGE_ERR	7
ERR	Error in orbit parameters computation. Orbit no: (%ld).	No computation performed	XV_CFI_SC_VIS_TIME_XV _ORBIT_INFO_ERR	8
ERR	Error performing a time transformation.	No computation performed	XV_CFI_SC_VIS_TIME_TI ME_CHANGE_ERR	9
ERR	Error checking the visibility.	No computation performed	XV_CFI_SC_VIS_TIME_VIS _CHECK_ERR	10
WARN	First orbit starts with visibility.	Computation performed	XV_CFI_SC_VIS_TIME_FIR ST_ORBIT_VIS_WARN	11

ERR	Maximum number of iterations. Orbit no: (%Id).	No computation performed	XV_CFI_SC_VIS_TIME_MA X_NUMBER_ITER_ERR	12
ERR	Error in time computations. Orbit no: (%ld).	No computation performed	XV_CFI_SC_VIS_TIME_XV _TIME_SEC_ERR	13
ERR	Error transforming absolute to relative begin segments.	No computation performed	XV_CFI_SC_VIS_TIME_AB S_TO_REL_BGN_ERR	14
ERR	Error transforming absolute to relative end segments.	No computation performed	XV_CFI_SC_VIS_TIME_AB S_TO_REL_END_ERR	15
WARN	Last orbit ends with visibility	Computation performed	XV_CFI_SC_VIS_TIME_LA ST_ORBIT_VIS_WARN	16
ERR	Wrong satellite nominal attitude ld.	No computation performed	XV_CFI_SC_VIS_TIME_SA T_NOM_ATT_STATUS_ER R,	17
ERR	Wrong satellite attitude Id.	No computation performed	XV_CFI_SC_VIS_TIME_SA T_ATT_STATUS_ERR	18
ERR	Wrong instrument attitude Id.	No computation performed	XV_CFI_SC_VIS_TIME_INS TR_ATT_STATUS_ERR	19
WARN	Visibility computations with precise propagator can be very slow	Computation performed	XV_CFI_SC_VIS_TIME_PR ECISE_PROPAG_WARN	20

7.8 xv_swath_pos

7.8.1 Overview

Note: this function is deprecated. Use xv swathpos compute instead.

The xv_swath_pos function computes the location of a swath at a given time.

Swath location is expressed as¹:

- longitude
- latitude
- altitude

for n points (with $n \ge 1$). In Figure 2 we can see an example.

xv swath pos requires access to several data structures and files to produce its results:

- the orbit_id (xo_orbit_id) providing the orbital data. The orbit_id can be initialized with the following data and files, also with precise propagation if applicable (see [ORBIT_SUM]):
 - data for an orbital change
 - Orbit scenario files
 - Predicted orbit files
 - Orbit Event Files (Note: Orbit Event File is deprecated, only supported for CRYOSAT mission)

For inertial swaths, right ascension and declination are used instead of longitude and latitude

- Restituted orbit files
- DORIS Preliminary orbit files
- DORIS Navigator files
- TLE file
- the Instrument Swath data, describing the area seen by the relevant instrument all along the current orbit. The swath file is produced off-line by the EO_VISIBILITY library (xv_gen_swath function) and the data structure can be got by reading the file with xd read stf.

The input time used by **xv swath pos** is expressed in orbit-relative time.

Users who need to use processing time must make use of the conversion routine provided in EO_VISIBILITY (xv_time_to_orbit and xv_orbit_to_time functions).

NOTE: Since the swath template file is generated from a reference orbit, it is not allowed to use **xv_swath_pos** for an orbit in the orbit scenario file with different repeat cycle or cycle length. If this would happen, **xv_swath_pos** will return an error an no computation will be performed.

}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 137

7.8.2 Calling sequence of xv_swath_pos

For C programs, the call to **xv swath pos** is (<u>input</u> parameters are <u>underlined</u>):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
      long
                   orbit_type,
                    orbit, second, microsec, cycle,
                    ierr[XV NUM ERR SWATH POS], status;
                    *longitude, *latitude, *altitude;
      double
      xd stf file stf data;
      status = xv_swath_pos(&orbit_id,
                           &stf data,
                           &orbit type,
                           &orbit, &second, &microsec, &cycle,
                           longitude, latitude, altitude,
                           ierr);
      /* Or, using the run id */
      long run id;
      status = xv swath pos run(&run id,
                               &stf data,
                               &orbit type,
                               &orbit, &second, &microsec, &cycle,
                               longitude, latitude, altitude,
                               ierr);
```


7.8.3 Input parameters xv_swath_pos

Table 28: Input parameters of xv_swath_pos

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure that contains the orbit data	-	-
stf_data	xd_stf_file		Swath Template data structure	-	-
orbit_type	long	-	Define the type of orbit representation, i.e. absolute or relative orbits in the input/output parameters	-	Complete
orbit	long		Orbit number		> 0
second	long		Seconds since ascending node	s	>= 0 < orbital period
microsec	long		Micro seconds within second	ms	0 =< =< 999999
cycle	long		Cycle number		>0

7.8.4 Output parameters xv_swath_pos

Table 29: Output parameters of xv_swath_pos

C name	C type	Array Element	Description	Unit (Form at)	Allowed Range
xv_swath_pos	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
longitude	double*	all	longitude (right ascension for inertial swaths) of points of the swath.	deg	[-180, 180]
			The user must reserve as many array positions as the number of points of the instantaneous swath.		
latitude	double*	all	latitude (declination for inertial swaths) of points of the swath.	deg	[-90, 90]

			The user must reserve as many array positions as the number of points of the instantaneous swath.		
altitude	double*	all	altitude of point is of the swath. The user must reserve as many array positions as the number of points of the instantaneous swath.	m	
ierr[XV_NUM_ERR _SWATH_POS]	long		Error status flags		

7.8.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_swath_pos** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_swath_pos** CFI function by calling the function of the EO_VISIBILITY software library **xv get code**.

Table 30: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Wrong orbit Id.	Computation not performed	XV_CFI_SWATH_POS _ORBIT_STATUS_ERR	0
ERR	Wrong input Orbit Id. Unknown orbit initialization mode	Computation not performed	XV_CFI_SWATH_POS _ORBIT_MODEL_ERR	1
ERR	Orbital information does not coincide with reference swath.	Computation not performed	XV_CFI_SWATH_POS _INCONSISTENT_SW ATH_ERR	2
ERR	Orbit number must be positive.	Computation not performed	XV_CFI_SWATH_POS _ORB_NUM_LIM_ERR	3
ERR	Seconds since ascending node must be zero or positive.	Computation not performed	XV_CFI_SWATH_POS _SEC_LIM_ERR	4
ERR	MicroSeconds must be zero or positive	Computation not performed	XV_CFI_SWATH_POS _MICROSEC_1ST_ERR	5
ERR	MicroSeconds can not be bigger than 999999.	Computation not performed	XV_CFI_SWATH_POS _MICROSEC_2ND_ER R	6
ERR	Orbit type switch out of range.	Computation not performed	XV_CFI_SWATH_POS _ORBIT_TYPE_ERR	7
ERR	Cycle number must be positive.	Computation not performed	XV_CFI_SWATH_POS _CYCLE_ERR	8
ERR	Orbit number is not included in the Orbit Scenario File	Computation not performed	XV_CFI_SWATH_POS _ORB_NUM_OEF_ERR	9
ERR	Input time greater than orbital period.	Computation not performed	XV_CFI_SWATH_POS _TIME_ERR	10
ERR	Repeat Days Cycle of this orbit is not the same than the swath template.	Computation not performed	XV_CFI_SWATH_POS _REP_CYCLE_ERR	11

ERR	Orbits Cycle Length of this orbit is not the same than the swath template	Computation not performed	XV_CFI_SWATH_POS _CYCLE_LENGTH_ER R	12
ERR	MLST drift of this orbit is not the same than the swath template.	Computation not performed	XV_CFI_SWATH_POS _MLST_DRIFT_ERR	13
ERR	No spherical triangle.	Computation not performed	XV_CFI_SWATH_POS _SPHER_TRIANG_ER R	14
ERR	Error while transforming from relative to absolute orbit.	Computation not performed	XV_CFI_SWATH_POS _REL_TO_ABS_ERR	15
ERR	Error while computing information of the orbit.	Computation not performed	XV_CFI_SWATH_POS _XV_ORBIT_INFO_ER R	16
ERR	The swath template structure contains invalid data	Computation not performed	XV_CFI_SWATH_POS _SWATH_INIT_ERR	17
ERR	Error allocating internal memory.	Computation not performed	XV_CFI_SWATH_POS _MEMORY_ERR	18
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_SWATH_POS_GE O_SAT_ERR	19
WARN	Deprecated function. Use xv_swathpos_compute instead	Computation performed	XV_CFI_SWATH_POS_DE PRECATED_WARN	20

7.9 xv_swathpos_compute

7.9.1 Overview

The xv swathpos compute function computes the location of a swath at a given time.

Swath location is expressed as²:

- longitude
- latitude
- altitude

for n points (with $n \ge 1$). In Figure 2 we can see an example.

xv swathpos compute requires access to several data structures and files to produce its results:

- the orbit_id (xo_orbit_id) providing the orbital data. The orbit_id can be initialized with the following data and files, also with precise propagation if applicable (see [ORBIT SUM]):
 - data for an orbital change
 - Orbit scenario files
 - Predicted orbit files
 - Orbit Event Files (Note: Orbit Event File is deprecated, only supported for CRYOSAT mission)
 - Restituted orbit files
 - DORIS Preliminary orbit files
 - DORIS Navigator files
 - TLE file
- the swath_id (xv_swath_id, initialized using xv_swath_id_init -section 7.31-), providing the Instrument Swath information. If the swath_id is initialized with a Swath definition file or Swath definition data, xv_swathpos_compute generates the swath points for the orbit corresponding to input time.

The input time used by **xv swathpos compute** is expressed in orbit-relative time.

Users who need to use processing time must make use of the conversion routine provided in EO_VISIBILITY (xv_time_to_orbit and xv_orbit_to_time functions).

NOTE: Since the swath template file is generated from a reference orbit, it is not allowed to use **xv_swathpos_compute** for an orbit in the orbit scenario file with different repeat cycle or cycle length. If this would happen, **xv swathpos compute** will return an error an no computation will be performed.

² For inertial swaths, right ascension and declination are used instead of longitude and latitude

7.9.2 Calling sequence of xv_swathpos_compute

For C programs, the call to xv_swathpos_compute is (<u>input</u> parameters are <u>underlined</u>):

7.9.3 Input parameters xv_swathpos_compute

Table 31: Input parameters of xv_swathpos_compute

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure that contains the orbit data	-	-
swath_id	xv_swath_id*	-	Swath id	-	-
swathpos_time	xv_time*	-	Input time/orbit for computation.		

7.9.4 Output parameters xv_swathpos_compute

Table 32: Output parameters of xv_swathpos_compute

C name	C type	Array Element	Description	Unit (Form at)	Allowed Range
xv_swathpos_compute	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
swath_point_list	xv_swath_p oint_list*	-	Geodetic information of swath points.		
ierr[XV_NUM_ERR _SWATHPOS_COMPUT E]	long		Error status flags		

7.9.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_swathpos_compute** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_swathpos_compute** CFI function by calling the function of the EO_VISIBILITY software library **xv get code**.

Table 33: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Wrong orbit ld.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_ORBIT_STATUS_ER R	0
ERR	Wrong input Orbit Id. Unknown orbit initialization mode	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_ORBIT_MODEL_ER R	1
ERR	Orbital information does not coincide with reference swath.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_INCONSISTENT_SW ATH_ERR	
ERR	Orbit number must be positive.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_ORB_NUM_LIM_ER R	3
ERR	Seconds since ascending node must be zero or positive.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_SEC_LIM_ERR	4
ERR	MicroSeconds must be zero or positive.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_MICROSEC_1ST_E RR	5
ERR	MicroSeconds can not be bigger than 999999.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_MICROSEC_2ND_E RR	6
ERR	Orbit type switch out of range.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_ORBIT_TYPE_ERR	7
ERR	Cycle number must be positive.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_CYCLE_ERR	8
ERR	Orbit number is not included in the Orbit Scenario File.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_ORB_NUM_OEF_ER R	

ERR	Input time greater than orbital period.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_TIME_ERR	10
ERR	Repeat Days Cycle of this orbit is not the same than the swath template.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_REP_CYCLE_ERR	11
ERR	Orbits Cycle Length of this orbit is not the same than the swath template.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_CYCLE_LENGTH_E RR	12
ERR	MLST drift of this orbit is not the same than the swath template.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_MLST_DRIFT_ERR	13
ERR	No spherical triangle.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_SPHER_TRIANG_E RR	14
ERR	Error while transforming from relative to absolute orbit.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_REL_TO_ABS_ERR	15
ERR	Error while computing information of the orbit.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_XV_ORBIT_INFO_E RR	16
ERR	The swath template structure contains invalid data	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_SWATH_INIT_ERR	17
ERR	Error allocating internal memory.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_MEMORY_ERR	18
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_GEO_SAT_ERR	19
ERR	Wrong input time type. Orbit data must be provided.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_TIME_TYPE_ERR	20
ERR	Error generating Swath Template File	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_GEN_SWATH_ERR	21
ERR	Error reading Swath File: %s	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_READ_SWATH_FILE _ERR	22
WARN	Orbit outside STF validity but no recomputation can be performed.	Computation performed	XV_CFI_SWATHPOS_COM PUTE_SWATH_VALIDITY_ WARN	23
ERR	Error transforming time to orbit.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_TIME_TO_ORBIT_E RR	24
ERR	Input file is not a swath file.	Computation not performed	XV_CFI_SWATHPOS_COM PUTE_DETECT_SWATH_T YPE_ERR	25

7.10xv_star_vis_time

7.10.1 Overview

The **xv_star_vis_time** function computes stars visibility segments, the orbital segments for which a given star is visible with a given instrument from the satellite.

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as seconds elapsed since the ascending node crossing.

In addition, **xv_star_vis_time** calculates for every start and end of the visibility segment a coverage flag, determining which side of the FOV the event took place.

xv star vis time requires access to several data structures and files to produce its results:

- the orbit_id (xo_orbit_id) providing the orbital data. The orbit_id can be initialized with the following data or files, also with precise propagation if applicable (see [ORBIT SUM]):
 - data for an orbital change
 - Orbit scenario files
 - Predicted orbit files
 - Orbit Event Files (Note: Orbit Event File is deprecated, only supported for CRYOSAT mission)
 - Restituted orbit files
 - DORIS Preliminary orbit files
 - DORIS Navigator files
 - TLE files

Note: if the orbit is initialized for precise propagation, the execution of the visibility function can be very slow. As alternative, a POF can be generated with the precise propagator (function xo_gen_pof) for the range of orbits the user usually needs, and use this generated file to initialize the orbit id. The execution time performance will be much better for the visibility function and it will not have a big impact on the precision of the calculations.

- Two Inertial Reference Swath Files. The Swath data can be provided by:
 - A swath template file produced off-line by the EO_VISIBILITY library (**xv_gen_swath** function).
 - A swath definition file, describing the swath geometry. In this case the **xv_star_vis_time** generates the swath points for a number of orbits given by the user.
- (*Optional*) The Star's Database File, describing the location in right ascension and declination of a star, described by its corresponding identifier.

The time intervals used by **xv_star_vis_time** are expressed in absolute or relative orbit numbers. This is valid for both:

- input parameter "Orbit Range": first and last orbit to be considered. In case of using relative orbits, the corresponding cycle number should be used, otherwise, this the cycle number will be a dummy parameter
- output parameter "Star Visibility Segments": time segments with time expressed as {absolute orbit number (or relative orbit and cycle number), number of seconds since ANX, number of microsecs}

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. Moreover, the segments will be ordered chronologically.

Users who need to use processing times must make use of the conversion routines provided in EO_VISIBILITY (xv_time_to_orbit and xv_orbit_to_time functions).

7.10.2 Swath Definition

xv_star_vis_time calculates stars visibility segments for FOV corresponding to limb-sounding instruments observing inertial objects. The corresponding template files are generated off-line by the EO_VISIBILITY CFI software (**xv_gen_swath** function).

7.10.2.1 Inertial Swaths

The FOV for a Limb-sounding instrument observing inertial objects is calculated using two main parameters.

- The FOV projection on the celestial sphere is determined by two set of swaths, one corresponding to a higher (TOP) and a lower (BOTTOM) altitude over the ellipsoid, hence defining the elevation range of the FOV
- The azimuth range is defined as such, the extremes corresponding to the left and right sides. In addition xv gen swath generates coordinates for a middle point

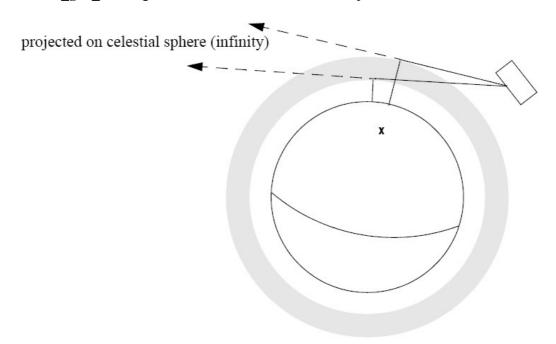


Figure 19: Two tangent altitudes over the ellipsoid

The instantaneous FOV projected on the celestial sphere can be represented as a series of points defined by their Right Ascension and Declination coordinates.

The top and bottom lines sweep the azimuth range at a constant tangent altitude, whilst the left and right side have a constant azimuth value with changing tangent altitude.

The shape of FOV should be similar to that shown in the diagram below with the dotted lines, whilst the algorithm implemented in xv_star_vis_time uses a simplified model joining the points with straight line.

As the satellite evolves around the orbit and the FOV sweeps the celestial sphere, a star can enter the FOV. **xv_star_vis_time** calculates that time and returns a flag indicating which part of the FOV (*LEFT*, *TOP*, *RIGHT* or *BOTTOM*) first detected the star. The same is done when the star exits the FOV.

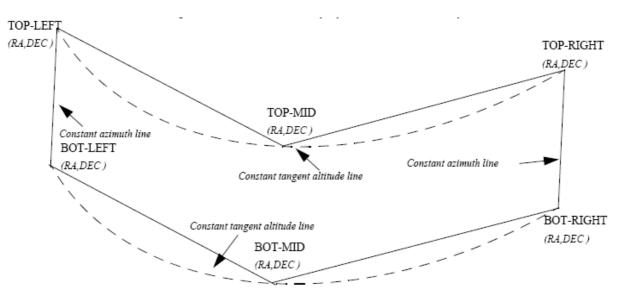


Figure 20: Instantaneous FOV projected on the celestial sphere

7.10.2.2 Splitting swaths

As it was shown in Figure 20, the accuracy and precision of **xv_star_vis_time** strongly depends on how close the projection used in the algorithm is to the real world. Higher accuracy can be obtained splitting the azimuth range in sub-swaths.

Furthermore, splitting the swath would be necessary if the FOV was to cover an azimuth range larger than 180 degrees.

Note: It is important to note that if the FOV covers the value of 90 or 270 degrees in azimuth, one of the extremes (*LEFT* or *RIGHT*) of the STF must correspond to that azimuth value.

7.10.2.3 Orbital Changes

If **xv_star_vis_time** is used with a range of orbits that includes an orbital change (e.g. change in the repeat cycle or cycle length), the behaviour depends on the swath files introduced as input:

- •If **swath template files** are used, **xv_star_vis_time** automatically will ignore the orbits that do not correspond with the template files (i.e. no visibility segments will be generated for those orbits), since swath template files are generated from a reference orbit with a particular geometry, so they are not valid for a different geometry.
- •If **swath definition files** are introduced, **xv_station_vis_time** will perform the computations across orbital changes, and will return the visibility segments corresponding to the whole orbital range. Internally, swath templates valid for every orbital change are generated to perform the calculations.

7.10.2.4 Format of Swath Template File

If a swath template file with the variable header tags *Start_Validity_Range* and *Stop_Validity_Range* is used as input, only the segments belonging to that orbit range will be returned.

7.10.2.5 MLST non linear drift

If a swath definition file is introduced, it can be also introduced every how many orbits the swath template file must be recomputed (swath_flag parameter, see section 154). If the orbit_id has been initialized with an OSF file with MLST non linear terms and the parameter swath_flag is greater than the linear approximation validity, the recomputation of swath template file will be done every linear approximation validity orbits.

7.10.3 Calling sequence xv_star_vis_time

For C programs, the call to xv_star_vis_time is (<u>input</u> parameters are <u>underlined</u>):

```
#include"explorer visibility.h"
      xo_orbit_id orbit_id = {NULL};
      long
                    swath flag, orbit type,
                    start orbit, start cycle,
                    stop orbit, stop cycle,
                    number segments,
                    *bgn_orbit, *bgn_second, *bgn_microsec,
                    *bgn cycle, *bgn coverage,
                    *end orbit, *end second, *end microsec,
                    *end cycle, *end coverage,
                    ierr[XV NUM ERR STAR VIS TIME], status;
      double
                        star_ra, star_dec, star_ra_deg, star_dec_deg,
                    min duration;
      char
                    *orbit scenario file,
                    *swath file upper, *swath file lower;
                    star id[8], *star db file;
      char
      status = xv_star_vis_time(
                        &orbit id, &orbit_type,
                        &start orbit, &start cycle,
                        &stop orbit, &stop cycle,
                        &swath flag, swath file upper, swath file lower,
                        star id, star db file,
                        &star ra, &star dec,
                        &min duration,
                        &star ra deg, &star dec deg,
                        &number segments,
                        &bgn orbit, &bgn second, &bgn microsec,
                        &bgn cycle, &bgn coverage,
                        &end orbit, &end second, &end microsec,
                        &end cycle, &end coverage,
                        ierr);
```


}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 153

