

Prepared by DME and ESA OpenSF Team
Reference PE-ID-ESA-GS-464
Issue 1
Revision 2.3
Date of Issue 21-08-2017
Status Release
Document Type ICD
Distribution all

ESA UNCLASSIFIED – For Official Use

PE-ID-ESA-GS-464 Generic E2E Simulator ICD V1.2.3.docx

estec

European Space Research

and Technology Centre

Keplerlaan 1

2201 AZ Noordwijk

The Netherlands

 T +31 (0)71 565 6565

F +31 (0)71 565 6040

www.esa.int

ESA generic E2E simulator Interface Control Document

Page 2/38
ESA generic E2E simulator Interface Control Document ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

 Title ESA generic E2E simulator Interface Control Document
 Issue 1 Revision 2.3
 Author DME and ESA openSF team Date 21-08-2017
 Approved by Date 21-08-2017
 Michele Zundo

 Reason for change Issue Revision Date
 First Issue 1 0 12-05-2015
 Added Time Based scenario Orchestration 1 1 20-08-2015
 General clean-up and removal of obsolete feature in

line with openSF 2016
 1 2 13-04-2016

 Updates of Time orchestration file format to update
obsolete examples and coorect discrepancy

 1 2.1 15-08-2016

 Added definition of elementType and editorials 1 2.2 15-10-2016
 Corrected typos in type range definition and ref. doc

update
 1 2.3 21-08-2017

 Issue 1 Revision 0
 Reason for change Date Pages Paragraph(s)
 First Issue 12-05-2015 all All

 Issue 1 Revision 1
 Reason for change Date Pages Paragraph(s)
 Added Time Based scenario Orchestration 20-08-2015 22-26 §3.5

 Issue 2 Revision 2
 Reason for change Date Pages Paragraph(s)
 General cleanup of document structure 13-04-2016 all
 Added definition of matrix and array parameter types 13-04-2016 Section 2
 Removal of legacy syntax for conf file (old openSF) 13-04-2016 Section 2
 Consolidation of guidelines and example in section 4 13-04-2016 Section 3

 Issue 2 Revision 2.1
 Reason for change Date Pages Paragraph(s)
 Updated version of reference/applicable documents 15-08-2016 Section 1.6, 1.7 all
 Clarified naming convention 15-08-2016 Section 2.2.3 all
 Removed obsolete attributes 15-08-2016 Section 2.2.6.1 all

Page 3/38
ESA generic E2E simulator Interface Control Document ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

 Corrected XML examples 15-08-2016 Page 19, 21, all
 Harmonised naming Tag and Parameters’ and

removed redundant parameters
 15-08-2016 Section 2.3.2, 2.3.3 all

 Issue 2 Revision 2.2
 Reason for change Date Pages Paragraph(s)
 Added definition of elementType 15-10-2016 19 2.2.6.2
 Editorials (upper case/lower case) 15-10-2016 19 2.2.6.2

 Issue 2 Revision 2.3
 Reason for change Date Pages Paragraph(s)
 Updated reference documents 21-08-2017 9 1.6
 Corrected typos in INT/FLOAT range definition 21-08-2017 19 2.2.6.2

Page 4/38
ESA generic E2E simulator Interface Control Document ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

Table of contents:

1	 Introduction ... 5	
1.1	 Purpose ... 5	
1.2	 Scope .. 6	
1.3	 Acronyms and Abbreviations ... 7	
1.4	 Definitions ... 8	
1.5	 Applicable Documents ... 9	
1.6	 Reference Documents ... 9	
1.7	 Standards ... 9	
2	 Interface Definition of E2E modules .. 10	
2.1	 Module Execution ... 12	
2.1.1	 Environment variables .. 12	
2.1.2	 Command line arguments .. 13	
2.2	 Module Interface .. 14	
2.2.1	 Input/Output Files ... 14	
2.2.2	 Auxiliary Files ... 14	
2.2.3	 Module interface file naming conventions .. 14	
2.2.4	 Logging ... 16	
2.2.5	 Error handling .. 17	
2.2.6	 XML configuration files ... 18	
2.3	 Designing E2E modules for Time Based orchestration .. 24	
2.3.1	 Concepts .. 24	
2.3.2	 Timeline Configuration ... 27	
2.3.3	 Module Configuration ... 30	
3	 Guidelines for development and integration of E2E simulators ... 33	
3.1	 Coding guidelines and potential pitfalls ... 33	
3.2	 E2E simulator development walkthrough .. 33	
3.3	 Example Use Cases (time-driven) ... 36	

Page 5/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

1 INTRODUCTION

1.1 Purpose
An E2E Performance Simulator consists of a set of software modules simulating the space
segment, its data output and the subsequent ground retrieval (level 1 and Level 2). The
execution of these software modules needs to be orchestrated including in particular
invocation and provision of input data. The definition of a set of standardised conventions
and requirements, which the modules have to adhere to, allows then the use of a common
orchestrating framework.

Figure 1-1: E2E Performance Simulator

These general conventions have been built based on the experience in E2E development for
a number of different Earth Observation missions as well as from the experience gathered
in the development and evolution of the current standard ESA E2E orchestrating
framework OpenSF.

This document is describes therefore a common, generic interface for software modules,
which also allows their integration into the ESA E2E Performance Simulator orchestrating
infrastructure. These software modules can consist (but not only) of scene generators,
instrument or platform simulators and processors or analysis tools.
This interface has been designed to be lightweight and can be easily added to existing
modules and it is compatible with many of the existing E2E Performance Simulator
developed during Phase 0/A in Earth Observation as well with the orchestrating
infrastructure [OPENSF] currently used within ESA.

Page 6/38
ESA generic E2E simulator Interface Control Document ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

This document describes as well the best practices to be followed by coding a module
participating into an E2E Performance Simulator as well as the way modules are used and
operated within an orchestrating infrastructure (e.g. OpenSF).

While each developer can implement the ICD by itself, to facilitate the development ESA
makes available a set of reference libraries that already implement the interface according
to this document [OSFI].

While ICD is generic, it notes where relevant the legacy aspects originating by the use of
modules within the [OPENSF], e.g. when some feature is not yet supported in [OPENSF] or
when some construct is allowed for compatibility.

1.2 Scope
This document is divided in the following sections:

Ø Section 1 (this one) provides a glimpse on the document contents and purposes.
Ø Section 2 establishes the relations of this document with other documents and

standards.
Ø Section 3 details the orchestrating framework interfaces and gives some

development guidelines.
Potential readers of this document include scientists/engineers and modellers interested in
integrating their development into ESA E2E