```
/* Or, using the run id */
long run id;
status = xv_star_vis_time_run(
                 &run id, &orbit type,
                  &start orbit, &start cycle,
                  &stop orbit, &stop cycle,
                  &swath flag, swath file upper, swath file lower,
                 star id, star db file,
                  &star ra, &star dec,
                  &min duration,
                  &star_ra_deg, &star_dec_deg,
                  &number segments,
                  &bgn_orbit, &bgn_second, &bgn_microsec,
                  &bgn_cycle, &bgn_coverage,
                  &end orbit, &end second, &end microsec,
                  &end cycle, &end coverage,
                  ierr);
```


 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 154

7.10.4 Input parameters xv_star_vis_time

Table 34: Input parameters of xv_star_vis_time

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit_i d*	-	Structure that contains the orbit data	-	-
orbit_type	long	-	Define the type of orbit representation, i.e. absolute or relative orbits in the input/output parameters	-	Complete
start_orbit	long	-	First orbit, segment filter.	absolute or	= 0
			Segments will be filtered as from the beginning of first orbit (within orbit range from orbit_scenario_file)	relative orbit number	or: absolute orbits ≥start osf
			If set to zero then first orbit of orbit_scenario_file is selected.		relative orbits ≤repeat cycle
start_cycle	long	-	Cycle number corresponding to the start_orbit. Dummy when using relative orbits	cycle number	= 0 or ≥ start_osf
stop_orbit	long	-	Last orbit, segment filter.	absolute or	= 0
			When:	relative orbit number	or:
			stop_orbit = 0 (for orbit_type = XV_ORBIT_ABS)		absolute orbits ≥start_osf
			stop_orbit = 0 and stop_cycle = 0 (for orbit_type = XV_ORBIT_REL)		relative orbits ≤ repeat cycle
			the stop_orbit will be set to the minimum value between:		
			the last orbit within the orbital change of the start_orbit.		
			start_orbit+cycle_length-1 (i.e. the input orbit range will be a complete cycle)		
			If it is not initialized with orbital changes, stop orbit will be set to the last orbit in orbit_id initialization.		
stop_cycle	long	-	Cycle number corresponding to the stop_orbit. Dummy when using relative orbits	cycle number	=0 or ≥ start_osf
swath_flag	long*	-	Define the use of the swath file:	-	XV_STF = 0
			0 = (XV_STF) if the swath file is a		XV_SDF = 1

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 155

	,			
		swath template file.		> 0
		> 0 if the swath files is a swath definition file. In this case the swath points are generated for every "swath_flag" orbits		
swath_file_uppe r	char *	File name of the inertial swath-file for the appropriate instrument mode, which defines the upper limit of the FOV.		
		This file is read each time the function is called		
swath_file_lowe r	char *	File name of the inertial swath-file for the appropriate instrument mode, which defines the lower limit of the FOV.		
		This file is read each time the function is called		
star_id[8]	char	identification of the star, as defined in the star_db_file. This parameter is used ONLY IF star_db_file is not equal empty string("")		EXACTLY 8 characters
star_db_file	char *	File name of the star database file		
star_ra	double*	Right Ascension of Star, in TOD.	deg	(-180.0, 180.0)
		This parameter is used ONLY IF star_db_file is equal empty string ("")		
star_dec	double*	Declination of Star, in TOD.	deg	(-90.0, 90.0)
		This parameter is used ONLY IF star_db_file is equal empty string ("")		
min_duration	double*	Minimum duration for segments.	s	≥ 0.0
		Only segments with a duration longer than min_duration will be given on output.		

7.10.5 Output parameters xv_star_vis_time

Table 35: Output Parameters of xv_star_vis_time

C name	C type	Array Element	Description	Unit (Form at)	Allowed Range
xv_star_vis_time	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
star_ra_deg	double		Right Ascension of the star, in TOD, for the UTC halfway start_orbit and stop_orbit.	deg	(-180.0, 180.0)
star_dec_deg	double		Declination of the star, in TOD, for the UTC halfway start_orbit and stop_orbit.	deg	(-90.0, 90.0)
number_segment	long		Number of visibility segments returned to the user		≥ 0
bgn_orbit	long*	all	Orbit number,		> 0
			begin of visibility segment i		
			bgn_orbit[i-1],		
			i = 1, number_segments		
bgn_second	long*	all	Seconds since ascending node,	s	≥ 0
			begin of visibility segment i		< orbital
			bgn_second[i-1],		period
			i = 1, number_segments		
bgn_microsec	long*	all	Micro seconds within second	μs	≥ 0
			begin of visibility segment i		≤ 999999
			bgn_microsec[i-1],		
			i = 1, number_segments		
bgn_cycle	long*	all	cycle number		> 0
			begin of visibility segment i		NULL when
			bgn_microsec[i-1],		using relative orbits
			i = 1, number_segments		
bgn_coverage	long*	all	Coverage flag for swath entry:		0,1,2,3,4
			XV_STAR_UNDEFINED = 0, XV_STAR_UPPER = 1, XV_STAR_LOWER = 2, XV_START_LEFT = 3,		

			XV_STAR_RIGHT=4		
end_orbit	long*	all	Orbit number,		> 0
			end of visibility segment i		
			end_orbit[i-1],		
			i = 1, number_segments		
end_second	long*	all	Seconds since ascending node,	s	≥ 0
			end of visibility segment i		<orbital< td=""></orbital<>
			end_second[i-1],		period
			i = 1, number_segments		
end_microsec	long*	all	Micro seconds within second	μs	0
			end of visibility segment i		≤ 999999
			end_microsec[i-1],		
			i = 1, number_segments		
end_cycle	long*	all	End cycle,		>0
			end of visibility segment i		NULL when
			end_orbit[i-1],		using relative orbits
			i = 1, number_segments		
end_coverage	long*	all	Coverage flag for swath exit:		0,1,2,3,4
			XV_STAR_UNDEFINED = 0, XV_STAR_UPPER = 1, XV_STAR_LOWER = 2, XV_START_LEFT = 3, XV_STAR_RIGHT=4		
ierr[10]	long		Error status flags		

Memory Management: Note that the output visibility segments arrays are pointers to integers instead of static arrays. The memory for these dynamic arrays is allocated within the **xv_star_vis_time** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.10.6 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_star_vis_time** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_star_vis_time** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 36: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error, wrong orbit ld.	Computation not performed	XV_CFI_STAR_VIS_TIM E_ORBIT_STATUS_ERR	0
WAR N	Warning, start orbit is outside range of OEF/OSF.	Computation performed Message to inform the user	XV_CFI_STAR_VIS_TIM E_FIRST_ORBIT_WARN	1
WAR N	Warning, stop orbit is outside range of OEF/OSF.	Computation performed Message to inform the user	XV_CFI_STAR_VIS_TIM E_LAST_ORBIT_WARN	2
WAR N	Warning, there is an orbital change within the requested orbits.	Computation performed Message to inform the user	XV_CFI_STAR_VIS_TIM E_ORBIT_CHANGE_WARN	3
ERR	Error, starvistime can only operate with an inertial swath.	Computation not performed	XV_CFI_STAR_VIS_TIM E_INERTIAL_SWATH_E RR	4
ERR	Error, Orbital information does not coincide with reference swath.	Computation not performed	XV_CFI_STAR_VIS_TIM E_INCONSISTENT_SWA TH_ERR	5
ERR	Input parameter \"swath_flag\" is out of range	Computation not performed	XV_CFI_STAR_VIS_TIM E_SWATH_FLAG_ERR	6
ERR	Could not generate the swath template data	Computation not performed	XV_CFI_STAR_VIS_TIM E_GENSWATH_ERR	7
ERR	Low swath altitude is above the upper limit described by the higher swath altitude.	Computation not performed	XV_CFI_STAR_VIS_TIM E_ALT_ERR	8
ERR	Error allocating internal memory.	Computation not performed	XV_CFI_STAR_VIS_TIM E_INTERNAL_MEMORY _ERR	9
ERR	Error allocating memory for the	Computation not	XV_CFI_STAR_VIS_TIM	10

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 159

	visibility segments.	performed	E_SEGMENTS_MEMOR Y_ERR	
ERR	Error allocating memory for the coverage.	Computation not performed	XV_CFI_STAR_VIS_TIM E_COVERAGE_MEMOR Y_ERR	11
ERR	Input parameter "orbit_type" is out of range.	Computation not performed	XV_CFI_STAR_VIS_TIM E_ORBIT_TYPE_ERR	12
ERR	Wrong input Orbit Id. Unknown orbit initialization mode	Computation not performed	XV_CFI_STAR_VIS_TIM E_ORBIT_MODEL_ERR	13
ERR	Error in input parameter to starvistime.	Computation not performed	XV_CFI_STAR_VIS_TIM E_INPUTS_CHECK_ERR	14
ERR	Error while transforming into absolute orbit the start_orbit.	Computation not performed	XV_CFI_STAR_VIS_TIM E_REL_TO_ABS_START _ERR	15
ERR	Error while transforming into absolute orbit the stop_orbit.	Computation not performed	XV_CFI_STAR_VIS_TIM E_REL_TO_ABS_STOP_ ERR	16
ERR	Error updating star's position in from JD2000 to determined UTC.	Computation not performed	XV_CFI_STAR_VIS_TIM E_STAR_RADEC_ERR	17
ERR	Error obtaining orbital information.	Computation not performed	XV_CFI_STAR_VIS_TIM E_ORBIT_INFO_ERR	18
ERR	Error reading the upper swath template file.	Computation not performed	XV_CFI_STAR_VIS_TIM E_SWATH_UPPER_REA D_ERR	19
ERR	Error reading the lower swath template file.	Computation not performed	XV_CFI_STAR_VIS_TIM E_SWATH_LOWER_RE AD_ERR	20
ERR	Error reading the star data file.	Computation not performed	XV_CFI_STAR_VIS_TIM E_READ_STAR_ERR	21
ERR	Error determining transitions.	Computation not performed	XV_CFI_STAR_VIS_TIM E_STAR_MAIN_ERR	22
ERR	Error while transforming into relative orbits the output segments.	Computation not performed	XV_CFI_STAR_VIS_TIM E_ABS_TO_REL_ERR	23
ERR	Error transforming orbit to time.	Computation not performed	XV_CFI_STAR_VIS_TIM E_ORBIT_TO_TIME_ER R	24
ERR	Error reading the swath definition file: %s	Computation not performed	XV_CFI_STAR_VIS_TIM E_READ_SDF_ERR	25
ERR	Error checking orbital change	Computation not	XV_CFI_STAR_VIS_CHECK_	26

	in range	performed	ORBITAL_CHANGE_ERR	
ERR	Input orbit interval is completely outside STF validity interval	Computation not performed	XV_CFI_STAR_VIS_TIME_OR BIT_INTERVAL_STF_ERR	27
WARN	Input orbit interval is partially outside STF validity interval	Computation performed	XV_CFI_STAR_VIS_TIME_OR BIT_INTERVAL_STF_WARN	32
WARN	Input OSF has non-trivial MLST non linear terms but STF was generated without them	Computation performed	XV_CFI_STAR_VIS_TIME_OS F_NON_LIN_STF_OLD_WAR N	33
WARN	Swath flag larger than MLST linear approximation validity. MLST linear approximation validity used	Computation performed	XV_CFI_STAR_VIS_TIME_S WATH_FLAG_LARGER_THA N_LIN_APPROX_VAL_WARN	34
WARN	Visibility computations with precise propagator can be very slow	Computation performed	XV_CFI_STAR_VIS_TIME_PR ECISE_PROPAG_WARN	35

7.11xv_multizones_vis_time

7.11.1 Overview

Note: this function is deprecated. Use xv zonevistime compute instead.

The **xv_multizones_vis_time** function computes all the orbital segments for which a given instrument swath intercepts several user-defined zones at the surface of the Earth ellipsoid.

The visibility segments are obtained by calling to **xv_zone_vis_time** (see section 7.1 for further details about swaths, zones and visibility segments definitions). Those segments are merged and ordered by start time. In addition to this, two tables are provided. The first one contains the zones where segment has visibility, and the second one contains the coverage of the segment for each zone (see Figure 21).

Figure 12 xv_multizones_vis_time function zone 2 L zone 1 L multizones vis time zone 2 zone 0 zone 0 zone 1 R L В В zone 1 zone 2 В В L zone 0 zone 1 R zone 0 zone 1 zone 2 Zones Coverage

Figure 21: xv_multizones_vis_time function

The time intervals used by **xv_multizones_vis_time** are expressed in absolute orbit numbers or in relative orbit and cycle numbers. This is valid for both:

- input parameter "Orbit Range": first and last orbit to be considered. In case of using relative orbits, the corresponding cycle number should be used, otherwise, this the cycle number will be a dummy parameter.
- output parameter "Zone Visibility Segments": time segments with time expressed as {absolute orbit number (or relative orbit number and cycle number), number of seconds since ascending node, number of microseconds}

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. **xv_multizones_vis_time** requires access to several data structures and files to produce its results:

- the orbit_id (xo_orbit_id) providing the orbital data. The orbit_id can be initialized with the following data or files (see [ORBIT_SUM]):
 - data for an orbital change
 - Orbit scenario files
 - Predicted orbit files
 - Orbit Event Files (Note: Orbit Event File is deprecated, only supported for CRYOSAT mission)
 - Restituted orbit files
 - DORIS Preliminary orbit files
 - DORIS Navigator files

Note: if the orbit is initialized for precise propagation, the execution of the visibility function can be very slow. As alternative, a POF can be generated with the precise propagator (function xo_gen_pof) for the range of orbits the user usually needs, and use this generated file to initialize the orbit id. The execution time performance will be much better for the visibility function and it will not have a big impact on the precision of the calculations.

- the Instrument Swath File, excluding inertial swath files, describing the area seen by the relevant instrument all along the current orbit. The Swath data can be provided by:
 - A swath template file produced off-line by the EO_VISIBILITY library (**xv_gen_swath** function).
 - A swath definition file, describing the swath geometry. In this case the xv_multizones_vis_time generates the swath points for a number of orbits given by the user.
- optionally, a Zone Database File, containing the zone description. The user can either specify a zone identifier referring to a zone in the file, or provide the zone parameters directly to **xv multizones vis time.**

Users who need to use processing times must make use of the conversion routines provided in EO_ORBIT (xo time to orbit and xo orbit to time functions).

NOTE: If **xv_multizones_vis_time** is used with a range of orbits that includes an orbital change (e.g. change in the repeat cycle or cycle length), the behaviour depends on the swath files introduced as input:

- •If a **swath template file** is used, **xv_multizones_vis_time** automatically will ignore the orbits that do not correspond with the template file (i.e. no visibility segments will be generated for those orbits), since swath template file is generated from a reference orbit with a particular geometry, so it is not valid for a different geometry.
- •If a **swath definition file** is introduced, **xv_multizones_vis_time** will perform the computations across orbital changes, and will return the visibility segments corresponding to the whole orbital range. Internally, swath templates valid for every orbital change are generated to perform the calculations.

7.11.2 Calling sequence xv_multizones_vis_time

For C programs, the call to xv multizones vis time is (input parameters are underlined):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
      long
               swath flag, orbit type,
               start_orbit, start_cycle, stop_orbit, stop_cycle,
               num zones, projection, *zone num,
               extra info flag,
               number segments,
               *bgn orbit, *bgn secs, *bgn microsecs, *bgn cycle,
               *end_orbit, *end_secs, *end_microsecs, *end_cycle,
               *nb_zon_in_segment, **zones_in_segment, **coverage,
               ierr[XV NUM ERR MULTIZONES VIS TIME], status;
               *zone long, *zone lat, *zone diam,
      double
               min duration;
      char
               *swath file, *zone db file,
               **zone id;
      status = xv_multizones_vis_time(
                    &orbit id, &orbit type,
                    &start orbit, &start cycle,
                    &stop orbit, &stop cycle,
                    &swath flag, swath file, &num zones,
                   zone id, zone db file,
                   projection, zone num,
                   zone long, zone lat, zone diam,
                    &min duration, &extra info flag,
                    &number segments,
                    &bgn orbit, &bgn second, &bgn microsec, &bgn cycle,
                   &end orbit, &end second, &end microsec, &end cycle,
                    &nb zon in segment, &zones in segment, &coverage,
                   ierr);
```


}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 165

```
/* Or, using the run id */
long run id;
status = xv_multizones_vis_time_run(
             &run id, &orbit type,
             &start orbit, &start cycle,
             &stop orbit, &stop cycle,
             &swath flag, swath file, &num zones,
             zone id, zone db file,
             projection, zone num,
             zone long, zone lat, zone diam,
             &min duration, &extra info flag,
             &number segments,
             &bgn_orbit, &bgn_second, &bgn_microsec, &bgn_cycle,
             &end orbit, &end second, &end microsec, &end cycle,
             &nb zon in segment, &zones in segment, &coverage,
             ierr);
```


7.11.3 Input parameters xv_multizones_vis_time

Table 37: Input parameters of xv_multizones_vis_time

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
orbit_type	long	-	Define the type of orbit representation, i.e. absolute or relative orbits in the input/output parameters	-	Complete (see Table 3)
start_orbit	long	-	First orbit, segment filter. Segments will be filtered as from the beginning of first orbit (within orbit range from orbit_scenario_file) First Orbit in the orbit_scenario_file will be used when: • Absolute orbit is set to zero. • Relative orbit and cycle number set to zero.	absolute or relative orbit number	= 0 or: • absolute orbits ≥start_osf • relative orbits ≤ repeat cycle
start_cycle	long	-	Cycle number corresponding to the start_orbit. Dummy when using relative orbits	cycle number	= 0 or ≥ first cycle in osf
stop_orbit	long	-	Last orbit, segment filter. When: stop_orbit = 0 (for orbit_type = XV_ORBIT_ABS) stop_orbit = 0 and stop_cycle = 0 (for orbit_type = XV_ORBIT_REL) the stop_orbit will be set to the minimum value between: the last orbit within the orbital change of the start_orbit. start_orbit+cycle_length-1 (i.e. the input orbit range will be a complete cycle)	absolute or relative orbit number	= 0 or: • absolute orbits ≥ start_osf • relative orbits ≤ repeat cycle
stop_cycle	long	-	Cycle number corresponding to the stop_orbit. Dummy when using relative orbits	cycle number	= 0 or ≥ first cycle in osf
swath_flag	long*	-	 Define the use of the swath file: 0 = (XV_STF) if the swath file is a swath template file. > 0 if the swath files is a swath 	-	XV_STF = 0 XV_SDF = 1 > 0

			definition file. In this case the swath points are generated for every "swath_flag" orbits		
swath_file	char *	-	File name of the swath-file for the appropriate instrument mode		
num_zones	long	-	Number of zones		>0
zone_id	char**	all	Identification name for n-th zone (0 <n<num_zones). every="" exist="" for="" it="" must="" td="" zone.<=""><td></td><td></td></n<num_zones).>		
			zone_id[i] must belong to a zone from the zone_db_file when zone_num[i]=0.		
zone_db_file	char *	-	File name of the zone-database file. Dummy when no zones from		
			database are selected.		
projection	long*	all	projection for each zone used to define polygon sides as straight lines.		complete. See Table 3 (Projections)
zone_num	long*	all	Number of vertices of the n-th zone (0 <n<num_zones) in="" provided="" td="" zone_lat:<="" zone_long,=""><td></td><td>≥ 0</td></n<num_zones)>		≥ 0
			= 0 no vertices provided, use zone_id / zone_db_file		
			= 1 Point / Circular zone,		
			= 2 Line zone		
			> 2 Polygon zone		
zone_long	double*	all	Geocentric longitude of	deg	
			- circle centre, for circ. zone		
			- point, for point zone		
			- line-end, for line zone		
			- vertices, for polygon zone.		
			The longitude of the vertices corresponding to all zones shall be arranged consecutively ³ .		
zone_lat	double*	all	Geodetic latitude of	deg	
			- circle centre, for circ. zone.		

³ For example,

_

⁻ zone 0: points will be arranged from 0 to zone_num[0] (no points in case of using a database zone),

⁻ zone 1: points will be arranged from zone_num[0] to zone_num[0] + zone_num[1]

			 point, for point zone. line-end, for line zone. vertices, for polygon zone. The latitude of the vertices corresponding to all zones shall be arranged consecutivelySuperscriptparanum.		
zone_diam	double*	all	Array of diameters of circular zones in case this shape is selected for any zone ⁴ . zone_diam=0.0 for Point Zones.	m	≥ 0.0
min_duration	double	-	Minimum duration for segments. Only segments with a duration longer than min_duration will be given on output.	s	≥ 0
extra_info_fla g	long	-	If value set to false (= 0), the zones_in_segment and coverage arrays are not computed. Saves computation time.		0 (false), 1 (true)

⁴ The values corresponding to all zones shall be arranged consecutively, so that the zone_diam[0] corresponds with the first point or circular zone, zone_diam[1] corresponds with the second point or circular zone, and so on.

7.11.4 Output parameters xv_multizones_vis_time

Table 38: Output parameters of xv_multizones_vis_time

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_multizones_vis_ti me	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
number_segments	long	-	Number of segments in the output lists.	_	> 0
bgn_orbit	long*	all	Array of orbit numbers for the beginning of the segments	-	>0
bgn_second	long*	all	Array of seconds elapsed since ANX	-	>0
			for the beginning of the segments		<nodal period<="" td=""></nodal>
bgn_microsec	long*	all	Array of microseconds within a second	-	>0
			for the beginning of the segments		<999999
bgn_cycle	long*	all	Array of cycle numbers for the beginning of the segments.	_	>0
end_orbit	long*	all	Array of orbit numbers for the end of the segments	-	>0
end_second	long*	all	Array of seconds elapsed since ANX for the end of the segments	-	>0
			for the end of the segments		<nodal period<="" td=""></nodal>
end_microsec	long*	all	Array of microseconds within a second for the end of the segments	_	>0 <999999
end_cycle	long*	all	Array of cycle numbers for the end of the segments.	-	>0 or NULL
nb_zon_in_segment	long*	all	Number of zones where the segment has visibility.	-	>0
			Dummy if extra_info_flag=0 (false).		
zones_in_segment	long**	all	Index of the zone_id input array where the segment has visibility.	-	≥0
			Dummy if extra_info_flag=0 (false).		
coverage	long**	all	Coverage of the segment in each of the zones.		complete See Table 3
			Dummy if extra_info_flag=0 (false).		
ierr	long*		Error status flags		

<u>Note 1:</u> The zones_in_segment and coverage arrays are returned as a two-dimensional table where the first index is related to the output visibility segment, and the second one goes all over the zones that compose that segment.

Note 2 (Memory Management): Note that the output visibility segments arrays are pointers to integers instead of static arrays. The memory for these dynamic arrays is allocated within the **xv_multizones_vis_time** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.11.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_multizones_vis_time** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_multizones_vis_time** CFI function by calling the function of the EO VISIBILITY software library **xv get code**.

Table 39: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error allocating internal memory.	Computation not performed	XV_CFI_MULTIZONE S_VIS_TIME_MEMOR Y_ERR	0
ERR	Error getting visibility segments for zone %ld	Computation not performed	XV_CFI_MULTIZONE S_VIS_TIME_COMPUT E_SEGMENTS_ERR	1
ERR	Error getting absolute orbit from relative orbit	Computation not performed	XV_CFI_MULTIZONE S_VIS_TIME_ABS_TO _REL_ORBIT_ERR	2
ERR	Error getting relative orbit vector from absolute orbits	Computation not performed	XV_CFI_MULTIZONE S_VIS_TIME_ABS_TO _REL_VECTOR_ERR	3
ERR	Error while merging overlapped segments	Computation not performed	XV_CFI_MULTIZONE S_VIS_TIME_OVERLA P_ERR	4
ERR	Orbit id is not initialized.	Computation not performed	XV_CFI_MULTIZONES_VIS _TIME_ORBIT_STATUS_E RR	5
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_MULTIZONES_VIS _TIME_GEO_SAT_ERR	6
WARN	Deprecated function. Use xv_zonevistime_compute instead	Computation performed	XV_CFI_MULTIZONES_DE PRECATED_WARN	7

7.12xv_multistations_vis_time

7.12.1 Overview

Note: this function is deprecated. Use xv stationvistime compute instead.

The **xv_multistations_vis_time** function computes visibility segments of several ground stations, i.e. the orbital segments for which the satellite is visible from a ground station located at the surface of the Earth.

The visibility segments are obtained by calling to **xv_station_vis_time**. Those segments are merged and ordered by start time. Moreover, **xv_multistations_vis_time** provides a table containing the stations from which the satellite is visible in each segment.

In addition, **xv_multistations_vis_time** computes the time of zero-doppler (i.e. the time at which the range-rate to the station is zero) per station.

The time intervals used by **xv_multistations_vis_time** are expressed in absolute orbit numbers or in relative orbit and cycle numbers. This is valid for both:

- input parameter "Orbit Range": first and last orbit to be considered. In case of using relative orbits, the corresponding cycle number should be used, otherwise, this the cycle number will be a dummy parameter.
- output parameter "Stations Visibility Segments": time segments with time expressed as {absolute orbit number (or relative orbit number and cycle number), number of seconds since ascending node, number of microseconds}

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits.

xv multistations vis time requires access to several data structures and files to produce its results:

- the orbit_id (xo_orbit_id) providing the orbital data. The orbit_id can be initialized with the following data or files (see [ORBIT SUM]):
 - data for an orbital change
 - Orbit scenario files
 - Predicted orbit files
 - Orbit Event Files (Note: Orbit Event File is deprecated, only supported for CRYOSAT mission)
 - Restituted orbit files
 - DORIS Preliminary orbit files
 - DORIS Navigator files

Note: if the orbit is initialized for precise propagation, the execution of the visibility function can be very slow. As alternative, a POF can be generated with the precise propagator (function xo_gen_pof) for the range of orbits the user usually needs, and use this generated file to initialize the orbit id. The execution time performance will be much better for the visibility function and it will not have a big impact on the precision of the calculations.

- the Instrument Swath File, excluding inertial swath files, describing the area seen by the relevant instrument all along the current orbit. The Swath data can be provided by:
- A swath template file produced off-line by the EO VISIBILITY library (xv_gen_swath function).
- A swath definition file, describing the swath geometry. In this case the **xv_multistations_vis_time** generates the swath points for a number of orbits given by the user.

• the Instrument Swath File, excluding inertial swath files, describing the area seen by the relevant instrument all along the current orbit. It is produced off-line by the EO_VISIBILITY library (xv_gen_swath function).

• the Station Database File, describing the location and the physical mask of each ground station.

Users who need to use processing times must make use of the conversion routines provided in EO_ORBIT (xo_time_to_orbit and xo_orbit_to_time functions).

NOTE: If **xv_multistation_vis_time** is used with a range of orbits that includes an orbital change (e.g. change in the repeat cycle or cycle length), the behaviour depends on the swath files introduced as input:

- •If a **swath template file** is used, **xv_multistation_vis_time** automatically will ignore the orbits that do not correspond with the template file (i.e. no visibility segments will be generated for those orbits), since swath template file is generated from a reference orbit with a particular geometry, so it is not valid for a different geometry.
- •If a **swath definition file** is introduced, **xv_multistation_vis_time** will perform the computations across orbital changes, and will return the visibility segments corresponding to the whole orbital range. Internally, swath templates valid for every orbital change are generated to perform the calculations.

7.12.2 Calling sequence xv_multistations_vis_time

For C programs, the call to xv multistations vis time is (input parameters are underlined):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
               swath flag, orbit type,
      long
               start orbit, start cycle,
               stop orbit, stop cycle,
               num stations, *mask,
               extra info flag,
               number segments,
               *bgn orbit, *bgn secs, *bgn microsecs, *bgn cycle,
               *end orbit, *end secs, *end microsecs, *end cycle,
               **zdop_orbit, **zdop_secs, **zdop_microsecs, **zdop_cycle,
               *nb stat in segment, **stat in segment,
               ierr[XV NUM ERR MULTISTATIONS VIS TIME], status;
               *aos elevation, *los elevation,
      double
               min duration;
               *swath file, *station db file,
      char
               **station id;
      status = xv multistations vis time(
                    &orbit id, &orbit type,
                    &start orbit, &start cycle,
                    &stop orbit, &stop cycle,
                    &swath flag, swath file, &num stations,
                   station db file, station id,
                   aos elevation, los elevation, mask,
                    &min duration,
                   &extra info flaq,
                    &number segments,
                    &bgn orbit, &bgn second, &bgn microsec, &bgn cycle,
                    &end orbit, &end second, &end microsec, &end cycle,
                    &zdop orbit, &zdop second, &zdop microsec, &zdop cycle,
                   &nb stat in segment, &stat in segment,
                   ierr);
```


}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 175

```
/* Or, using the run_id */
long run id;
status = xv multistations_vis_time_run(
             &run id, &orbit type,
             &start orbit, &start cycle,
             &stop orbit, &stop cycle,
             &swath flag, swath file, &num stations,
             station db_file, station_id,
             aos elevation, los elevation, mask,
             &min duration,
             &extra info flag,
             &number segments,
             &bgn_orbit, &bgn_second, &bgn_microsec, &bgn_cycle,
             &end orbit, &end second, &end microsec, &end cycle,
             &zdop orbit, &zdop second, &zdop microsec, &zdop cycle,
             &nb stat in segment, &stat in segment,
             ierr);
```


7.12.3 Input parameters xv_multistations_vis_time

Table 40: Input parameters of xv_multistations_vis_time

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
orbit_type	long	-	Define the type of orbit representation, i.e. absolute or relative orbits in the input/output parameters	-	Complete (see Table 3)
start_orbit	long	-	First orbit, segment filter Segments will be filtered as from the beginning of first orbit (within orbit range from orbit_scenario_file) First Orbit in the orbit_scenario_file will be used when: • Absolute orbit is set to zero. • Relative orbit and cycle number set	absolute or relative orbit number	= 0 or: • absolute orbits ≥ start_osf • relative orbits ≤ repeat cycle
start_cycle	long	-	to zero. Cycle number corresponding to the start_orbit. Dummy when using relative orbits	cycle number	= 0 or ≥first cycle in osf
stop_orbit	long	-	Last orbit, segment filter. When: stop_orbit = 0 (for orbit_type = XV_ORBIT_ABS) stop_orbit = 0 and stop_cycle = 0 (for orbit_type = XV_ORBIT_REL) the stop_orbit will be set to the minimum value between: the last orbit within the orbital change of the start_orbit. start_orbit+cycle_length-1 (i.e. the input orbit range will be a complete cycle)	absolute or relative orbit number	= 0 or: • absolute orbits ≥ start_osf • relative orbits ≤ repeat cycle
stop_cycle	long	-	Cycle number corresponding to the stop_orbit. Dummy when using relative orbits	cycle number	= 0 or ≥ first cycle in osf
swath_flag	long*	-	 Define the use of the swath file: 0 = (XV_STF) if the swath file is a swath template file. > 0 if the swath files is a swath 	-	XV_STF = 0 XV_SDF = 1 > 0

			definition file. In this case the swath points are generated for every "swath_flag" orbits		
swath_file	char *	-	File name of the swath-file for the appropriate instrument mode		
num_stations	long	-	Number of stations		>0
station_db_file	char *	-	File name of the station-database file.		
station_id	char**	-	Identification name for n-th station (0 <n<num_stations).< td=""><td></td><td></td></n<num_stations).<>		
aos_elevation	double*	all	Minimum elevation to consider at AOS for each station(i.e. before considering start of visibility).	deg	≥ 0.0
los_elevation	double*	all	Maximum elevation to consider at LOS for each station(i.e. before considering end of visibility).	deg	≥ 0.0 ≤ aos_elevation
mask	long*	all	mask used to define visibility = 0 combine AOS/LOS elevations and physical mask (nominal mode) = 1 consider only AOS/LOS elevations = 2 consider only physical mask		≥ 0
min_duration	double	-	Minimum duration for segments. Only segments with a duration longer than min_duration will be given on output.	s	≥ 0
extra_info_flag	long	-	If value set to false (= 0), the zero doppler arrays and stations arrays are not computed.		0(false), 1 (true)
			Saves computation time.		

7.12.4 Output parameters xv_multistations_vis_time

Table 41: Output parameters of xv_multistations_vis_time

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_multistations_vis_	long		Function status flag,		
time			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
number_segments	long	-	Number of segments in the output lists.	-	> 0
bgn_orbit	long*	all	Array of orbit numbers for the beginning of the segments	-	>0
bgn_second	long*	all	Array of seconds elapsed since ANX	-	>0
			for the beginning of the segments		<nodal period<="" td=""></nodal>
bgn_microsec	long*	all	Array of micro seconds within a	-	>0
			second for the beginning of the segments		<999999
bgn_cycle	long*	all	Array of cycle numbers for the beginning of the segments.	-	>0
end_orbit	long*	all	Array of orbit numbers for the end of the segments	-	>0
end_second	long*	all	Array of seconds elapsed since ANX	-	>0
			for the end of the segments		<nodal period<="" td=""></nodal>
end_microsec	long*	all	Array of micro seconds within a	-	>0
			second for the end of the segments		<999999
end_cycle	long*	all	Array of cycle numbers for the end of the segments.	-	>0 or NULL
zdop_orbit	long**	all	Orbit number,		> 0
			time of zero doppler for each segment and zone (-1 if no zero doppler within corresponding visibility segment)		
			Dummy if extra_info_flag = false.		
zdop_second	long**	all	Seconds since ascending node,	s	>= 0
			time of zero doppler for each segment and zone (-1 if no zero doppler within corresponding visibility segment)		< orbital period
			Dummy if extra_info_flag = false.		

zdop_microsec	long**	all	Micro seconds within second	μs	0 =<
			time of zero doppler for each segment and zone (-1 if no zero doppler within corresponding visibility segment)		=< 999999
			Dummy if extra_info_flag = false.		
zdop_cycle	long**	all	Cycle number,		>0
			time of zero doppler for each segment and zone (-1 if no zero doppler within corresponding visibility segment)		NULL when using absolute orbits
			Dummy if extra_info_flag = false.		
nb_stat_in_segment	long*	all	nb_stat_in_segment [i] =Number of stations from which the satellite is visible during the i-th segment of time.	_	>0
			Dummy if extra_info_flag = false.		
stat_in_segment	long**	all	stat_in_segment [i] = array of indexes of the stations from which the satellite is visible during the i-th segment.	-	≥0
			Dummy if extra_info_flag = false.		
ierr	long*		Error status flags		

<u>Note 1:</u> The stat_in_segment and zdop_xxx arrays are returned as a two-dimensional table where the first index is related to the output visibility segment , and the second one goes all over the zones that compose that segment.

Note 2 (Memory Management): Note that the output visibility segments arrays are pointers to integers instead of static arrays. The memory for these dynamic arrays is allocated within the **xv_multistations_vis_time** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.12.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_multistations_vis_time** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_multistations_vis_time** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 42: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error allocating internal memory.	Computation not performed	XV_CFI_MULTISTATI ONS_VIS_TIME_MEM ORY_ERR	0
ERR	Error getting visibility segments for station %ld	Computation not performed	XV_CFI_MULTISTATI ONS_VIS_TIME_COM PUTE_SEGMENTS_ER R	1
ERR	Error getting absolute orbit from relative orbit	Computation not performed	XV_CFI_MULTISTATI ONS_VIS_TIME_ABS_ TO_REL_ORBIT_ERR	2
ERR	Error getting relative orbit vector from absolute orbits.	Computation not performed	XV_CFI_MULTISTATI ONS_VIS_TIME_ABS_ TO_REL_VECTOR_ER R	3
ERR	Error while merging overlapped segments.	Computation not performed	XV_CFI_MULTISTATI ONS_VIS_TIME_OVER LAP_ERR	4
ERR	Orbit id not initialized.	Computation not performed	XV_CFI_MULTISTATIONS_ VIS_TIME_ORBIT_STATUS _ERR	5
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_MULTISTATIONS_ VIS_TIME_GEO_SAT_ERR	6
WARN	Deprecated function. Use xv_stationvistime_compute instead	Computation performed	XV_CFI_MULTISTATIONS_ VIS_TIME_DEPRECATED_ WARN	7

7.13 xv_orbit_extra

7.13.1 Overview

The xv orbit extra function computes for an input orbit, the times for:

- an input set of Sun zenit angles are reached (both up and down times are computed)
- Sun ocultations by the Earth.
- Sun ocultations by the Moon.

xv_orbit_extra needs as input the orbital parameters returned by xo_orbit_info (its output array result vector). So, the natural use to call to xv orbit extra will be:

- Initialise time references: calling to xl time ref init of xl time ref init file.
- Orbital initialisation by calling one of the functions: **xo_orbit_init_file**, **xo_orbit_init_def** or **xo_orbit_cart_init**.
- Call to **xo_orbit_info** to get the result_vector containing the orbital parameters of the orbit.
- Call to xv_orbit_extra with the same orbit than in the call to the orbit_info function.

The input orbit must be an absolute orbit.

Users who need to use processing times must make use of the conversion routines provided in EO_ORBIT (xo time to orbit and xo orbit to time functions).

7.13.2 Calling sequence xv_orbit_extra

For C programs, the call to **xv_orbit_extra** is (<u>input</u> parameters are <u>underlined</u>):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
      long
               orbit,
               num sza,
               ierr[XV NUM ERR ORBIT EXTRA];
               orbit info vector[XO ORBIT INFO EXTRA NUM ELEMENTS], *sza,
      double
               *sza up, *sza down,
               eclipse entry, eclipse exit,
               sun moon entry, sun moon exit;
      status= xv orbit extra (&orbit id, &orbit, orbit info vector,
                             &<u>num sza</u>, <u>sza</u>,
                             &sza up, &sza down,
                             &eclipse entry, &eclipse exit,
                             &sun moon entry, &sun moon exit,
                             ierr);
      /* Or, using the run id */
      long run id;
      status= xv orbit extra run (&run id, &orbit, orbit info vector,
                             &num sza, sza,
                             &sza_up, &sza_down,
                             &eclipse entry, &eclipse exit,
                             &sun moon entry, &sun moon exit,
                             ierr);
}
```


Page:

7.13.3 Input parameters xv_orbit_extra

Table 43: Input parameters of xv_orbit_extra

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
orbit	long	-	absolute orbit number		≥ start osf
orbit_info_vector	double	[0]	repeat_cycle	days	>0
[XO_ORBIT_IN FO EXTRA NU		[1]	cycle_length	orbits	>0
M_ELEMENTS]		[2]	MLST drift		s/day
		[3]	MLST	deg	> 0
					<360
		[4]	phasing	deg	> 0
					<360
		[5]	UTC time at ascending node	days (processing format)	
		[6-8]	position at ANX	m	
		[9-11]	velocity at ANX	m/s	
		[12-17]	mean keplerian elements at ANX		
		[18-23]	osculating keplerian elements at ANX		
		[24]	Nodal period	s	
num_sza	long	-	Number of Sun Zenit angles in the sza array	-	>0
sza	double*	all	list of Sun Zenit angles to	deg	≥ 0
			compute		≤ 180

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 184

7.13.4 Output parameters xv_orbit_extra

Table 44: Output parameters of xv_orbi_extra

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_orbit_extra	long	-	Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
sza_up	double	all	Seconds since ANX of Sun Zenith Angles	s	≥ 0
			when SZA is increasing with time.		≤ orb. period
sza_down	double	all	Seconds since ANX of Sun Zenith Angles	s	≥ 0
			when SZA is decreasing with time.		≤orb. period
eclipse_entry	double	-	Seconds since ANX of eclipse entry.	s	≥ 0
			Note that the value is provided within the		≤ orbital period
			input orbit, so that the eclipse_exit will be less than the eclipse_entry if the ANX is in eclipse.		-1 if there is not eclipse
eclipse_exit	double	-	Seconds since ANX of eclipse exit. Note	s	≥ 0
			that the value is provided within the input orbit, so that the eclipse_exit will be less than the eclipse_entry if the ANX is in eclipse.		≤ orbital period
					-1 if there is not eclipse
sun_moon_entry	double	-	Seconds since ANX of Sun Occultation by Moon entry.	s	<-1 if no occultation is found
					≥ 0
					≤ orbital period
sun_moon_exit	double	-	Seconds since ANX of Sun Occultation by Moon exit	s	<-1 if no occultation is found
					≥ 0
					≤ orbital period
ierr	long*		Error status flags		

Note (Memory Management): Note that the sza_up and sza_down arrays are pointers instead of static arrays. The memory for these dynamic arrays is allocated within the **xv_orbit_extra** function. So the user

will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.13.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_orbit_extra** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_orbit_extra** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 45: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Wrong input orbit Id.	Computation not performed	XV_CFI_ORBIT_EXTR A_ORBIT_STATUS_ER R	0
ERR	Error allocating memory for SZA entry/exit times	Computation not performed	XV_CFI_ORBIT_EXTR A_MEM_ERR	1
ERR	Error computing SZA entry/exit times	Computation not performed	XV_CFI_ECLIPSE_XL_ EF_TO_QEF_ERR	2
ERR	Error computing eclipse entry/exit times	Computation not performed	XV_CFI_ORBIT_EXTR A_ECLIPSE_ERR	3
ERR	Error computing Sun occultation by Moon.	Computation not performed	XV_CFI_ORBIT_EXTR A_SUN_OCC_BY_MO ON_ERR	4

7.14 xv_time_segments_not

7.14.1 Overview

Note: this function is deprecated. Use xv timesegments compute not instead.

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as an orbit number and the seconds elapsed since the ascending node crossing.

The xv time segments not function computes the compliment of a list of orbital segments (see Figure 22)

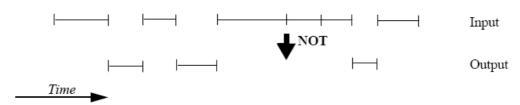


Figure 22: xv_time_segment_not_function

Note that the intervals from the first orbit to the first segment and from the last segment to the end of mission are not returned.

The input segments list need to be sorted according to the start time of the segments. If this list is not sorted, it should be indicated in the function interface with the corresponding parameter (see below). In this case the input list will be modified accordingly.

The time intervals used by **xv_time_segments_not** can be expressed in absolute or relative orbit numbers. This is valid for both:

- input parameter: first and last orbit to be considered. In case of using relative orbits, the corresponding cycle numbers should be used, otherwise, the cycle number will be a dummy parameter.
- output parameter: time segments with time expressed as {absolute orbit number (or relative orbit and cycle number), number of seconds since ANX, number of micro seconds}

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. Moreover, the segments will be ordered chronologically.

The xv_time_segments_not requires access to the following files to produce its results:

• the Orbit Scenario File: only if the orbits are expressed in relative numbers.

7.14.2 Calling sequence xv_time_segments_not

For C programs, the call to **xv** time segments not is (<u>input</u> parameters are <u>underlined</u>):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
      long
               orbit type, order switch,
               num segments in,
               *bgn orbit in, *bgn secs in,
               *bgn microsecs in, *bgn cycle in,
               *end orbit in, *end_secs_in,
               *end microsecs in, *end cycle in,
               num_segments_out,
               *bgn orbit out, *bgn secs out,
               *bgn microsecs out, *bgn cycle out,
               *end orbit out, *end secs out,
               *end microsecs out, *end cycle out,
               ierr[XV NUM ERR NOT], status;
      status = xv time segments not(
                        &orbit id,
                        &orbit type, &order switch,
                        &number segments in,
                        bgn orbit in, bgn secs in,
                        bgn microsecs in, bgn cycle in,
                        end orbit in, end secs in,
                        end microsecs in, end cycle in,
                        &num segments out,
                        &bgn orbit out, &bgn secs out,
                        &bgn microsecs out, &bgn cycle out,
                        &end_orbit_out, &end_secs_out,
                        &end microsecs out, &end cycle out,
                        ierr);
      /* Or, using the run id */
      long run id;
```


}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 189

```
status = xv_time_segments_not_run(
    &run_id,
    &orbit_type, &order_switch,
    &number_segments_in,
    bgn_orbit_in, bgn_secs_in,
    bgn_microsecs_in, bgn_cycle_in,
    end_orbit_in, end_secs_in,
    end_microsecs_in, end_cycle_in,
    &num_segments_out,
    &bgn_orbit_out, &bgn_secs_out,
    &bgn_microsecs_out, &bgn_cycle_out,
    &end_orbit_out, &end_secs_out,
    &end_orbit_out, &end_secs_out,
    iern);
```


7.14.3 Input parameters xv_time_segments_not

Table 46: Input parameters of xv_time_segments_not

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure that contains the orbit data	-	-
orbit_type	long	-	Define the type of orbit representation, i.e. absolute or relative orbits in the input/output parameters	-	Complete (see Table 3)
order_switch	long	-	Indicates if the input list is sorted by start times. If input segments are already sorted, the flag should be set to XV_TIME_ORDER to save computation time.	-	Complete (see Table 3)
num_segments_in	long	-	Number of segments in the input list.	-	>0
bgn_orbit_in	long*	all	Array of orbit numbers for the beginning of the segments	-	>0
bgn_secs_in	long*	all	Array of seconds elapsed since ANX for the beginning of the segments	-	>0 <nodal period<="" td=""></nodal>
bgn_microsecs_in	long*	all	Array of microseconds within a second for the beginning of the segments	-	>0 <999999
bgn_cycle_in	long*	all	Array of cycle numbers for the beginning of the segments. When using absolute orbits, a NULL pointer can be used.	-	>0 or NULL
end_orbit_in	long*	all	Array of orbit numbers for the end of the segments	-	>0
end_secs_in	long*	all	Array of seconds elapsed since ANX for the end of the segments	-	>0 <nodal period<="" td=""></nodal>
end_microsecs_in	long*	all	Array of seconds within a second for the end of the segments	-	>0 <999999
end_cycle_in	long*	all	Array of cycle numbers for the end of the segments. When using absolute orbits, a NULL pointer can be used.	-	>0 or NULL

7.14.4 Output parameters xv_time_segments_not

Table 47: Output parameters of xv_time_segments_not

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_time_segments_not	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
num_segments_out	long	-	Number of segments in the output list.	-	>0
bgn_orbit_out	long*	all	Array of orbit numbers for the beginning of the segments	-	>0
bgn_secs_out	long*	all	Array of seconds elapsed since ANX for the beginning of the segments	-	>0 <nodal period</nodal
bgn_microsecs_out	long*	all	Array of microseconds within a second for the beginning of the segments	-	>0 < 999999
bgn_cycle_out	long*	all	Array of cycle numbers for the beginning of the segments.	-	>0
end_orbit_out	long*	all	Array of orbit numbers for the end of the segments	-	>0
end_secs_out	long*	all	Array of seconds elapsed since ANX for the end of the segments	-	>0 <nodal period</nodal
end_microsecs_out	long*	all	Array of microseconds within a second for the end of the segments	-	>0 < 999999
end_cycle_out	long*	all	Array of cycle numbers for the end of the segments.	-	>0 or NULL
ierr[10]	long		Error status flags		

<u>Memory Management:</u> Note that the output visibility segments arrays are pointers to integers instead of static arrays. The memory for these dynamic arrays is allocated within the **xv_time_segments_not** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.14.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_time_segments_not** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_time_segments_not** CFI function by calling the function of the EO VISIBILITY software library **xv get code**.

Table 48: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error allocating internal memory.	Computation not performed	XV_CFI_TIME_SEGMENTS _ NOT_MEMORY_ERR	0
ERR	Error getting absolute orbit vector from relative orbits.	Computation not performed	XV_CFI_TIME_SEGMENTS _NOT_REL_TO_ABS_ORBI T_ERR	1
ERR	Error getting relative orbit vector from absolute orbits.	Computation not performed	XV_CFI_TIME_SEGMENTS _NOT_ABS_TO_REL_ORBI T_ERR	2
ERR	Error sorting input list.	Computation not performed	XV_CFI_TIME_SEGMENTS _ NOT_SORTING_ERR	3
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_TIME_SEGMENTS _NOT_GEO_SAT_ERR	4
WARN	Deprecated function. Use xv_timesegments_compute_not instead	Computation performed	XV_CFI_TIME_SEGMENTS _NOT_DEPRECATED_WA RN	5

7.15 xv_timesegments_compute_not

7.15.1 Overview

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as an orbit number and the seconds elapsed since the ascending node crossing.

The xv_timesegments_compute_not function computes the compliment of a list of orbital segments (see Figure 23)

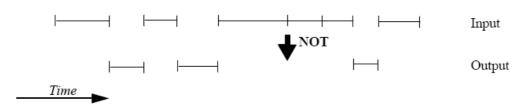


Figure 23: xv_timesegments_compute_not function

Note that the intervals from the first orbit to the first segment and from the last segment to the end of mission are not returned.

The input segments list need to be sorted according to the start time of the segments. If this list is not sorted, it should be indicated in the function interface with the corresponding parameter (see below). In this case the input list will be modified accordingly.

The time intervals (xv_time_interval) used by xv_timesegments_compute_not can be expressed as UTC times or orbit times (orbit plus seconds and microseconds since ascending node). This intervals express the start time/orbit and last time/orbit for the computations.

In case the time intervals are expressed as orbits, they can be expressed as absolute orbit numbers or in relative orbit and cycle numbers.

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. The output segments will contain UTC times and orbit times. Moreover, the segments will be ordered chronologically.

The xv_timesegments_compute_not requires access to the following files to produce its results:

• the Orbit Scenario File: only if the orbits are expressed in relative numbers.

7.15.2 Calling sequence xv_timesegments_compute_not

For C programs, the call to **xv_timesegments_compute_not** is (<u>input</u> parameters are <u>underlined</u>):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
      long
              order switch;
      xv_visibility interval_list seg_in;
      xv visibility interval list seg out;
      long ierr[XV NUM ERR COMPUTE NOT];
      long status;
      status = xv_timesegments_compute_not(
                        &orbit id, &order switch,
                        &seg in,
                        &seg_out, ierr);
      /* Or, using the run id */
      long run id;
      status = xv timesegments compute not(
                        &run_id, &<u>order_switch</u>,
                        &seg in,
                        &seg out, ierr);
```


7.15.3 Input parameters xv_timesegments_compute_not

Table 49: Input parameters of xv_timesegments_compute_not

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure that contains the orbit data	-	-
order_switch	long	-	Indicates if the input list is sorted by start times. If input segments are already sorted, the flag should be set to XV_TIME_ORDER to save computation time.	-	Complete (see Table 3)
seg_in	xv_visibility_i nterval_list	-	Input list of segments	-	-

7.15.4 Output parameters xv_timesegments_compute_not

Table 50: Output parameters of xv_timesegments_compute_not

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_timesegments_comput	long		Function status flag,		
e_not			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
seg_out	xv_visibil ity_interv al_list		Output list of segments	-	-
ierr[]	long		Error status flags		

<u>Memory Management:</u> Note that the memory for the output visibility segments arrays is allocated within the <u>xv_timesegments_compute_not</u> function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.15.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_timesegments_compute_not** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_timesegments_compute_not** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 51: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error allocating internal memory.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_ NOT_MEMORY_ERR	0
ERR	Error getting absolute orbit vector from relative orbits.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_NOT_REL_TO_ ABS_ORBIT_ERR	1
ERR	Error getting relative orbit vector from absolute orbits.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_NOT_ABS_TO_ REL_ORBIT_ERR	2
ERR	Error sorting input list.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_ NOT_SORTING_ERR	3
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_NOT_GEO_SA T_ERR	4
ERR	Error computing time to orbit parameters	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_NOT_TIME_TO _ORBIT_ERR	5
ERR	Error computing UTC time for orbit	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_NOT_GET_UT C_TIME_ERR	6

7.16 xv_time_segments_or

7.16.1 Overview

Note: this function is deprecated. Use **xv_timesegments_compute_or** instead.

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as an orbit number and the seconds elapsed since the ascending node crossing.

The xv time segments or function computes the union of a list of orbital segments (see Figure 24)

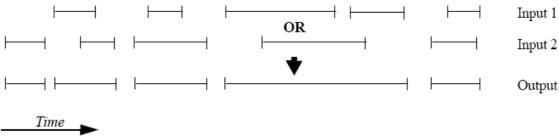


Figure 24: xv_time_segments_or_function

The input segments list need to be sorted according to the start time of the segments. If this list is not sorted, it should be indicated in the function interface with the corresponding parameter (see below). In this case the input list will be modified accordingly.

The time intervals used by **xv_time_segments_or** can be expressed in absolute or relative orbit numbers. This is valid for both:

- input parameter: first and last orbit to be considered. In case of using relative orbits, the corresponding cycle numbers should be used, otherwise, the cycle number will be a dummy parameter.
- output parameter: time segments with time expressed as {absolute orbit number (or relative orbit and cycle number), number of seconds since ANX, number of microseconds}

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. Moreover, the segments will be ordered chronologically.

The xv time segments or requires access to the following files to produce its results:

• the Orbit Scenario File: only if the orbits are expressed in relative numbers.

7.16.2 Calling sequence xv_time_segments_or

For C programs, the call to **xv** time segments or is (<u>input</u> parameters are <u>underlined</u>):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
      long
               orbit type, order switch,
               num segments 1,
               *bgn orbit 1, *bgn secs 1,
               *bgn microsecs_1, *bgn_cycle_1,
               *end orbit 1, *end_secs_1,
               *end microsecs 1, *end cycle 1,
               num segments 2,
               *bgn orbit 2, *bgn secs 2,
               *bgn microsecs 2, *bgn cycle 2,
               *end orbit 2, *end secs 2,
               *end microsecs 2, *end cycle 2,
               num segments out,
               *bgn_orbit_out, *bgn_secs_out,
               *bgn microsecs out, *bgn cycle out,
               *end orbit out, *end secs out,
               *end microsecs out, *end cycle out,
               ierr[XV NUM ERR OR], status;
      status = xv time segments or (
                         &orbit id,
                         &orbit type, &order switch,
                         &number segments 1,
                         bgn orbit 1, bgn second 1,
                         bgn microsec 1, bgn cycle 1,
                         end orbit 1, end second 1,
                         end microsec 1, end cycle 1,
                         &number segments 2,
                         bgn orbit 2, bgn second 2,
                         bgn microsec 2, bgn cycle 2,
                         end orbit 2, end second 2,
                         end microsec 2, end cycle 2,
                         &num segments out,
```


}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 200

```
&bgn_orbit_out, &bgn_secs_out,
&bgn_microsecs_out, &bgn_cycle_out,
&end_orbit_out, &end_secs_out,
&end_microsecs_out, &end_cycle_out,
ierr);
```

```
/* Or, using the run id */
long run id;
status = xv time segments or run (
                  &run id,
                  &orbit type, &order switch,
                  &number segments 1,
                  bgn orbit 1, bgn second 1,
                  bgn microsec 1, bgn cycle 1,
                  end orbit 1, end second 1,
                   end microsec 1, end cycle 1,
                  &number segments 2,
                  bgn orbit 2, bgn second 2,
                   bgn microsec 2, bgn cycle 2,
                  end orbit 2, end second 2,
                   end microsec 2, end cycle 2,
                  &num segments out,
                  &bgn orbit out, &bgn secs out,
                  &bgn microsecs_out, &bgn_cycle_out,
                  &end orbit out, &end secs out,
                  &end microsecs out, &end cycle out,
                  ierr);
```


7.16.3 Input parameters xv_time_segments_or

Table 52: Input parameters of xv_time_segments_or

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
orbit_type	long	-	Define the type of orbit representation, i.e. absolute or relative orbits in the input/output parameters	-	Complete (see Table 3)
order_switch	long	-	Indicates if the input list is sorted by start times. If input segments are already sorted, the flag should be set to XV_TIME_ORDER to save computation time.	-	Complete (see Table 3)
num_segments_1	long	-	Number of segments in the input list 1.	-	>0
bgn_orbit_1	long*	all	Array of orbit numbers for the beginning of the segments in list 1	-	>0
bgn_secs_1	long*	all	Array of seconds elapsed since ANX for the beginning of the segments in list 1	-	>0 <nodal period<="" td=""></nodal>
bgn_microsecs_1	long*	all	Array of microseconds within a second for the beginning of the segments in list 1	-	>0 <999999
bgn_cycle_1	long*	all	Array of cycle numbers for the beginning of the segments in list 1. When using absolute orbits, a NULL pointer can be used.	-	>0 or NULL
end_orbit_1	long*	all	Array of orbit numbers for the end of the segments in list 1	-	>0
end_secs_1	long*	all	Array of seconds elapsed since ANX for the end of the segments in list 1	-	>0 <nodal period<="" td=""></nodal>
end_microsecs_1	long*	all	Array of microseconds within a second for the end of the segments in list 1	-	>0 <999999
end_cycle_1	long*	all	Array of cycle numbers for the end of the segments in list 1. When using absolute orbits, a NULL pointer can be used.	-	>0 or NULL
num_segments_2	long	-	Number of segments in the input list 2.	-	>0

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 202

bgn_orbit_2	long*	all	Array of orbit numbers for the beginning of the segments in list 2	-	>0
bgn_secs_2	long*	all	Array of seconds elapsed since ANX for the beginning of the segments in list 2	-	>0 <nodal period<="" td=""></nodal>
bgn_microsecs_2	long*	all	Array of microseconds within a second for the beginning of the segments in list 2	-	>0 <999999
bgn_cycle_2	long*	all	Array of cycle numbers for the beginning of the segments in list 2. When using absolute orbits, a NULL pointer can be used.	-	>0 or NULL
end_orbit_2	long*	all	Array of orbit numbers for the end of the segments in list 2	-	>0
end_secs_2	long*	all	Array of seconds elapsed since ANX for the end of the segments in list 2	-	>0 <nodal period<="" td=""></nodal>
end_microsecs_2	long*	all	Array of microseconds within a second for the end of the segments in list 2	-	>0 <999999
end_cycle_2	long*	all	Array of cycle numbers for the end of the segments in list 2. When using absolute orbits, a NULL pointer can be used.	-	>0 or NULL

7.16.4 Output parameters xv_time_segments_or

Table 53: Output parameters of xv_time_segments_or

C name	C type	Array Element	Description	Unit (Format	Allowed Range
xv_time_segments_or	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
num_segments_out	long	-	Number of segments in the output list.	-	>0
bgn_orbit_out	long*	all	Array of orbit numbers for the beginning of the segments	-	>0
bgn_secs_out	long*	all	Array of seconds elapsed since ANX for	-	>0
			the beginning of the segments		<nodal period<="" td=""></nodal>
bgn_microsecs_out	long*	all	Array of microseconds within a second	-	>0
			for the beginning of the segments		<999999
bgn_cycle_out	long*	all	Array of cycle numbers for the beginning of the segments.	-	>0
end_orbit_out	long*	all	Array of orbit numbers for the end of the segments	-	>0
end_secs_out	long*	all	Array of seconds elapsed since ANX for	-	>0
			the end of the segments		<nodal period<="" td=""></nodal>
end_microsecs_out	long*	all	Array of microseconds within a second	-	>0
			for the end of the segments		<999999
end_cycle_out	long*	all	Array of cycle numbers for the end of the segments.	-	>0 or NULL
ierr[10]	long		Error status flags		

Memory Management: Note that the output visibility segments arrays are pointers to integers instead of static arrays. The memory for these dynamic arrays is allocated within the **xv_time_segments_or** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.16.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_time_segments_or** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_time_segments_or** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 54: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error allocating internal memory.	Computation not performed	XV_CFI_TIME_SEGMENTS _OR_MEMORY_ERR	0
ERR	Error getting absolute orbit vector from relative orbits.	Computation not performed	XV_CFI_TIME_SEGMENTS _OR_REL_TO_ABS_ORBIT _ERR	1
ERR	Error getting relative orbit vector from absolute orbits.	Computation not performed	XV_CFI_TIME_SEGMENTS _OR_ABS_TO_REL_ORBIT _ ERR	2
ERR	Error sorting input list.	Computation not performed	XV_CFI_TIME_SEGMENTS _OR_SORTING_ERR	3
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_TIME_SEGMENTS _OR_GEO_SAT_ERR	4
WARN	Deprecated function. Use xv_timesegments_compute_ or instead	Computation performed	XV_CFI_TIME_SEGMENTS _OR_DEPRECATED_WAR N	5

7.17 xv_timesegments_compute_or

7.17.1 Overview

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as an orbit number and the seconds elapsed since the ascending node crossing.

The xv_timesegments_compute_or function computes the union of a list of orbital segments (see Figure 25)

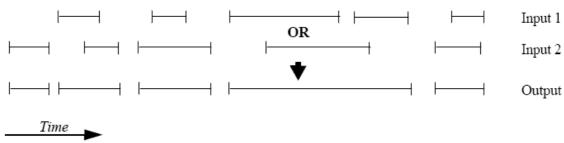


Figure 25: xv_timesegments_compute_or_function

The input segments list need to be sorted according to the start time of the segments. If this list is not sorted, it should be indicated in the function interface with the corresponding parameter (see below). In this case the input list will be modified accordingly.

The time intervals (xv_time_interval) used by xv_timesegments_compute_or can be expressed as UTC times or orbit times (orbit plus seconds and microseconds since ascending node). This intervals express the start time/orbit and last time/orbit for the computations.

In case the time intervals are expressed as orbits, they can be expressed as absolute orbit numbers or in relative orbit and cycle numbers.

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. The output segments will contain UTC times and orbit times. Moreover, the segments will be ordered chronologically.

The xv timesegments compute or requires access to the following files to produce its results:

• the Orbit Scenario File: only if the orbits are expressed in relative numbers.

}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 206

7.17.2 Calling sequence xv_timesegments_compute_or

For C programs, the call to xv_timesegments_compute_or is (<u>input</u> parameters are <u>underlined</u>):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
      long
              order switch;
      xv_visibility_interval_list_seg_in1, seg_in2;
      xv visibility interval list seg out;
      long ierr[XV NUM ERR COMPUTE NOT];
      long status;
      status = xv_timesegments_compute_not(
                         &orbit id, &order switch,
                         &seg in1, 6seg in2
                         &seg out, ierr);
      /* Or, using the run id */
      long run id;
      status = xv timesegments compute not(
                         &<u>run id</u>, &<u>order switch</u>,
                         &seg in1, &seg in2
                         &seg out, ierr);
```


 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 207

7.17.3 Input parameters xv_timesegments_compute_or

Table 55: Input parameters of xv_timesegments_compute_or

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
order_switch	long	-	Indicates if the input list is sorted by start times. If input segments are already sorted, the flag should be set to XV_TIME_ORDER to save computation time.	-	Complete (see Table 3)
seg_in1	xv_visibilit y_interval_ list	-	Input list of segments 1	-	-
seg_in2	xv_visibilit y_interval_ list	-	Input list of segments 2	-	-

7.17.4 Output parameters xv_timesegments_compute_or

Table 56: Output parameters of xv_timesegments_compute_or

C name	C type	Array Element	Description	Unit (Format	Allowed Range
xv_timesegments_comput	long		Function status flag,		
e_or			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
seg_out	xv_visibil ity_interv al_list		Output list of segments	-	-
ierr[]	long		Error status flags		

<u>Memory Management:</u> Note that the memory for the output visibility segments arrays is allocated within the <u>xv_timesegments_compute_or</u> function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.17.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_timesegments_compute_or** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_timesegments_compute_or** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 57: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error allocating internal memory.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_ OR_MEMORY_ERR	0
ERR	Error getting absolute orbit vector from relative orbits.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_OR_REL_TO_A BS_ORBIT_ ERR	
ERR	Error getting relative orbit vector from absolute orbits.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_OR_ABS_TO_ REL_ORBIT_ ERR	2
ERR	Error sorting input list.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_ OR_SORTING_ERR	3
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_OR_GEO_SAT _ERR	4
ERR	Wrong input time type	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_OR_TIME_TYP E_ERR	5
ERR	Error computing time to orbit parameters	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_OR_TIME_TO_ ORBIT_ERR	6
ERR	Error computing UTC time for orbit	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_OR_GET_UTC _TIME_ERR	7

7.18 xv_time_segments_and

7.18.1 Overview

Note: this function is deprecated. Use xv timesegments compute and instead.

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as an orbit number and the seconds elapsed since the ascending node crossing.

The xv time segments and function computes the intersection of a list of orbital segments (see Figure 26)

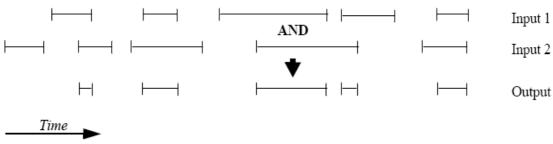


Figure 26: xv_time_segments_and_function

The input segments list need to be sorted according to the start time of the segments. If this list is not sorted, it should be indicated in the function interface with the corresponding parameter (see below). In this case the input list will be modified accordingly.

The time intervals used by **xv_time_segments_and** can be expressed in absolute or relative orbit numbers. This is valid for both:

- input parameter: first and last orbit to be considered. In case of using relative orbits, the corresponding cycle numbers should be used, otherwise, the cycle number will be a dummy parameter.
- output parameter: time segments with time expressed as {absolute orbit number (or relative orbit and cycle number), number of seconds since ANX, number of microseconds}

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. Moreover, the segments will be ordered chronologically.

The xv time segments and requires access to the following files to produce its results:

• the Orbit Scenario File: only if the orbits are expressed in relative numbers.

7.18.2 Calling sequence xv_time_segments_and

For C programs, the call to **xv** time segments and is (<u>input</u> parameters are <u>underlined</u>):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
      long
               orbit type, order switch,
               num segments 1,
               *bgn orbit 1, *bgn secs 1,
               *bgn microsecs_1, *bgn_cycle_1,
               *end orbit 1, *end_secs_1,
               *end microsecs 1, *end cycle 1,
               num segments 2,
               *bgn orbit 2, *bgn secs 2,
               *bgn microsecs 2, *bgn cycle 2,
               *end orbit 2, *end secs 2,
               *end microsecs 2, *end cycle 2,
               num segments out,
               *bgn_orbit_out, *bgn_secs_out,
               *bgn microsecs out, *bgn cycle out,
               *end orbit out, *end secs out,
               *end microsecs out, *end cycle out,
               ierr[XV NUM ERR AND], status;
      status = xv time segments and (
                        &orbit id,
                         &orbit type, &order switch,
                         &number segments 1,
                         bgn orbit 1, bgn second 1,
                         bgn microsec 1, bgn cycle 1,
                         end orbit 1, end second 1,
                         end microsec 1, end cycle 1,
                         &number segments 2,
                         bgn orbit 2, bgn second 2,
                         bgn microsec 2, bgn cycle 2,
                         end orbit 2, end second 2,
                         end microsec 2, end cycle 2,
                         &num segments out,
```


}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 212

```
&bgn_orbit_out, &bgn_secs_out,
&bgn_microsecs_out, &bgn_cycle_out,
&end_orbit_out, &end_secs_out,
&end_microsecs_out, &end_cycle_out,
ierr);
```

```
/* Or, using the run id */
long run id;
status = xv time segments and run (
                  & run id,
                  &orbit type, &order switch,
                  &number segments 1,
                  bgn orbit 1, bgn second 1,
                  bgn microsec 1, bgn cycle 1,
                  end orbit 1, end second 1,
                   end microsec 1, end cycle 1,
                  &number segments 2,
                  bgn orbit 2, bgn second 2,
                  bgn microsec 2, bgn cycle 2,
                   end orbit 2, end second 2,
                   end microsec 2, end cycle 2,
                  &num segments out,
                  &bgn_orbit_out, &bgn_secs_out,
                   &bgn microsecs out, &bgn cycle out,
                  &end orbit out, &end secs out,
                   &end microsecs out, &end cycle out,
                   ierr);
```


7.18.3 Input parameters xv_time_segments_and

Table 58: Input parameters of xv_time_segments_and

C name	C type	Array Elemen t	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
orbit_type	long	-	Define the type of orbit representation, i.e. absolute or relative orbits in the input/output parameters	-	Complete (see Table 3)
order_switch	long	-	Indicates if the input list is sorted by start times. If input segments are already sorted, the flag should be set to XV_TIME_ORDER to save computation time.	-	Complete (see Table 3)
num_segments_1	long	-	Number of segments in the input list 1.	-	>0
bgn_orbit_1	long*	all	Array of orbit numbers for the beginning of the segments in list 1	-	>0
bgn_secs_1	long*	all	Array of seconds elapsed since ANX for the beginning of the segments in list 1	-	>0 <nodal period<="" td=""></nodal>
bgn_microsecs_1	long*	all	Array of microseconds within a second for the beginning of the segments in list 1	-	>0 <999999
bgn_cycle_1	long*	all	Array of cycle numbers for the beginning of the segments in list 1. When using absolute orbits, a NULL pointer can be used.	-	>0 or NULL
end_orbit_1	long*	all	Array of orbit numbers for the end of the segments in list 1	-	>0
end_secs_1	long*	all	Array of seconds elapsed since ANX for the end of the segments in list 1	-	>0 <nodal period<="" td=""></nodal>
end_microsecs_1	long*	all	Array of microseconds within a second for the end of the segments in list 1	-	>0 <999999
end_cycle_1	long*	all	Array of cycle numbers for the end of the segments in list 1. When using absolute orbits, a NULL pointer can be used.	-	>0 or NULL
num_segments_2	long	-	Number of segments in the input list 2.	-	>0

bgn_orbit_2	long*	all	Array of orbit numbers for the beginning of the segments in list 2	-	>0
bgn_secs_2	long*	all	Array of seconds elapsed since ANX for the beginning of the segments in list 2	-	>0 <nodal period<="" td=""></nodal>
bgn_microsecs_2	long*	all	Array of microseconds within a second for the beginning of the segments in list 2	-	>0 <999999
bgn_cycle_2	long*	all	Array of cycle numbers for the beginning of the segments in list 2. When using absolute orbits, a NULL pointer can be used.	-	>0 or NULL
end_orbit_2	long*	all	Array of orbit numbers for the end of the segments in list 2	-	>0
end_secs_2	long*	all	Array of seconds elapsed since ANX for the end of the segments in list 2	-	>0 <nodal period<="" td=""></nodal>
end_microsecs_2	long*	all	Array of microseconds within a second for the end of the segments in list 2	-	>0 <999999
end_cycle_2	long*	all	Array of cycle numbers for the end of the segments in list 2. When using absolute orbits, a NULL pointer can be used.	-	>0 or NULL

7.18.4 Output parameters xv_time_segments_and

Table 59: Output parameters of xv_time_segments_and

C name	C type	Array Element	Description	Unit (Format	Allowed Range
xv_time_segments_and	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
num_segments_out	long	-	Number of segments in the output list.	-	>0
bgn_orbit_out	long*	all	Array of orbit numbers for the beginning of the segments	-	>0
bgn_secs_out	long*	all	Array of seconds elapsed since ANX for	-	>0
			the beginning of the segments		<nodal period<="" td=""></nodal>
bgn_microsecs_out	long*	all	Array of microseconds within a second	-	>0
			for the beginning of the segments		<999999
bgn_cycle_out	long*	all	Array of cycle numbers for the beginning of the segments.	-	>0
end_orbit_out	long*	all	Array of orbit numbers for the end of the segments	-	>0
end_secs_out	long*	all	Array of seconds elapsed since ANX for	-	>0
			the end of the segments		<nodal period<="" td=""></nodal>
end_microsecs_out	long*	all	Array of microseconds within a second	-	>0
			for the end of the segments		<999999
end_cycle_out	long*	all	Array of cycle numbers for the end of the segments.	-	>0 or NULL
ierr[10]	long		Error status flags		

<u>Memory Management:</u> Note that the output visibility segments arrays are pointers to integers instead of static arrays. The memory for these dynamic arrays is allocated within the **xv_time_segments_and** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.18.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_time_segments_and** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_time_segments_and** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 60: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error allocating internal memory.	Computation not performed	XV_CFI_TIME_SEGMENTS _AND_MEMORY_ERR	0
ERR	Error getting absolute orbit vector from relative orbits.	Computation not performed	XV_CFI_TIME_SEGMENTS _AND_REL_TO_ABS_ORBI T_ERR	1
ERR	Error getting relative orbit vector from absolute orbits.	Computation not performed	XV_CFI_TIME_SEGMENTS _AND_ABS_TO_REL_ORBI T_ERR	2
ERR	Error sorting input list.	Computation not performed	XV_CFI_TIME_SEGMENTS _AND_SORTING_ERR	3
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_TIME_SEGMENTS _AND_GEO_SAT_ERR	4
WARN	Deprecated function. Use xv_timesegments_compute_ and instead	Computation performed	XV_CFI_TIME_SEGMENTS _AND_DEPRECATED_WA RN	5

7.19 xv_timesegments_compute_and

7.19.1 Overview

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as an orbit number and the seconds elapsed since the ascending node crossing.

The xv_timesegments_compute_and function computes the intersection of a list of orbital segments (see Figure 27)

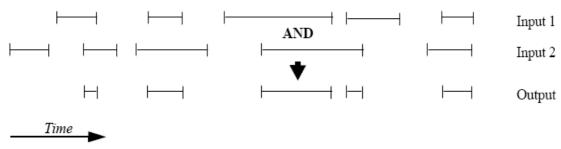


Figure 27: xv_timesegments_compute_and_function

The input segments list need to be sorted according to the start time of the segments. If this list is not sorted, it should be indicated in the function interface with the corresponding parameter (see below). In this case the input list will be modified accordingly.

The time intervals (xv_time_interval) used by xv_timesegments_compute_and can be expressed as UTC times or orbit times (orbit plus seconds and microseconds since ascending node). This intervals express the start time/orbit and last time/orbit for the computations.

In case the time intervals are expressed as orbits, they can be expressed as absolute orbit numbers or in relative orbit and cycle numbers.

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. The output segments will contain UTC times and orbit times. Moreover, the segments will be ordered chronologically.

The xv timesegments compute and requires access to the following files to produce its results:

• the Orbit Scenario File: only if the orbits are expressed in relative numbers.

}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 218

7.19.2 Calling sequence xv_timesegments_compute_and

For C programs, the call to xv_timesegments_compute_and is (<u>input</u> parameters are <u>underlined</u>):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
      long
              order switch;
      xv_visibility_interval_list_seg_in1, seg_in2;
      xv visibility interval list seg out;
      long ierr[XV NUM ERR COMPUTE AND];
      long status;
      status = xv_timesegments_compute_and(
                         &orbit id, &order switch,
                         &seg in1, &seg in2,
                         &seg out, ierr);
      /* Or, using the run id */
      long run id;
      status = xv timesegments compute and(
                         &<u>run id</u>, &<u>order switch</u>,
                         &seg in1, &seg in2,
                         &seg out, ierr);
```


7.19.3 Input parameters xv_timesegments_compute_and

Table 61: Input parameters of xv_timesegments_compute_and

C name	C type	Array Elemen t	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
order_switch	long	-	Indicates if the input list is sorted by start times. If input segments are already sorted, the flag should be set to XV_TIME_ORDER to save computation time.	-	Complete (see Table 3)
seg_in1	xv_visibilit y_interval_ list	-	Input list of segments 1	-	-
seg_in2	xv_visibilit y_interval_ list	-	Input list of segments 2	-	-

7.19.4 Output parameters xv_timesegments_compute_and

Table 62: Output parameters of xv_timesegments_compute_and

C name	C type	Array Element	Description	Unit (Format	Allowed Range
xv_timesegments_compu	long		Function status flag,		
te_and			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
seg_out	xv_visibil ity_interv al_list		Output list of segments	-	-
ierr[]	long		Error status flags		

<u>Memory Management:</u> Note that the memory for the output visibility segments arrays is allocated within the **xv_timesegments_compute_and** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.19.5 Warnings and errors

Next table lists the possible error messages that can be returned by the xv_timesegments_compute_and CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library xv_get_msg.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_timesegments_compute_and** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 63: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error allocating internal memory.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_ AND_MEMORY_ERR	0
ERR	Error getting absolute orbit vector from relative orbits.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_AND_REL_TO_ ABS_ORBIT_ERR	1
ERR	Error getting relative orbit vector from absolute orbits.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_AND_ABS_TO_ REL_ORBIT_ERR	2
ERR	Error sorting input list.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_ AND_SORTING_ERR	3
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_AND_GEO_SA T_ERR	4
ERR	Wrong input time type	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_AND_TIME_TY PE_ERR	5
ERR	Error computing time to orbit parameters	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_AND_TIME_TO _ORBIT_ERR	6
ERR	Error computing UTC time for orbit	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_AND_GET_UT C_TIME_ERR	7

7.20 xv_time_segments_sort

7.20.1 Overview

Note: this function is deprecated. Use xv timesegments compute sort instead.

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as an orbit number and the seconds elapsed since the ascending node crossing.

The xv time segments sort function sorts a list of orbital segments following two different criteria:

- Absolute orbits: the segments are sorted by their start time
- Relative orbits

The time intervals used by **xv_time_segments_sort** can be expressed in absolute or relative orbit numbers. This is valid for both:

- input parameter: first and last orbit to be considered. In case of using relative orbits, the corresponding cycle numbers should be used, otherwise, the cycle number will be a dummy parameter.
- output parameter: time segments with time expressed as {absolute orbit number (or relative orbit and cycle number), number of seconds since ANX, number of microseconds}

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. Note that the sort criteria does not have any relation with the chosen orbit representation. The following example clarifies this:

Input orbits: 6, 8, 4, 5, 9, 3 (absolute)

Let's suppose that the cycle length is 4 orbits. Then the relative orbits are:

input orbits: 2, 4, 4, 1, 1, 3 (relative)

When ordering this array, we have the following possibilities (Table 64) depending on the orbit representation and the sort criteria chosen:

Table 64: xv_time_segments_sort function

Input	Sort Criteria	Output
	absolute orbits	absolute orbits
absolute orbits		3, 4, 5, 6, 8, 9
6, 8, 4, 5, 9, 3	relative orbits	absolute orbits
		5, 9, 6, 3, 4, 8
	absolute orbits	relative orbits
relative orbits		3, 4, 1, 2, 4, 1
2, 4, 4, 1, 1, 3	relative orbits	relative orbits
		1, 1, 2, 3, 4, 4

The xv time segments sort requires access the following files to produce its results:

• the Orbit Scenario File: only if the orbits are expressed in relative numbers.

7.20.2 Calling sequence xv_time_segments_sort

For C programs, the call to **xv_time_segments_sort** is (<u>input</u> parameters are <u>underlined</u>):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
               orbit_type, sort criteria,
               num segments,
                *bgn orbit, *bgn secs,
                *bgn microsecs, *bgn_cycle,
                *end orbit, *end secs,
                *end microsecs, *end cycle,
                ierr, status;
      status = xv time segments sort (
                          &orbit id,
                         &orbit type, &sort criteria,
                         &<u>number_segments</u>,
                         bgn orbit, bgn second,
                         bgn microsec, bgn cycle,
                         end orbit, end second,
                          end microsec, end cycle,
                         ierr);
      /* Or, using the run id */
      long run id;
      status = xv time segments sort run (
                          & run id,
                         &orbit type, &sort criteria,
                         &<u>number segments</u>,
                          bgn orbit, bgn second,
                          bgn microsec, bgn cycle,
                          end orbit, end second,
                          end microsec, end cycle,
                          ierr);
```

}

7.20.3 Input parameters xv_time_segments_sort

Table 65: Input parameters of xv_time_segments_sort

C name	C type	Array Elemen t	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
orbit_type	long	-	Define the type of orbit representation, i.e. absolute or relative orbits in the input/output parameters	-	Complete (see Table 3)
sort_criteria	long	-	sorting criteria to be used: absolute or relative orbits	-	Complete (see Table 3)
num_segments	long	-	Number of segments in the input.	-	>0
bgn_orbit	long*	all	Array of orbit numbers for the beginning of the segments	-	>0
bgn_secs	long*	all	Array of seconds elapsed since ANX for the beginning of the segments	-	>0 <nodal period<="" td=""></nodal>
bgn_microsecs	long*	all	Array of microseconds within a second for the beginning of the segments	-	>0 <999999
bgn_cycle	long*	all	Array of cycle numbers for the beginning of the segments. When using absolute orbits, a NULL pointer can be used.	-	>0 or NULL
end_orbit	long*	all	Array of orbit numbers for the end of the segments	-	>0
end_secs	long*	all	Array of seconds elapsed since ANX for the end of the segments	-	>0 <nodal period<="" td=""></nodal>
end_microsecs	long*	all	Array of microseconds within a second for the end of the segments.	-	>0 <999999
end_cycle	long*	all	Array of cycle numbers for the end of the segments. When using absolute orbits, a NULL pointer can be used.	-	>0 or NULL

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 225

7.20.4 Output parameters xv_time_segments_sort

Table 66: Output parameters of xv_time_segments_sort

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_time_segments_and	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
ierr[10]	long		Error status flags		

7.20.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_time_segments_sort** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_time_segments_sort** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 67: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error allocating internal memory.	Computation not performed	XV_CFI_TIME_SEGMENTS _SORT_MEMORY_ERR	0
ERR	Error getting absolute orbit vector from relative orbits.	Computation not performed	XV_CFI_TIME_SEGMENTS _SORT_CHANGING_ORBI T_ ERR	1
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_TIME_SEGMENTS _SORT_GEO_SAT_ERR	2
WARN	Deprecated function. Use xv_timesegments_compute_sort instead	Computation performed	XV_CFI_TIME_SEGMENTS _SORT_DEPRECATED_WA RN	

7.21 xv_timesegments_compute_sort

7.21.1 Overview

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as an orbit number and the seconds elapsed since the ascending node crossing.

The xv_timesegments_compute_sort function sorts a list of orbital segments following two different criteria:

- Absolute orbits: the segments are sorted by their start time
- Relative orbits

The time intervals (xv_time_interval) used by xv_timesegments_compute_and can be expressed as UTC times or orbit times (orbit plus seconds and microseconds since ascending node). This intervals express the start time/orbit and last time/orbit for the computations.

In case the time intervals are expressed as orbits, they can be expressed as absolute orbit numbers or in relative orbit and cycle numbers.

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. The output segments will contain UTC times and orbit times.

Note that the sort criteria does not have any relation with the chosen orbit representation. The following example clarifies this:

Input orbits: 6, 8, 4, 5, 9, 3 (absolute)

Let's suppose that the cycle length is 4 orbits. Then the relative orbits are:

input orbits: 2, 4, 4, 1, 1, 3 (relative)

When ordering this array, we have the following possibilities (Table 68) depending on the orbit representation and the sort criteria chosen:

Table 68: xv_timesegments_compute_sort function

Input	Sort Criteria	Output
	absolute orbits	absolute orbits
absolute orbits		3, 4, 5, 6, 8, 9
6, 8, 4, 5, 9, 3	relative orbits	absolute orbits
		5, 9, 6, 3, 4, 8
	absolute orbits	relative orbits
relative orbits		3, 4, 1, 2, 4, 1
2, 4, 4, 1, 1, 3	relative orbits	relative orbits
		1, 1, 2, 3, 4, 4

The xv timesegments compute sort requires access the following files to produce its results:

• the Orbit Scenario File: only if the orbits are expressed in relative numbers.

7.21.2 Calling sequence xv_timesegments_compute_sort

For C programs, the call to **xv timesegments compute sort** is (<u>input</u> parameters are <u>underlined</u>):

7.21.3 Input parameters xv_timesegments_compute_sort

Table 69: Input parameters of xv_timesegments_compute_sort

C name	C type	Array Elemen t	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
sort_criteria	long	-	sorting criteria to be used: absolute or relative orbits	-	Complete (see Table 3)
seg_in	xv_visibilit y_interval_ list	-	Input list of segments	-	-

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 230

7.21.4 Output parameters xv_timesegments_compute_sort

Table 70: Output parameters of xv_timesegments_compute_sort

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_time_segments_sort	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
ierr[]	long		Error status flags		

7.21.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_timesegments_compute_sort** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_timesegments_compute_sort** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 71: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error allocating internal memory.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_ SORT_MEMORY_ERR	0
ERR	Error getting absolute orbit vector from relative orbits.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_SORT_CHANGI NG_ORBIT_ERR	1
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_SORT_GEO_S AT_ERR	2
ERR	Wrong input time type	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_SORT_TIME_T YPE_ERR	3
ERR	Error computing time to orbit parameters	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_SORT_TIME_T O_ORBIT_ERR	4
ERR	Error computing UTC time for orbit	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_SORT_GET_U TC_TIME_ERR	5

7.22 xv_time_segments_merge

7.22.1 Overview

Note: this function is deprecated. Use xv timesegments compute merge instead.

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as an orbit number and the seconds elapsed since the ascending node crossing.

The xv time segments merge function merges all the overlapped segments within a list (see Figure 28)

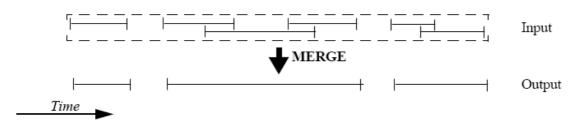


Figure 28: xv_time_segments_merge function

The input segments list need to be sorted according to the start time of the segments. If this list is not sorted, it should be indicated in the function interface with the corresponding parameter (see below). In this case the input list will be modified accordingly.

The time intervals used by **xv_time_segments_merge** can be expressed in absolute or relative orbit numbers. This is valid for both:

- input parameter: first and last orbit to be considered. In case of using relative orbits, the corresponding cycle numbers should be used, otherwise, the cycle number will be a dummy parameter.
- output parameter: time segments with time expressed as {absolute orbit number (or relative orbit and cycle number), number of seconds since ANX, number of microseconds}

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. Moreover, the segments will be ordered chronologically.

The xv time segments merge requires access to the following files to produce its results:

• the Orbit Scenario File: only if the orbits are expressed in relative numbers.

7.22.2 Calling sequence xv_time_segments_merge

For C programs, the call to xv time segments merge is (input parameters are underlined):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
      long
               orbit type, order switch,
               num segments,
               *bgn orbit, *bgn secs,
               *bgn microsecs, *bgn cycle,
               *end orbit, *end secs,
               *end microsecs, *end cycle,
               num segments out,
               *bgn orbit out, *bgn secs out,
               *bgn microsecs out, *bgn cycle out,
               *end orbit out, *end secs out,
               *end microsecs out, *end cycle out,
               ierr[XV NUM ERR MERGE], status;
      status = xv time segments merge(
                        &orbit id,
                        &orbit type, &order switch,
                        &number segments,
                        bgn orbit, bgn secs,
                        bgn microsecs, bgn cycle,
                        end orbit, end secs,
                        end microsecs, end cycle,
                        &num segments out,
                        &bgn orbit out, &bgn secs out,
                        &bgn microsecs out, &bgn cycle out,
                        &end_orbit_out, &end_secs_out,
                        &end microsecs out, &end cycle out,
                        ierr);
      /* Or, using the run id */
      long run id;
      status = xv time segments merge run(
```


&run_id,
&orbit_type, &order_switch,
&number_segments,
bgn_orbit, bgn_secs,
bgn_microsecs, bgn_cycle,
end_orbit, end_secs,
end_microsecs, end_cycle,
&num_segments_out,
&bgn_orbit_out, &bgn_secs_out,
&bgn_microsecs_out, &bgn_cycle_out,
&end_orbit_out, &end_secs_out,
&end_orbit_out, &end_secs_out,
ierr);

}

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 235

7.22.3 Input parameters xv_time_segments_merge

Table 72: Input parameters of xv_time_segments_merge

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
orbit_type	long	-	Define the type of orbit representation, i.e. absolute or relative orbits in the input/output parameters	-	Complete (see Table 3)
order_switch	long	-	Indicates if the input list is sorted by start times. If input segments are already sorted, the flag should be set to XV_TIME_ORDER to save computation time.	-	Complete (see Table 3)
num_segments_in	long	-	Number of segments in the input list.	-	>0
bgn_orbit	long*	all	Array of orbit numbers for the beginning of the segments	-	>0
bgn_secs	long*	all	Array of seconds elapsed since ANX for the beginning of the segments	-	>0 <nodal period<="" td=""></nodal>
bgn_microsecs	long*	all	Array of microseconds within a second for the beginning of the segments	-	>0 <999999
bgn_cycle	long*	all	Array of cycle numbers for the beginning of the segments. When using absolute orbits, a NULL pointer can be used.	-	>0 or NULL
end_orbit	long*	all	Array of orbit numbers for the end of the segments	-	>0
end_secs	long*	all	Array of seconds elapsed since ANX for the end of the segments	-	>0 <nodal period<="" td=""></nodal>
end_microsecs	long*	all	Array of microseconds within a second for the end of the segments	-	>0 <999999
end_cycle	long*	all	Array of cycle numbers for the end of the segments. When using absolute orbits, a NULL pointer can be used.	-	>0 or NULL

7.22.4 Output parameters xv_time_segments_merge

Table 73: Output parameters of xv_time_segments_merge

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_time_segments_merge	long		Function status flag,		
			= 0 No error		
			> 0Warnings, results generated		
			< 0Error, no results generated		
num_segments_out	long	-	Number of segments in the output list.	-	>0
bgn_orbit_out	long*	all	Array of orbit numbers for the beginning of the segments	-	>0
bgn_secs_out	long*	all	Array of seconds elapsed since ANX for the beginning of the segments	-	>0 <nodal period</nodal
bgn_microsecs_out	long*	all	Array of microseconds within a second for the beginning of the segments	-	>0 <999999
bgn_cycle_out	long*	all	Array of cycle numbers for the beginning of the segments.	-	>0
end_orbit_out	long*	all	Array of orbit numbers for the end of the segments	-	>0
end_secs_out	long*	all	Array of seconds elapsed since ANX for the end of the segments	-	>0 <nodal period</nodal
end_microsecs_out	long*	all	Array of microseconds within a second for the end of the segments	-	>0 <999999
end_cycle_out	long*	all	Array of cycle numbers for the end of the segments.	-	>0 or NULL
ierr[10]	long		Error status flags		

Memory Management: Note that the output visibility segments arrays are pointers to integers instead of static arrays. The memory for these dynamic arrays is allocated within the **xv_time_segments_merge** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.22.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_time_segments_merge** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_time_segments_merge** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 74: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error allocating internal memory.	Computation not performed	XV_CFI_TIME_SEGMENTS _ MERGE_MEMORY_ERR	0
ERR	Error getting absolute orbit vector from relative orbits.	Computation not performed	XV_CFI_TIME_SEGMENTS _MERGE_REL_TO_ABS_O R BIT_ERR	1
ERR	Error getting relative orbit vector from absolute orbits.	Computation not performed	XV_CFI_TIME_SEGMENTS _MERGE_ABS_TO_REL_O R BIT_ERR	2
ERR	Error sorting input list.	Computation not performed	XV_CFI_TIME_SEGMENTS _ MERGE_SORTING_ERR	3
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_TIME_SEGMENTS _MERGE_GEO_SAT_ERR	4
WARN	Deprecated function. Use xv_timesegments_compute_merge instead	Computation performed	XV_CFI_TIME_SEGMENTS _MERGE_DEPRECATED_ WARN	5

7.23 xv_timesegments_compute_merge

7.23.1 Overview

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as an orbit number and the seconds elapsed since the ascending node crossing.

The xv_timesegments_compute_merge function merges all the overlapped segments within a list (see Figure 29)

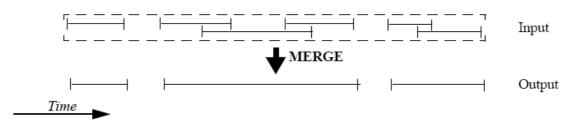


Figure 29: xv_timesegments_compute_merge function

The input segments list need to be sorted according to the start time of the segments. If this list is not sorted, it should be indicated in the function interface with the corresponding parameter (see below). In this case the input list will be modified accordingly.

The time intervals (xv_time_interval) used by xv_timesegments_compute_and can be expressed as UTC times or orbit times (orbit plus seconds and microseconds since ascending node). This intervals express the start time/orbit and last time/orbit for the computations.

In case the time intervals are expressed as orbits, they can be expressed as absolute orbit numbers or in relative orbit and cycle numbers.

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. The output segments will contain UTC times and orbit times. Moreover, the segments will be ordered chronologically.

The xv timesegments compute merge requires access to the following files to produce its results:

• the Orbit Scenario File: only if the orbits are expressed in relative numbers.

}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 239

7.23.2 Calling sequence xv_timesegments_compute_merge

For C programs, the call to xv_timesegments_compute_merge is (<u>input</u> parameters are <u>underlined</u>):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
      long
              order switch;
      xv_visibility_interval_list_seg_in1, seg_in2;
      xv visibility interval list seg out;
      long ierr[XV NUM ERR COMPUTE MERGE];
      long status;
      status = xv timesegments compute merge(
                        &orbit id, &order switch,
                        &seg in,
                        &seg out, ierr);
      /* Or, using the run id */
      long run id;
      status = xv timesegments compute merge(
                        &run id, &order switch,
                        &seg in,
                        &seg out, ierr);
```


7.23.3 Input parameters xv_timesegments_compute_merge

Table 75: Input parameters of xv_timesegments_compute_merge

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
order_switch	long	-	Indicates if the input list is sorted by start times. If input segments are already sorted, the flag should be set to XV_TIME_ORDER to save computation time.	-	Complete (see Table 3)
seg_in	xv_visibilit y_interval_ list	-	Input list of segments	-	-

7.23.4 Output parameters xv_timesegments_compute_merge

Table 76: Output parameters of xv_timesegments_compute_merge

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_timesegments_comput	long		Function status flag,		
e_merge			= 0 No error		
			> 0Warnings, results generated		
			< 0Error, no results generated		
seg_out	xv_visibil ity_interv al_list		Output list of segments	-	-
ierr[]	long		Error status flags		

<u>Memory Management:</u> Note that the memory for the output visibility segments arrays is allocated within the **xv_timesegments_compute_merge** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.23.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_timesegments_compute_merge** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_timesegments_compute_merge** CFI function by calling the function of the EO VISIBILITY software library **xv get code**.

Table 77: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error allocating internal memory.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_ MERGE_MEMORY_ERR	0
ERR	Error getting absolute orbit vector from relative orbits.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MERGE_REL_ TO_ABS_OR BIT_ERR	1
ERR	Error getting relative orbit vector from absolute orbits.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MERGE_ABS_ TO_REL_OR BIT_ERR	2
ERR	Error sorting input list.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_ MERGE_SORTING_ERR	3
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MERGE_GEO_ SAT_ERR	4
ERR	Wrong input time type	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MERGE_TIME_ TYPE_ERR	5
ERR	Error computing time to orbit parameters	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MERGE_TIME_ TO_ORBIT_ERR	6
ERR	Error computing UTC time for orbit	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MERGE_GET_ UTC_TIME_ERR	7

7.24 xv_time_segments_delta

7.24.1 Overview

Note: this function is deprecated. Use xv timesegments compute delta instead.

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as an orbit number and the seconds elapsed since the ascending node crossing.

The xv_time_segments_delta function makes all the segments within a list, longer or shorter. After increasing/decreasing the longitude of the segments, these are sorted and merged to avoid possible overlapping. Therefore, at the end the list is sorted and without overlapped segments.

The time intervals used by **xv_time_segments_delta** can be expressed in absolute or relative orbit numbers. This is valid for both:

- input parameter: first and last orbit to be considered. In case of using relative orbits, the corresponding cycle numbers should be used, otherwise, the cycle number will be a dummy parameter.
- output parameter: time segments with time expressed as {absolute orbit number (or relative orbit and cycle number), number of seconds since ANX, number of microseconds}

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits.

The xv time segments delta requires access to the following files to produce its results:

• the Orbit Scenario File: only if the orbits are expressed in relative numbers.

7.24.2 Calling sequence xv_time_segments_delta

For C programs, the call to xv time segments delta is (input parameters are underlined):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
               orbit_type,
      long
               num segments,
               *bgn orbit, *bgn secs,
               *bgn microsecs, *bgn_cycle,
               *end orbit, *end secs,
               *end microsecs, *end cycle,
               num segments out,
               *bgn_orbit_out, *bgn_secs_out,
               *bgn_microsecs_out, *bgn_cycle_out,
               *end orbit out, *end secs out,
               *end microsecs out, *end cycle out,
               ierr[XV NUM ERR DELTA], status;
       double entry offset, exit offset;
      status = xv time segments delta(
                        &orbit id,
                        &orbit type,
                        &entry offset, &exit offset,
                        &number segments,
                        bgn orbit, bgn secs,
                        bgn microsecs, bgn cycle,
                        end orbit, end secs,
                        end microsecs, end cycle,
                        &num segments out,
                        &bgn orbit out, &bgn secs out,
                        &bgn microsecs out, &bgn cycle out,
                        &end orbit out, &end secs out,
                        &end microsecs out, &end cycle out,
                        ierr);
      /* Or, using the run id */
      long run id;
```


}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 245

7.24.3 Input parameters xv_time_segments_delta

Table 78: Input parameters of xv_time_segments_delta

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
orbit_type	long	-	Define the type of orbit representation, i.e. absolute or relative orbits in the input/output parameters	-	Complete (see Table 3)
entry_offset	double		Number of seconds to add/ subtract at the beginning of every segments.	seconds	-
			If entry_offset > 0, the entry_offset is added at the beginning of the segments making them shorter.		
exit_offset	double		Number of seconds to add/ subtract at the end of every segments.	seconds	-
			If exit_offset > 0 the exit_offset is added at the end of the segments making them longer.		
num_segments_in	long	-	Number of segments in the input list.	-	>0
bgn_orbit	long*	all	Array of orbit numbers for the beginning of the segments	-	>0
bgn_secs	long*	all	Array of seconds elapsed since ANX for the beginning of the segments	-	>0 <nodal period<="" td=""></nodal>
bgn_microsecs	long*	all	Array of microseconds within a second for the beginning of the segments	-	>0 <999999
bgn_cycle	long*	all	Array of cycle numbers for the beginning of the segments. When using absolute orbits, a NULL pointer can be used.	-	>0 or NULL
end_orbit	long*	all	Array of orbit numbers for the end of the segments	-	>0
end_secs	long*	all	Array of seconds elapsed since ANX for the end of the segments	-	>0 <nodal period<="" td=""></nodal>
end_microsecs	long*	all	Array of microseconds within a second for the end of the segments	-	>0 <999999
end_cycle	long*	all	Array of cycle numbers for the end of the segments. When using absolute orbits, a NULL pointer can be used.	-	>0 or NULL

7.24.4 Output parameters xv_time_segments_delta

Table 79: Output parameters of xv_time_segments_delta

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_time_segments_del ta	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
num_segments_out	long	-	Number of segments in the output list.	-	>0
bgn_orbit_out	long*	all	Array of orbit numbers for the beginning of the segments	-	>0
bgn_secs_out	long*	all	Array of seconds elapsed since ANX for the beginning of the segments	-	>0 <nodal period</nodal
bgn_microsecs_out	long*	all	Array of microseconds within a second for the beginning of the segments	-	>0 <999999
bgn_cycle_out	long*	all	Array of cycle numbers for the beginning of the segments.	-	>0
end_orbit_out	long*	all	Array of orbit numbers for the end of the segments	-	>0
end_secs_out	long*	all	Array of seconds elapsed since ANX for the end of the segments	-	>0 <nodal period</nodal
end_microsecs_out	long*	all	Array of microseconds within a second for the end of the segments	-	>0 <999999
end_cycle_out	long*	all	Array of cycle numbers for the end of the segments.	-	>0 or NULL
ierr[10]	long		Error status flags		

<u>Memory Management:</u> Note that the output visibility segments arrays are pointers to integers instead of static arrays. The memory for these dynamic arrays is allocated within the **xv_time_segments_delta** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.24.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_time_segments_delta** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_time_segments_delta** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 80: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error allocating internal memory	Computation not performed	XV_CFI_TIME_SEGMENTS _ DELTA_MEMORY_ERR	0
ERR	Error getting absolute orbit vector from relative orbits	Computation not performed	XV_CFI_TIME_SEGMENTS _DELTA_REL_TO_ABS_ER R	1
ERR	Error getting relative orbit vector from absolute orbits	Computation not performed	XV_CFI_TIME_SEGMENTS _DELTA_ABS_TO_REL_ER R	2
ERR	Error transforming from orbits to processing times.	Computation not performed	XV_CFI_TIME_SEGMENTS _DELTA_ORBIT_TO_TIME_ E RR	3
ERR	Error transforming from processing times to orbits.	Computation not performed	XV_CFI_TIME_SEGMENTS _DELTA_TIME_TO_ORBIT_ E RR	4
ERR	Error modifying time segment duration	Computation not performed	XV_CFI_TIME_SEGMENTS _ DELTA_TIME_ADD_ERR	5
ERR	Error sorting input list	Computation not performed	XV_CFI_TIME_SEGMENTS _ DELTA_SORT_ERR	6
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_TIME_SEGMENTS _DELTA_GEO_SAT_ERR	7
WARN	Deprecated function. Use xv_timesegments_compute_delta instead	Computation performed	XV_CFI_TIME_SEGMENTS _DELTA_DEPRECATED_W ARN	8

7.25 xv_timesegments_compute_delta

7.25.1 Overview

An orbital segment is a time interval along the orbit, defined by start and stop times expressed as an orbit number and the seconds elapsed since the ascending node crossing.

The xv_timesegments_compute_delta function makes all the segments within a list, longer or shorter. After increasing/decreasing the longitude of the segments, these are sorted and merged to avoid possible overlapping. Therefore, at the end the list is sorted and without overlapped segments.

The time intervals (xv_time_interval) used by xv_timesegments_compute_and can be expressed as UTC times or orbit times (orbit plus seconds and microseconds since ascending node). This intervals express the start time/orbit and last time/orbit for the computations.

In case the time intervals are expressed as orbits, they can be expressed as absolute orbit numbers or in relative orbit and cycle numbers.

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. The output segments will contain UTC times and orbit times.

The xv_timesegments_compute_delta requires access to the following files to produce its results:

• the Orbit Scenario File: only if the orbits are expressed in relative numbers.

}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 250

7.25.2 Calling sequence xv_timesegments_compute_delta

For C programs, the call to xv timesegments compute delta is (<u>input</u> parameters are <u>underlined</u>):

```
#include"explorer visibility.h"
      xo_orbit_id orbit_id = {NULL};
      xv visibility interval list seg in;
      xv visibility interval list seg out;
      long ierr[XV NUM ERR COMPUTE DELTA];
      long status;
      double entry offset, exit offset;
      status = xv timesegments compute delta(
                        &orbit id, &entry offset, &exit offset,
                        &seq in,
                        &seg_out, ierr);
      /* Or, using the run id */
      long run id;
      status = xv timesegments compute delta(
                        &run id, &entry offset, &exit offset,
                        &seg in,
                        &seg out, ierr);
```


7.25.3 Input parameters xv_timesegments_compute_delta

Table 81: Input parameters of xv_timesegments_compute_delta

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
entry_offset	double		Number of seconds to add/ subtract at the beginning of every segments.	seconds	-
			If entry_offset > 0, the entry_offset is added at the beginning of the segments making them shorter.		
exit_offset	double		Number of seconds to add/ subtract at the end of every segments.	seconds	-
			If exit_offset > 0 the exit_offset is added at the end of the segments making them longer.		
seg_in	xv_visibilit y_interval_ list	-	Input list of segments	-	-

7.25.4 Output parameters xv_timesegments_compute_delta

Table 82: Output parameters of xv_timesegments_compute_delta

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_time_segments_del ta	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
seg_out	xv_visibil ity_interv al_list		Output list of segments	-	-
ierr[]	long		Error status flags		

<u>Memory Management:</u> Note that the memory for the output visibility segments arrays is allocated within the <u>xv_timesegments_compute_delta</u> function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.25.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_timesegments_compute_delta** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_timesegments_compute_delta** CFI function by calling the function of the EO VISIBILITY software library **xv get code**.

Table 83: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error allocating internal memory	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_ DELTA_MEMORY_ERR	0
ERR	Error getting absolute orbit vector from relative orbits	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_DELTA_REL_T O_ABS_ERR	1
ERR	Error getting relative orbit vector from absolute orbits	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_DELTA_ABS_T O_REL_ERR	2
ERR	Error transforming from orbits to processing times.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_DELTA_ORBIT_ TO_TIME_E RR	3
ERR	Error transforming from processing times to orbits.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_DELTA_TIME_T O_ORBIT_E RR	4
ERR	Error modifying time segment duration	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_ DELTA_TIME_ADD_ERR	5
ERR	Error sorting input list	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_ DELTA_SORT_ERR	6
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_DELTA_GEO_S AT_ERR	7
ERR	Wrong input time type	Computation not performed	XV_TIMESEGMENTS_COM PUTE_DELTA_TIME_TYPE _ERR	8
ERR	Error computing UTC time for orbit	Computation not performed	XV_TIMESEGMENTS_COM PUTE_DELTA_GET_UTC_T	9

	IME_ERR	
	_	1

7.26 xv_time_segments_mapping

7.26.1 Overview

Note: this function is deprecated. Use xv timesegments compute mapping instead.

The function **xv_time_segments_mapping** returns groups of visibility segments of a zone within an orbit range introduced by the user. These groups, or mappings, contain a minimum number of time segments needed to cover the zone completely, and fulfil the following conditions:

- Each mapping only contains ascending or descending segments.
- The segments are ordered by the track number.
- Mappings with one segment will be returned if it covers completely the zone.
- A mapping is searched for each track with segments that only contains left/right coverage in the case of ascending/descending segments, and finishes with a track that only contains right/left coverage.
- Incomplete mappings are not returned. This could happen if the number of orbits is insufficient to cover the zone.

Note that different mappings could contain a subset of segments in common. For example in Figure 30 there are two possible different mappings:

- mapping 1: orbits 1, 2, 3, 4.
- mapping 2: orbits 502, 2, 3, 4.

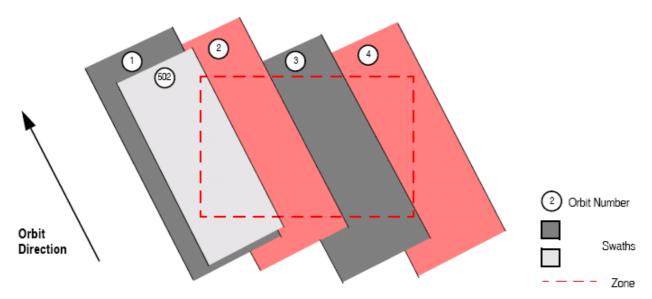


Figure 30: Different mappings with common segments

The time intervals used by **xv_time_segments_mapping** can be expressed in absolute or relative orbit numbers. This is valid for both:

• input parameter: first and last orbit to be considered. In case of using relative orbits, the corresponding cycle numbers should be used, otherwise, the cycle number will be a dummy parameter.

• output parameter: time segments with time expressed as {absolute orbit number (or relative orbit and cycle number), number of seconds since ANX, number of microseconds}

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits.

The xv_time_segments_mapping requires access to several data structures and files to produce its results:

- the orbit_id (xo_orbit_id) providing the orbital data. The orbit_id can be initialized with the following data or files (see [ORBIT SUM]):
 - data for an orbital change
 - Orbit scenario files
 - Predicted orbit files
 - Orbit Event Files (Note: Orbit Event File is deprecated, only supported for CRYOSAT mission)
 - Restituted orbit files
 - DORIS Preliminary orbit files
 - DORIS Navigator files
- the Instrument Swath File, excluding inertial swath files, describing the area seen by the relevant instrument all along the current orbit. The Swath data can be provided by:
 - A swath template file produced off-line by the EO_VISIBILITY library (xv_gen_swath function).
 - A swath definition file, describing the swath geometry. In this case the xv_time_segments_mapping generates the swath points for a number of orbits given by the user.
- Zone Database File: just in case of using a zone from the data base.

7.26.2 Calling sequence xv_time_segments_mapping

For C programs, the call to xv time segments mapping is (<u>input</u> parameters are <u>underlined</u>):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
               swath flag, orbit_type,
      long
               start orbit, start cycle,
               stop orbit, stop cycle,
               zone num, projection;
               num mappings, *num segments,
               *orbit direction,
               **bgn orbit, **bgn secs,
               **bgn microsec, **bgn cycle,
               **end orbit, **end secs,
               **end microsec, **end cycle,
               **coverage,
               ierr[XV NUM ERR MAPPING], status;
      double
               zone diam, *zone long, *zone lat;
      char
               *swath file,
               zone id[9], *zone db file;
      status = xv time segments mapping(
                    &orbit id, &orbit type,
                    &start orbit, &start cycle,
                    &stop orbit, &stop cycle,
                    &swath flag, swath file,
                   &zone num, zone id, zone db file,
                   &projection, &zone diam, zone long, zone lat,
                   &num mappings, &num segments,
                   &orbit direction,
                   &bgn orbit, &bgn secs, &bgn microsec, &bgn cycle,
                   &end orbit, &end secs, &end microsec, &end cycle,
                   &coverage, ierr);
      /* Or, using the run id */
      long run id;
```



```
status = xv_time_segments_mapping_run(
    &run_id, &orbit_type,
    &start_orbit, &start_cycle,
    &stop_orbit, &stop_cycle,
    &swath_flag, swath_file,
    &zone_num, zone_id, zone_db_file,
    &projection, &zone_diam, zone_long, zone_lat,
    &num_mappings, &num_segments,
    &orbit_direction,
    &bgn_orbit, &bgn_secs, &bgn_microsec, &bgn_cycle,
    &end_orbit, &end_secs, &end_microsec, &end_cycle,
    &coverage, ierr);
}
```


7.26.3 Input parameters xv_time_segments_mapping

Table 84: Input parameters of xv_time_segments_mapping

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
orbit_type	long	_	Define the type of orbit representation, i.e. absolute or relative orbits in the input/output parameters	-	Complete (see Table 3)
start_orbit	long	-	First orbit, segment filter Segments will be filtered as from the beginning of first orbit (within orbit range from orbit_scenario_file) First Orbit in the orbit_scenario_file will be used when: • Absolute orbit is set to zero. • Relative orbit and cycle number set to zero.	absolute or relative orbit number	= 0 or: • absolute orbits ≥start_osf • relative orbits ≤ repeat cycle
start_cycle	long	-	Cycle number corresponding to the start_orbit. Dummy when using relative orbits	cycle number	= 0 or ≥ first cycle in osf
stop_orbit	long	-	Last orbit, segment filter. The final orbit range defined by the start_orbit (start_cycle) and the stop_orbit (stop_cycle) should not exceed one cycle. Otherwise within one mapping there will appear all the orbits that are equal but that belong to different cycles. When: • stop_orbit = 0 (for orbit_type = XV_ORBIT_ABS) • stop_orbit = 0 and stop_cycle = 0 (for orbit_type = XV_ORBIT_REL) the stop_orbit will be set to the minimum value between: • the last orbit within the orbital change of the start_orbit.	absolute or relative orbit number	= 0 or: • absolute orbits ≥ start_osf • relative orbits ≤ repeat cycle

			the input orbit range will be a complete cycle)		
stop_cycle	long	-	Cycle number corresponding to the stop_orbit. Dummy when using relative orbits	cycle number	= 0 or ≥ first cycle in
swath_flag	long*		Define the use of the swath file:		osf XV_STF = 0
Swatti_flag	long		0 = (XV_STF) if the swath file is a swath template file.		XV_SDF = 1 > 0
			> 0 if the swath files is a swath definition file. In this case the swath points are generated for every "swath_flag" orbits		
swath_file	char *	-	File name of the swath-file for the appropriate instrument mode		
zone_num	long		Number of vertices of the zone provided in zone_long, zone_lat:		≥ 0
			= 0 no vertices provided, use zone_id / zone_db_file		
			= 1 Point / Circular zone,		
			= 2 Line zone		
			> 2 Polygon zone		
zone_id[9]	char		Identification of the zone, as defined in zone_db_file.		EXACTLY 8 characters
			This parameter is used ONLY IF zone_num = 0		
zone_db_file	char *		File name of the zone-database- file.		
			This file is used ONLY IF zone_num = 0		
projection	long		projection used to define polygon sides as straight lines:		
			= 0 Read projection from Zones DB (rectangular projection is used by default if the DB does not contain a projection)		
			= 1 Azimuthal gnomonic		
			= 2 Rectangular lat/long		
zone_diam	double		Zone diameter for circular zones,	m	≥ 0.0
			dummy for other zones		
			If diameter equals 0.0 then zone is Point Zone		
zone_long	double*	all	zone_long[i-1]		
			Geocentric longitude of		

			- circle centre, for circ. zone, i =1	
			- point, for point zone, i = 1	
			- line-end, for line zone, i = 1 or 2	
			- vertices, for polygon zone,	
			i = 1 zone_num	
zone_lat	double*	all	zone_lat[i-1]	
			Geodetic latitude of	
			- circle centre, for circ. zone, i =1	
			- point, for point zone, i = 1	
			- line-end, for line zone, i = 1 or 2	
			- vertices, for polygon zone,	
			i = 1 zone_num	

7.26.4 Output parameters xv_time_segments_mapping

Table 85: Output parameters of xv_time_segments_mapping

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_time_segments_m	long		Function status flag,		
apping			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
num_mappings	long		Number of output mappings		≥ 0
num_segments	long*	all	num_segments[n] = number of segments for the n-th mapping.	-	> 0
			n=0 (num_mappings-1)		
orbit_direction	long*	all	Direction of the segments of a mapping.	-	Complete (see Table 3: segment direction)
bgn_orbit	long**	all	Array of orbit numbers for the beginning of the segments	-	>0
bgn_secs	long**	all	Array of seconds elapsed since ANX for the beginning of the segments	-	>0 <nodal period<="" td=""></nodal>
bgn_microsecs	long**	all	Array of microseconds within a second for the beginning of the segments	-	>0 <999999
bgn_cycle	long**	all	Array of cycle numbers for the beginning of the segments.	-	>0
end_orbit	long**	all	Array of orbit numbers for the end of the segments	-	>0
end_secs	long**	all	Array of seconds elapsed since ANX for the end of the segments	-	>0 <nodal period<="" td=""></nodal>
end_microsecs	long**	all	Array of microseconds within a second	-	>0
			for the end of the segments		<999999
end_cycle	long**	all	Array of cycle numbers for the end of the segments.	-	>0 or NULL
coverage	long **	all	coverage of the output segments.	_	complete
					see Table 3
ierr	long*		Error status flags		

<u>Note 1:</u> The output visibility segments and the coverage are returned as a two-dimensional table where the first index indicates the number of the mapping, and the second one is the number of the segment within the mapping.

Note 2(Memory Management): Note that the output visibility segments arrays are pointers to integers instead of static arrays. The memory for these dynamic arrays is allocated within the **xv_time_segments_mapping** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.26.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_time_segments_mapping** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_time_segments_mapping** CFI function by calling the function of the EO VISIBILITY software library **xv get code**.

Table 86: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error, wrong orbit ld.	Computation not performed	XV_CFI_TIME_SEGM ENTS_MAPPING_ORB IT_STATUS_ERR	0
ERR	Error getting absolute orbit from relative orbit.	Computation not performed	XV_CFI_TIME_SEGM ENTS_MAPPING_REL _TO_ABS_ERR	1
ERR	Error getting relative orbit vector from absolute orbits	Computation not performed	XV_CFI_TIME_SEGM ENTS_MAPPING_REF _LATITUDE_ERR	2
ERR	Error computing swath width.	Computation not performed	XV_CFI_TIME_SEGM ENTS_MAPPING_SWA TH_WIDTH_ERR	3
ERR	Error calling zone_vis_time function	Computation not performed	XV_CFI_TIME_SEGM ENTS_MAPPING_ZON EVISTIME_ERR	4
ERR	Error loading orbit scenario file.	Computation not performed	XV_CFI_TIME_SEGM ENTS_MAPPING_LOA D_OSF_ERR	5
ERR	Start orbit is less than first orbit in OSF	Computation not performed	XV_CFI_TIME_SEGM ENTS_MAPPING_WR ONG_START_ORB_ER R	6
ERR	Error, orbits changes found within the input orbit range	Computation not performed	XV_CFI_TIME_SEGM ENTS_MAPPING_WR ONG_STOP_ORB_ERR	7
ERR	Error allocating memory.	Computation not performed	XV_CFI_TIME_SEGM ENTS_MAPPING_ME M_ERR	8
ERR	Error sorting segments.	Computation not performed	XV_CFI_TIME_SEGM ENTS_MAPPING_SOR T_ERR	9

ERR	Error getting relative orbit vector from absolute orbits.	Computation not performed	XV_CFI_TIME_SEGM ENTS_MAPPING_ABS _TO_REL_ERR	10
ERR	Error checking extremes of the orbit range.	Computation not performed	XV_CFI_TIME_SEGM ENTS_MAPPING_CHE CK_EXTREMES_ERR	11
ERR	Error calling xv_swath_pos function.	Computation not performed	XV_CFI_TIME_SEGMENTS _MAPPING_SWATH_POS_ ERR	12
ERR	Error loading swath template file: %s	Computation not performed	XV_CFI_TIME_SEGMENTS _MAPPING_SWATH_READ _ERR	13
ERR	Swath file is not a line swath.	Computation not performed	XV_CFI_TIME_SEGMENTS _MAPPING_INCORRECT_ SWATH_ERR	14
WARN	Cannot check segments for start and stop orbits. Incomplete mappings could be generated.	Previous orbit to input start orbit and/or next orbit to the input stop orbit are not in the same orbital change that the input orbit range. It can not be checked whether there are segments missing at the extremes of the orbit range.	XV_CFI_TIME_SEGM ENTS_MAPPING_NO_ CHECK_PERFORMED _WARN	15
WARN	Incomplete ascending mapping. %Id more track(s) needed to complete the mapping.	Computation performed. Computation performed.	XV_CFI_TIME_SEGMENTS _MAPPING_ASC_INCOMP LETE_MAPPING_WARN	16
WARN	Incomplete descending mapping. %Id more track(s) needed to complete the mapping.	Computation performed.	XV_CFI_TIME_SEGMENTS _MAPPING_DESC_INCOM PLETE_MAPPING_WARN	17
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_TIME_SEGMENTS _MAPPING_GEO_SAT_ER R	18
WARN	Deprecated function. Use xv_timesegments_compute_mapping instead	Computation performed	XV_CFI_TIME_SEGMENTS _MAPPING_DEPRECATED _WARN	19

7.27 xv_timesegments_compute_mapping

7.27.1 Overview

The function **xv_timesegments_compute_mapping** returns groups of visibility segments of a zone within an orbit range introduced by the user. These groups, or mappings, contain a minimum number of time segments needed to cover the zone completely, and fulfil the following conditions:

- Each mapping only contains ascending or descending segments.
- The segments are ordered by the track number.
- Mappings with one segment will be returned if it covers completely the zone.
- A mapping is searched for each track with segments that only contains left/right coverage in the case of ascending/descending segments, and finishes with a track that only contains right/left coverage.
- Incomplete mappings are not returned. This could happen if the number of orbits is insufficient to cover the zone.

Note that different mappings could contain a subset of segments in common. For example in Figure 31 there are two possible different mappings:

- mapping 1: orbits 1, 2, 3, 4.
- mapping 2: orbits 502, 2, 3, 4.

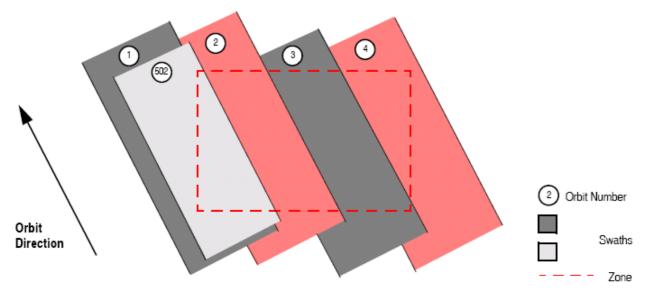


Figure 31: Different mappings with common segments

The time intervals (xv_time_interval) used by xv_timesegments_compute_and can be expressed as UTC times or orbit times (orbit plus seconds and microseconds since ascending node). This intervals express the start time/orbit and last time/orbit for the computations.

In case the time intervals are expressed as orbits, they can be expressed as absolute orbit numbers or in relative orbit and cycle numbers.

The orbit representation (absolute or relative) for the output segments will be the same as in the input orbits. The output segments will contain UTC times and orbit times.

The xv_timesegments_compute_mapping requires access to several data structures and files to produce its results:

- the orbit_id (xo_orbit_id) providing the orbital data. The orbit_id can be initialized with the following data or files (see [ORBIT SUM]):
 - data for an orbital change
 - Orbit scenario files
 - Predicted orbit files
 - Orbit Event Files (Note: Orbit Event File is deprecated, only supported for CRYOSAT mission)
 - Restituted orbit files
 - DORIS Preliminary orbit files
 - DORIS Navigator files
- The swath_id (xv_swath_id, initialized using xv_swath_id_init -section 7.31-), which provides the Instrument Swath data, excluding inertial swath files, describing the area seen by the relevant instrument all along the current orbit.
- Zone data (see section 7.3.7.5 for details)..

7.27.2 Calling sequence xv_timesegments_compute_mapping

For C programs, the call to xv timesegments compute mapping is (input parameters are underlined):

```
#include"explorer visibility.h"
      xo orbit id orbit id = {NULL};
      xv swath id swath id = {NULL};
      xv zone info list zone info list;
      xv time interval search interval;
      long num mappings;
      long *orbit direction = NULL;
      xv zonevisibility interval list *seg out = NULL;
      long ierr[XV NUM ERR COMPUTE MAPPING];
      status = xv_timesegments_compute_mapping(&orbit_id,
                               &swath id, &zone info list,
                               &search interval,
                               /*outpus*/
                               &num mappings,
                               &orbit direction, &seg out,
                               ierr);
      /* Or, using the run id */
      long run id;
      status = xv timesegments compute mapping(&run id,
                               &swath id, &zone info list,
                               &search interval,
                               /*outpus*/
                               &num mappings,
                               &orbit_direction, &seg_out,
                               ierr);
```

}

7.27.3 Input parameters xv_timesegments_compute_mapping

Table 87: Input parameters of xv_timesegments_compute_mapping

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
swath_id	xv_swath _id*	-	Swath id.	-	-
zone_info_list	xv_zone_ info_list*	-	List of zones where the visibility is going to be computed.	-	-
search_interval	xv_time_i nterval*	-	Interval where the computations are performed	-	-

7.27.4 Output parameters xv_timesegments_compute_mapping

Table 88: Output parameters of xv_timesegments_compute_mapping

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
xv_time_segments_m apping	long		Function status flag,		
apping			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
num_mappings	long		Number of output mappings		≥ 0
orbit_direction	long*	all	Direction of the segments of a mapping.	-	Complete (see Table 3: segment direction)
seg_out	xv_visibil ity_interv al_list*	l .	Array with output list of segments. Every position corresponds to one of the mappings.	-	-
ierr	long*		Error status flags		

<u>Note 1:</u> The output visibility segments and the coverage are returned as a two-dimensional table where the first index indicates the number of the mapping, and the second one is the number of the segment within the mapping.

<u>Note 2(Memory Management)</u>: Note that the memory for the output visibility segments arrays is allocated within the **xv_timesegments_compute_mapping** function. So the user will only have to declare those pointers but not to allocate memory for them. However, once the function has returned without error, the user will have the responsibility of freeing the memory for those pointers once they are not used.

7.27.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_timesegments_compute_mapping** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv get msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_timesegments_compute_mapping** CFI function by calling the function of the EO VISIBILITY software library **xv get code**.

Table 89: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error, wrong orbit ld.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_OR B IT_STATUS_ERR	0
ERR	Error getting absolute orbit from relative orbit.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_REL _TO_ABS_ERR	1
ERR	Error getting relative orbit vector from absolute orbits	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_REF _LATITUDE_ERR	2
ERR	Error computing swath width.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_SW ATH_WIDTH_ERR	3
ERR	Error calling zone_vis_time function	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_ZO N EVISTIME_ERR	4
ERR	Error loading orbit scenario file.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_LOA D_OSF_ERR	5
ERR	Start orbit is less than first orbit in OSF	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_WR ONG_START_ORB_ER R	6
ERR	Error, orbits changes found within the input orbit range	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_WR ONG_STOP_ORB_ERR	7
ERR	Error allocating memory.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_ME M_ERR	8
ERR	Error sorting segments.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_SO	9

			I	
			R T_ERR	
ERR	Error getting relative orbit vector from absolute orbits.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_ABS _TO_REL_ERR	10
ERR	Error checking extremes of the orbit range.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_CH E CK_EXTREMES_ERR	11
ERR	Error calling xv_swath_pos function.	Computation not performed	XV_CFI_TIME_SEGMENTS _MAPPING_SWATH_POS_ ERR	12
ERR	Error loading swath template file: %s	Computation not performed	XV_CFI_TIME_SEGMENTS _MAPPING_SWATH_READ _ERR	13
ERR	Swath file is not a line swath.	Computation not performed	XV_CFI_TIME_SEGMENTS _MAPPING_INCORRECT_ SWATH_ERR	14
WARN	Cannot check segments for start and stop orbits. Incomplete mappings could be generated.	Previous orbit to input start orbit and/or next orbit to the input stop orbit are not in the same orbital change that the input orbit range. It can not be checked whether there are segments missing at the extremes of the orbit range.		15
		Computation performed.		
WARN	Incomplete ascending mapping. %Id more track(s) needed to complete the mapping.	Computation performed.	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_ASC _INCOMPLETE_MAPPING_ WARN	16
WARN	Incomplete descending mapping. %Id more track(s) needed to complete the mapping.	Computation performed.	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_DES C_INCOMPLETE_MAPPIN G_WARN	17
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_GE O_SAT_ERR	18
ERR	Swath id not initialized	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_SW ATH_INIT_ERR	19
ERR	Error generating swath template file	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_GE N_SWATH_ERR	20
ERR	Wrong input time type	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_TIM E_TYPE_ERR	21

ERR	Error computing time to orbit parameters	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_TIM E_TO_ORBIT_ERR	22
ERR	Error computing UTC time for orbit	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_GET _UTC_TIME_ERR	
ERR	Input file is not a swath file	Computation not performed	XV_CFI_TIMESEGMENTS_ COMPUTE_MAPPING_DET ECT_SWATH_TYPE_ERR	24

7.28 xv_gen_swath

7.28.1 Overview

The xv_gen_swath function generates for the different instrument modes the corresponding instrument swath template file. These template files define the swaths to be used in the segment calculation routines of EO VISIBILITY.

The selection of the algorithm to compute the swath points depends on the parameters of the corresponding swath definition found in the instrument swath definition file. The swath point type (geodetic or inertial) and the algorithm to be used is deduced from the geometry and other instrument dependent parameters (see Table 90). There is an example of a swath definition file in the Appendix A.

The instrument swath template file, consists of a header which contains the altitude range of the swath. The data block contains n locations of the swath (between 50 and 6000, typically 1200) equally spread in time along one orbit. Every swath location contains a list of m points of the instantaneous swath ($m \ge 1$). For a description of the swath configuration see section 7.1.2 and Figure 8.

For Earth-fixed swaths, the location is given in longitude and latitude, in degrees, for the orbit with a longitude of ascending node of 0.0 degrees. For Inertial swaths, the location is the direction in inertial space (True of Date) in Right Ascension and Declination, in degrees, for the orbit with a Right Ascension of Ascending Node of 0.0 degrees.

The instrument swath template files are only dependent on:

- The instrument swath definition file
- The requested orbit number
- The orbit definition (orbit id).

Table 90: Swath geometry definition (algorithm)

Geometry (XD_Swath_geom_enum)	Algorithm description	Swath point type (XD_Swath_point_ type_enum)
Pointing_Geometry (azimuth, elevation, altitude)	Swath point computed with xp_target_inter with that azimuth, elevation and altitude	Geodetic
Distance_Geometry (azimuth, elevation, altitude, distance)	Swath point computed with xp_target_ground_range with that azimuth, elevation, altitude and distance	Geodetic
Limb_Geometry (azimuth and altitude)	Swath point computed with xp_target_altitude with that azimuth and altitude	Geodetic
Inertial_Geometry (azimuth and altitude)	Swath point computed with xp_target_altitude with that azimuth and altitude. The swath point is the RA and Declination of the target.	Inertial
Sub_Satellite_Geometry (no parameters)	Computation of the sub-satellite point	Geodetic
ASAR_Geometry (azimuth, elevation, altitude)	Specific algorithm for the three swath points for ASAR instrument in Envisat.	Geodetic

}

Code: EO-MA-DMS-GS-0006
Date: 29/10/2015
Issue: 4.10
Page: 274

7.28.2 Calling interface

The calling interface of the xv_gen_swath CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer visibility.h>
      xo_orbit_id orbit_id = {NULL};
      xp atmos id atmos id = {NULL};
      long requested orbit,
           version number;
      char *swath definition file;
      char swath file[XD_MAX_STR], *dir_name, *file_class,
           *fh system;
      long status, ierr[XV_ERR_VECTOR_MAX_LENGTH];
      status = xv gen swath (&orbit id, &atmos id,
                              & requested orbit, swath definition file,
                              dir name, swath file,
                              file class, &version number, fh_system,
                              ierr);
      /* Or, using the run id */
      long run id;
      status = xv gen swath run (&run id,
                               & requested orbit, swath definition file,
                              dir name, swath file,
                              file class, &version number, fh system,
                              ierr);
```


7.28.3 Input parameters

The xv_gen_swath CFI function has the following input parameters:

Table 91: Input parameters of xv_gen_swath function

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure that contains the orbit data.	-	-
atmos_id	xp_atmos_id*	-	Structure that contains the atmosphere initialisation.	_	-
			This parameter determines the atmospheric and raytracing model used for the STF generation. The refraction model in the SDF is not used.		
requested_orbit	long*	-	Orbit for which the instrument swath template file will be calculated.	absolute orbit number	> 0
swath_definition_file	char*	-	File name of the instrument swath definition file	-	-
dir_name	char*	-	Directory where the resulting STF is written (if empty (i.e. ""), the current directory is used)	-	-
swath_file	char*	-	Name for output swath file. If empty (i.e. ""), the software will generate the name according to file name specification presented in [FORMATS], in this case the generated name is returned in this variable	-	-
file_class	char*	-	File class for output swath file	-	-
version_number	long*	-	Version number of output swath file	-	>= 1
fh_system	char*	-	System field of the output swath file fixed header	_	-

7.28.4 Output parameters

The output parameters of the xv_gen_swath CFI function are:

Table 92: Output parameters of xv_gen_swath function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
swath_file	char*	-	Name for output swath file. This is only an output parameter when it is empty (i.e. ""; see description of this parameter in Table 91)	-	-
ierr[XV_ERR_VECTOR_ MAX_LENGTH]	long	all	Status vector	-	-

7.28.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_gen_swath** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_gen_swath** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code** (see [GEN_SUM]).

Table 93: Error messages of xv_gen_swath function

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Error, wrong orbit ld.	Computation not performed	XV_CFI_GEN_SWATH_OR BIT_INIT_ERR	0
ERR	Wrong requested orbit	Computation not performed	XV_CFI_GEN_SWATH_RE QUESTED_ORBIT_ERR	1
ERR	Could not get the creation date	Computation not performed	XV_CFI_GEN_SWATH_CU RRENT_TIME_ERR	2
ERR	Error transforming time formats	Computation not performed	XV_CFI_GEN_SWATH_TIM E_CONVERSION_ERR	3
ERR	Could not create the filename	Computation not performed	XV_CFI_GEN_SWATH_CR EATE_FILENAME_ERR	4
ERR	Error reading swath definition file: %s	Computation not performed	XV_CFI_GEN_SWATH_SD F_READ_ERR	5
ERR	Error computing the swath points	Computation not performed	XV_CFI_GEN_SWATH_XV_ ALGOR_ERR	6
ERR	Could not write the swath template file to disk	Computation not performed	XV_CFI_GEN_SWATH_WR ITE_ERR	7
ERR	Wrong input file name. The file cannot be created	Computation not performed	XV_CFI_GEN_SWATH_WR ONG_FILENAME_ERR	8
WARN	Could not find the input directory \"%s\". The current directory will be used instead	Computation performed	XV_CFI_GEN_SWATH_NO _DIR_WARN	9
ERR	Error allocating memory	Computation not performed	XV_CFI_GENSWATH_MEM ORY_ERR	10
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XV_CFI_GENSWATH_GEO _SAT_ERR	11

7.28.6 Executable Program

The **gen_swath** executable program can be called from a Unix shell as:

```
gen swath
               -sat satellite name
               -sdf swath definition file name
               -file orbit file name -orbit orbit number
               [-tle]
               [-dir dir name] (current directory by default)
               [-stf swath template filename] (empty string by default)
               [-precfile precise configuration file] (empty string by default)
               [-flcl file class] (empty string by default)
               [-vers version] (version = 1 by default)
               [-fhsys fh system] (empty string by default)
               [ -v ]
               [-xl \ v]
               \begin{bmatrix} -xo & v \end{bmatrix}
               [-xp_v]
               [-xv_v]
               [-help]
               [-show]
               {(-tai TAI time -gps GPS time -utc UTC time -ut1 UT1 time) |
               (-tmod time model -tfile time reference data file -trid time reference
                {(-tm0 time 0 -tm1 time 1) | (-orb0 orbit 0 -orb1 orbit 1) } )}
```

Note that:

- Order of parameters does not matter.
- Bracketed parameters are not mandatory (For example, if **-stf** argument is not provided, instrument_swath_file_name_suffix is considered to be an empty string).
- Options between curly brackets and separated by a vertical bar are mutually exclusive (For example, that lines 3 and 4 are mutually exclusive).
- [-tle] this options must be provided if input file is a Two Line Elements file.
- [-xl_v] option for EO LIB Verbose mode.
- [-xo_v] option for EO ORBIT Verbose mode.
- [-xp v] option for EO POINTING Verbose mode.
- [-xv v] option for EO VISIBILITY Verbose mode.
- [-v] option for Verbose mode for all libraries (default is Silent).
- [-show] displays the inputs of the function and the results.
- Possible values for *satellite_name*: ERS1, ERS2, ENVISAT, METOP1, METOP2, METOP3, CRYOSAT, ADM, GOCE, SMOS, TERRASAR, EARTHCARE, SWARM_A, SWARM_B,

SWARM_C, SENTINEL_1A, SENTINEL_1B, SENTINEL_1C, SENTINEL_2A, SENTINEL_2B, SENTINEL_2C, SENTINEL_3A, SENTINEL_3B, SENTINEL_3C, JASON_CSA, JASON_CSB, METOP_SG_A1, METOP_SG_A2, METOP_SG_A3, METOP_SG_B1, METOP_SG_B2, METOP_SG_B3, SENTINEL_5P, SEOSAT, GENERIC.

- Precise propagation is used if precfile is provided.
- **Important:** The atmospheric model used for the STF generation is taken from the "Refraction" parameters in the SDF. The allowed values for the Refraction model in the input SDF are NO_REF, STD_REF or PRED_REF. Note the user defined models are not allowed.

Example:

7.29 xv_gen_swath_no_file

7.29.1 Overview

The **xv_gen_swath_no_file** function generates for the different instrument modes the corresponding instrument swath template data.

The aim of this function is to provide another interface for the function **xv_gen_swath** in which the swath data is returned in a swath structure instead to be save to a file.

7.29.2 Calling interface

The calling interface of the xv_gen_swath_no_file CFI function is the following (input parameters are underlined):

```
#include <explorer visibility.h>
      xo orbit id orbit id = {NULL};
      xp atmos id atmos id = {NULL};
      long requested orbit;
      xd sdf file *sdf;
      xd stf file *stf;
      long status, ierr[XV ERR VECTOR MAX LENGTH];
      status = xv gen swath no file (&orbit id, &atmos id,
                                        & requested orbit,
                                        &sdf, &stf,
                                        ierr);
      /* Or, using the run id */
      long run id;
      status = xv gen swath no file run (& run id,
                                            & requested orbit,
                                            &sdf, &stf,
                                            ierr);
}
```


7.29.3 Input parameters

The xv_gen_swath_no_file CFI function has the following input parameters:

Table 94: Input parameters of xv_gen_swath_no_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure that contains the orbit data.	-	-
atmos_id	xp_atmos_id*	-	Structure that contains the atmosphere initialisation. This parameters is needed only if the swath definition file requires atmosphere initialisation. This happens when the refraction model in the SDF is USER_REF or PRED_REF.	-	-
requested_orbit	long*	-	Orbit for which the instrument swath template file will be calculated.	absolute orbit number	> 0
sdf	xd_sdf_file	-	Swath definition file structure data. This structure is defined in [D_H_SUM] and can be got by reading a swath definition file with the CFI function xd_read_sdf.	-	-
file_class	char*	-	File class for output swath data	-	-
version_number	long*	-	Version number of output swath data	-	>= 1
fh_system	char*	-	System field of the output swath file fixed header data	-	-

7.29.4 Output parameters

The output parameters of the xv_gen_swath_no_file CFI function are:

Table 95: Output parameters of xv_gen_swath_no_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
stf	xd_stf_ file	-	Swath Template structure defined in [D_H_SUM]	_	-

ierr[XV_ERR_VECTOR_	long	all	Status vector	-	-
MAX_LENGTH]					

7.29.5 Warnings and errors

The error and warning messages and codes for xv_gen_swath_no_file are the same than for xv gen swath (see Table 93).

The error messages/codes can be returned by the CFI function **xv_get_msg/xv_get_code** after translating the returned status vector into the equivalent list of error messages/codes. The function identifier to be used in that functions is XV_GEN_SWATH_ID (from Table 2).

7.30 xv_gen_scf

7.30.1 Overview

The **xv_gen_scf** function generates a Swath Control file. This file contains a list of visibility segments together with some features linked to the segment that are used for the visualisation of the segment in the ESOV tool.

In order to generate the file, the same xo_orbit_id variable that was used for the generation of the visibility segments has to be provided. Moreover, this xo_orbit_id has to be implemented with one of the following functions:

- · xo orbit init def
- xo_orbit_init_file with an orbit scenario file (or an orbit event file used as an orbit scenario. Note:
 Orbit Event File is deprecated, only supported for CRYOSAT mission).

7.30.2 Calling interface

The calling interface of the xv gen scf CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer visibility.h>
      xo orbit id orbit id = {NULL};
      char instrument[XD MAX STR];
      long version number;
      char *file class, *fh_system;
      char dir name[XD MAX STR], scf filename[XD MAX STR];
      long status, ierr[XV NUM ERR GEN SCF];
      long number segments;
      long *bgn orbit, *bgn second, *bgn microsec;
      long *end orbit, *end second, *end microsec;
      xd scf appear * appearance;
      status = xv gen scf (&orbit_id, instrument, &number_segments,
                            bgn orbit, bgn second, bgn microsec,
                            end orbit, end second, end microsec,
                            appearance,
                            dir name, scf filename,
                            file class, &version number, fh system,
                            ierr);
      /* Or, using the run id */
      long run id;
      status = xv gen scf run (&run id, instrument, &number segments,
                                ban orbit, ban second, ban microsec,
```


end_orbit, end_second, end_microsec,
appearance,
dir_name, scf_filename,
file_class, &version_number, fh_system,
ierr);

}

7.30.3 Input parameters

The xv_gen_scf CFI function has the following input parameters:

Table 96: Input parameters of xv_gen_scf function

	1		Trumeters of XV_3em_3cf fund		
C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure that contains the orbit data.	-	-
instrument	char*	-	Instrument name	-	-
number_segments	long	-	Number of input segments	-	
bgn_orbit	long*	-	Array of absolute orbit numbers for the beginning of the segments	-	> 0
bgn_second	long*	-	Array of seconds elapsed since ANX for the beginning of the segments	-	>=0
bgn_microsec	long*	-	Array of microseconds within a second for the beginning of the segments	-	>=0
end_orbit	long*	-	Array of absolute orbit numbers for the end of the segments	-	> 0
end_second	long*	-	Array of seconds elapsed since ANX for the end of the segments	-	>=0
end_microsec	long*	-	Array of microseconds within a second for the end of the segments	-	>=0
appearance	xd_scf_appe ar	-	Array with the structures contain ing the appearance for every segment (see [D_H_SUM])	-	-
dir_name	char*	-	Directory where the resulting STF is written (if empty (i.e. ""), the current directory is used)	-	-
scf_filename	char*	-	Name for output swath file. If empty (i.e. ""), the software will generate the name according to file name specification presented		-

			in [FORMATS], in this case the generated name is returned in this variable		
file_class	char*	-	File class for output file	-	-
version_number	long*	-	Version number of output file	-	>= 0
fh_system	char*	-	System field of the output file fixed header	-	-

7.30.4 Output parameters

The output parameters of the **xv_gen_scf** CFI function are:

Table 97: Output parameters of xv_gen_scf function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
scf_filename	char*	-	Name for output SCF. This is only an output parameter when it is empty (i.e. ""; see description of this parameter in Table 96)	-	-
ierr[XV_NUM_ERR_GEN _SCF]	long	all	Status vector	-	-

7.30.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_gen_scf** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_gen_scf** CFI function by calling the function of the EO_VISIBILITY software library **xv get code** (see [GEN SUM]).

Table 98: Error messages of xv_gen_scf function

Error type	Error message	Cause and impact	Error Code	Error No
ERR	No segments to write	Computation not performed	XV_CFI_GENSCF_NO_SE GMENTS_ERR	0
ERR	The orbit has not been initialised	Computation not performed	XV_CFI_GENSCF_ORBIT_I NIT_ERR	1
ERR	Wrong orbit initialisation mode	Computation not performed	XV_CFI_GENSCF_ORBIT_I NIT_MODE_ERR	2
ERR	Could not get the creation date	Computation not performed	XV_CFI_GENSCF_CURRE NT_TIME_ERR	3
ERR	Could not get orbit number for the orbit = %ld	Computation not performed	XV_CFI_GENSCF_ORBIT_ TO_TIME_CONVERSION_ E RR	4
ERR	Error transforming time formats	Computation not performed	XV_CFI_GENSCF_TIME_C ONVERSION_ERR	5
ERR	Could not create the filename	Computation not performed	XV_CFI_GENSCF_CREATE _FILENAME_ERR	6
ERR	Could not get orbital information for orbit %ld	Computation not performed	XV_CFI_GENSCF_GET_O RBIT_INFO_ERR	7
ERR	Wrong input file name. The file cannot be created	Computation not performed	XV_CFI_GENSCF_WRONG _FILENAME_ERR	8
ERR	Could not write the swath control file to disk	Computation not performed	XV_CFI_GENSCF_WRITE_ ERR	9
WARN	Could not find the input directory \"%s\". The current directory will be used instead	Computation performed	XV_CFI_GENSCF_NO_DIR _WARN	10

7.31 xv_swath_id_init

7.31.1 Overview

The xv swath id init function initializes the swath ID. It can be initialized with the following data:

- Swath definition data
- Swath template data
- · Swath definition file
- Swath template file

Once initilized, the swath data is stored in internal structures pointed by swath id.

7.31.2 Calling sequence of xv_swath_id_init

For C programs, the call to **xv_swath_id_init** is (<u>input</u> parameters are <u>underlined</u>):

7.31.3 Input parameters xv_swath_id_init

Table 99: Input parameters of xv_swath_id_init

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
swath_info	xv_swath_info	-	Swath initialisation information	-	-
atmos_id	xp-atmos_id	-	Atmos ID	-	-

7.31.4 Output parameters xv_swath_id_init

Table 100: Output parameters of xv_swath_id_init

C name	C type	Array Element	Description	Unit (Form at)	Allowed Range
xv_swath_id_init	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
swath_id	xv_swath_i d	-	Swath ID.		
ierr	long[]		Error status flags		

7.31.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_swath_id_init** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_swath_id_init** CFI function by calling the function of the EO_VISIBILITY software library **xv get code**.

Table 101: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Wrong input initialization type	Computation not performed	XV_CFI_SWATH_ID_INIT_T YPE_ERR	0
ERR	Expected input data not found for input type	Computation not performed	XV_CFI_SWATH_ID_INIT_ WRONG_INPUT_COMBINA TION_ERR	1
ERR	Error: swath id is initialized	Computation not performed	XV_CFI_SWATH_ID_INIT_S WATH_INIT_STATUS_ERR	2
ERR	Error allocating memory	Computation not performed	XV_CFI_SWATH_ID_INIT_ MEMORY_ERR	3
ERR	Error cloning swath definition structure	Computation not performed	XV_CFI_SWATH_ID_INIT_S DF_CLONE_ERR	4
ERR	Error cloning swath template structure	Computation not performed	XV_CFI_SWATH_ID_INIT_S TF_CLONE_ERR	5
ERR	Error linking ids	Computation not performed	XV_CFI_SWATH_ID_INIT_L INK_ID_ERR	6

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 291

7.32 xv_swath_id_close

7.32.1 Overview

The xv_swath_id_close function frees the data allocated in the swath ID.

7.32.2 Calling sequence of xv_swath_id_close

For C programs, the call to **xv_swath_id_close** is (<u>input</u> parameters are <u>underlined</u>):

7.32.3 Input parameters xv_swath_id_close

Table 102: Input parameters of xv_swath_id_close

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
swath_id	xv_swath_id	-	Swath ID.		

7.32.4 Output parameters xv_swath_id_close

Table 103: Output parameters of xv_swath_id_close

C name	C type	Array Element	Description	Unit (Form at)	Allowed Range
xv_swath_id_close	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
ierr	long[]		Error status flags		

7.32.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_swath_id_close** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_swath_id_close** CFI function by calling the function of the EO_VISIBILITY software library **xv get code**.

Table 104: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Could not close the swath id	Computation not performed	XV_CFI_SWATH_ID_CLOS E_WRONG_ID_ERR	0

7.33 xv_swath_set_id_data

7.33.1 Overview

The xv_swath_set_id_data function sets the values of the swath ID internal structure according to inputs.

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 296

7.33.2 Calling sequence of xv_swath_set_id_data

For C programs, the call to xv_swath_set_id_data is (input parameters are underlined):

```
#include"explorer_visibility.h"
{
          xv_swath_id swath_id = {NULL};
          xv_swath_info swath_info;

          status = xv_swath_set_id_data(&swath_id, &swath_info);
}
```


7.33.3 Input parameters xv_swath_set_id_data

Table 105: Input parameters of xv_swath_set_id_data

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
swath_id	xv_swath_id	-	Swath ID.		
swath_info	xv_swath_info	-	Swath information		

7.33.4 Output parameters xv_swath_set_id_data

Table 106: Output parameters of xv_swath_set_id_data

C name	C type	Array Element	Description	Unit (Form at)	Allowed Range
xv_swath_set_id_data	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		

7.33.5 Warnings and errors

This function does not return any errors.

 Code:
 EO-MA-DMS-GS-0006

 Date:
 29/10/2015

 Issue:
 4.10

 Page:
 299

7.34 xv_swath_get_id_data

7.34.1 Overview

The xv_swath_get_id_data function gets the values stored in the swath ID internal structure.

7.34.2 Calling sequence of xv_swath_get_id_data

For C programs, the call to xv_swath_get_id_data is (input parameters are underlined):

```
#include"explorer_visibility.h"
{
          xv_swath_id swath_id = {NULL};
          xv_swath_info swath_info;

          status = xv_swath_get_id_data(&swath_id, &swath_info);
}
```


7.34.3 Input parameters xv_swath_get_id_data

Table 107: Input parameters of xv_swath_get_id_data

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
swath_id	xv_swath_id	-	Swath ID.		

7.34.4 Output parameters xv_swath_get_id_data

Table 108: Output parameters of xv_swath_get_id_data

C name	C type	Array Element	Description		Allowed Range
xv_swath_get_id_data	long		Function status flag,		
			= 0 No error		
			> 0 Warnings, results generated		
			< 0 Error, no results generated		
swath_info	xv_swath_i nfo	-	Swath information		

7.34.5 Warnings and errors

This function does not return any errors.

7.35 xv_zonevistime_coverage

7.35.1 Overview

The xv_zonevistime_coverage function computes the portion of the input zone that is covered by a swath during a set of input time visibility intervals (also called segments). The user has to initialize the input structure of type xv_zonevisibility_coverage_in (see Table 4) in order to provide the required information for the computation: zone, swath, attitude definition, orbit_id, list of visibility times. Note that the visibility_interval_list field is of type xv_zonevisibility_interval_list (see Table 4) that is the output of the xv zonevistime compute (section 7.35) function.

The following outputs are returned in the xv_zonevisibility_coverage_out struct (assuming that intervals are numbered from 0 to N-1 as stored in the array visibility_interval within visibility_interval_list, N is the num rec field within visibility interval list):

- 1) The area of the zone in Km² (zone area field);
- 2) The **total coverage** (total_coverage field): this is the percentage of zone covered by all intervals, i.e. 100 minus the percentage of zone not covered by any interval;
- 3) The **coverage per interval** (coverage_per_interval field): this is an array of size N that contains the coverage percentages computed considering only one interval. Item of the array with index i (0,1,2,....N-1) is the percentage of zone covered by the interval i (0,1,2,...N-1) only.
- 4) The **coverage per number of intervals** (coverage_by_N_intervals field): this is an array of size N that contains the percentages of zone covered by exactly 1,2,...,N intervals. Item with index i (0,1,2,...N-1) is the percentage of the zone covered by exactly i+1 (1,2,...N) intervals. This array can be used to evaluate how much segments are overlapping. Ideally, with segments not overlapping, only the first item of this array should be different from zero, and should be close to the total coverage. If other items of the array are different from zero, this means that portions of the zone are covered by more than one segment;
- 5) The **cumulative coverage** (cumulative_coverage field): this is an array of size N that contains the cumulative coverage percentage. Item with index i (0,1,2,...N-1) is the percentage of zone covered by intervals 0,1,2...i+1 considered together. This output considers the order in which time segments are provided. For example, if intervals are sorted by time, this output can be used to evaluate when a target coverage percentage is reached.

The computation is performed by means of a grid of points inside the zone. The portion of these points that are within the swath gives the percentage of area covered. The precision of the computation then depends on the distance between points. Two ways of computing the points can be provided by the user via the type coverage field:

- 1) XV_COVERAGE_FIXED_DISTANCE: a fixed distance between points is used. The value of these distance is provided by the user (in kilometers);
- 2) XV_COVERAGE_PERCENTAGE_PRECISION: the required percentage precision is provided by the user. The function computes internally the distance needed to achieve the requested precision. The distance is computed in a way that the area of the zone computed with the grid created with such distance

is close to the expected one (computed by analytical methods) by a percentage equal or better than input percentage precision. That is, if *area_zone* is the zone area computed analytically and *area_grid* is the area of the zone computed with the grid, the accuracy percentage is defined as:

percen accuracy = 100. * (1- abs((area zone-area grid) / area zone))

The selected distance fulfills that *percen_accuracy* is greater or equal to input percentage precision. That means that the closer the input percentage precision to 100% the more accurate are the computations.

WARNING: The user has to be aware that requesting a small distance or a big value for precision increase the number of points to be analyzed and this has an impact on performances.

The following example is presented to explain how this function operates:

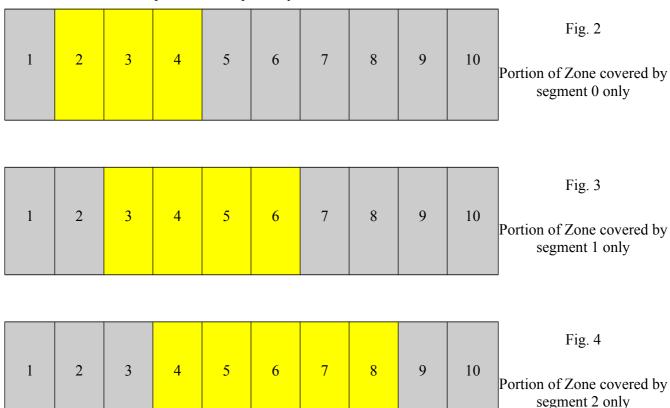

1	2	3	4	5	6	7	8	9	10	Zone
---	---	---	---	---	---	---	---	---	----	------

Fig. 1

Zone split into 10 tiles

A simplified representation of the input zone is given in Fig. 1: the zone is split into 10 tiles of same size.

Three time intervals are provided as input, they are identified with their indexes: 0,1,2

During time interval 0, tiles 2,3,4 are covered, see Fig. 2.

During time interval 1, tiles 3,4,5,6 are covered, see. Fig. 3

During time interval 2, tiles 4,5,6,7,8 are covered, see Fig. 4.

Fig. 5

Total coverage

Considering all three segments, 7 tiles of the zone (2 to 8) are covered, this corresponds to 70% of the whole zone (see Fig. 5). Therefore, if *cov_out* is the output variable of type xv_zonevisibility_coverage_out:

intervals 0,1,2 cover respectively 3,4,5 tiles corresponding to 30%, 40%, 50% of the whole zone. Therefore:

cov_out.coverage_per_interva[0] = 30

cov out.coverage per interva[1] = 40

cov_out.coverage_per_interva[2] = 50

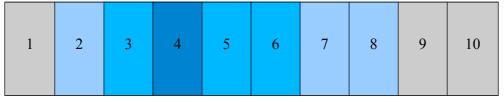


Fig. 6

Coverage by N segments

Fig. 6 details the computation of the coverage_by_N_intervals field. Tiles with same colors are covered by the same number of segments.

Tile 2 is covered only by interval 0. Tiles 7,8 are covered only by interval 4.

Therefore tiles 2,7,8 are covered by only one interval. This corresponds to 30% of the whole zone. Therefore:

cov out.coverage by N intervals[0] = 30

Similarly tiles 3,5,6 are covered by only 2 intervals and tile 4 is covered by all 3 segments:

Therefore:

cov out.coverage by N intervals [1] = 30

cov_out.coverage_by_N_intervals[2] = 10

1 2 3 4 5 6 7 8 9 10

Fig. 7
Cumulative Coverage

Fig. 7 details the computation of the cumulative_coverage field. Tiles with same color are those tiles that are covered by a segment but not but the previous ones in the list.

Item 0 is the coverage of the first segment only, that is tiles 2,3,4, i.e. 30%.

Item 1 is the cumulative coverage of the first and second segments, that is tiles 2,3,4,5,6, that is 50%.

item 2 is the cumulative coverage of the first the second and third segment, that is tiles 2,3,4,5,6,7,8 that is 70%. Therefore:

cov_out.cumulative_coverage [0] = 30

cov out.cumulative coverage [1] = 50

cov_out.cumulative_coverage [2] = 70

7.35.2 Calling sequence of xv_zonevistime_coverage

For C programs, the call to xv_zonevistime_coverage is (input parameters are underlined):

7.35.3 Input parameters xv_zonevistime_coverage

Table 109: Input parameters of xv_zonevistime_coverage

C name	C type	Array Element	Description	Unit (Format)	Allowed Range
zone_cov_in	xv_zonevisibility_ coverage_in	-	Inputs for zone coverage computations	-	-

7.35.4 Output parameters xv_zonevistime_coverage

Table 110: Output parameters of xv_zonevistime_coverage

C name	C type	Array Element	Description	Unit (Form at)	Allowed Range
xv_zonevistime_coverag e	long		Function status flag, = 0 No error > 0 Warnings, results generated < 0 Error, no results generated		
zone_cov_out	xv_zonevist ime_covera ge_out	-	Zone coverage output.		
ierr	long[]		Error status flags		

Note: in the output struct xv_zonevistime_coverage_out, all the arrays are allocated dynamically and the user is responsible for freeing this allocated memory.

7.35.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xv_zonevistime_coverage** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_VISIBILITY software library **xv_get_msg**.

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xv_zonevistime_coverage** CFI function by calling the function of the EO_VISIBILITY software library **xv_get_code**.

Table 111: Error messages and codes

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Name of zone id is empty.	Computation not performed	XV_CFI_ZONEVISTIME_C OVERAGE_ZONE_ID_EMP TY_ERR	0
ERR	Error reading zone database.	Computation not performed	XV_CFI_ZONEVISTIME_C OVERAGE_READ_ZONE_ DB_FILE_ERR	1
ERR	Error cloning zone	Computation not performed	XV_CFI_ZONEVISTIME_C OVERAGE_CLONE_ZONE _ERR	2
ERR	Error creating point database	Computation not performed	XV_CFI_ZONEVISTIME_C OVERAGE_CREATE_DB_E RR	3
ERR	Error allocating memory	Computation not performed	XV_CFI_ZONEVISTIME_C OVERAGE_MEMORY_ERR	4
ERR	Error in zonevistime computations	Computation not performed	XV_CFI_ZONEVISTIME_C OVERAGE_ZVT_COMPUT E_ERR	5

8 RUNTIME PERFORMANCES

The library performance has been measured by dedicated test procedures run in 5 different platforms under the below specified machines:

OS ID	Processor	os	RAM
LINUX64	Intel(R) Xeon(R) CPU E5- 2470 0 @ 2.30GHz (16 cores)	GNU LINUX 2.6.24-16-generic (Ubuntu 8.04)	16 GB
LINUX32_LEGACY	Intel(R) Core(TM)2 Quad CPU Q8400 @ 2.66GHz	GNU LINUX 2.6.24-16-generic (Ubuntu 8.04)	4 GB
LINUX64_LEGACY	Intel(R) Core(TM)2 Quad CPU Q8400 @ 2.66GHz	GNU LINUX 2.6.24-16-generic (Ubuntu 8.04)	4 GB
MACIN64	Intel Core i7 4 cores @2,6 GHz	MAC OSX V10.9	16 GB
WINDOWS Intel(R) Core(TM)2 i5- 2450M CPU @ 2.50GHz 2.50GHz		Microsoft Windows 7	6 GB

The table below shows the time (in miliseconds - ms) each function takes to be run under each platform:

Function ID	WINDOWS	LINUX64	LINUX64_LEGACY	LINUX32_LEGACY	MACIN64
xv_swathpos_compute	0.050000	0.033000	0.065000	0.045000	0.018000
xv_zonevistime_compute * 50 orbits	36.689999	29.500000	49.400002	46.900002	35.200001
xv_zonevistime_coverage * Percentage precision = 75% (5 segments)	2497.000000	2300.000000	3790.000000	3410.000000	2940.00000 0
xv_timesegments_compute_not * 34 segments	2.755110	2.033900	3.663100	2.650200	1.040700
xv_timesegments_compute_or * 34 segments	2.920540	2.102600	3.805100	2.706700	1.064400
xv_timesegments_compute_and * 34 segments	2.900110	2.101200	3.778800	2.716700	1.080300
xv_timesegments_compute_sort * 34 segments	2.904000	2.100000	3.800000	2.680000	1.060000
xv_timesegments_compute_merge * 34 segments	2.877750	2.094500	3.767400	2.736400	1.065700
xv_timesegments_compute_delta * 34 segments	14.461000	10.370000	18.709999	13.400000	5.250000

Page: 311

xv_zonevistime_compute (6 zones) * 30 orbits 6 zones	43.700001	36.000000	60.000000	57.000000	41.000000
xv_gen_scf * 27 segments	3.755000	1.640000	2.320000	2.620000	2.290000
xv_station_compute * 10 orbits 7 stations	165.699997	117.000000	187.000000	184.000000	112.000000
xv_stationvistime_compute * 10 orbits	38.400002	35.000000	55.000000	55.000000	38.000000
xv_star_vis_time * 100 orbits	303.799988	316.000000	512.000000	535.000000	351.000000
xv_timesegments_compute_mappi ng * 50 orbits	145.600006	142.000000	252.000000	243.000000	170.000000
xv_orbit_extra	21.740000	12.400000	17.799999	17.900000	7.600000
xv_gen_swath	278.480011	150.600006	221.100006	253.600006	161.399994
xv_gen_swath_no_file	197.619995	79.699997	106.500000	118.699997	70.900002
xv_sc_vis_time * 10 orbits	861.500000	488.000000	650.000000	708.000000	300.000000

Note that when the value "0.000000" is defined for a function in a certain platform, it means that its running time is lower than 1 nano-second and so it can be considered as "0".

9 LIBRARY PRECAUTIONS

The following precaution shall be taking into account when using EO_VISIBILITY library:

When a message like
 <LIBRARY NAME> >>> ERROR in xv_function: Internal computation error # n or

<LIBRARY NAME> >>> WARNING in xv_function: Internal computation warning # n appears, run the program in verbose mode for a complete description of warnings and errors and call for maintenance if necessary.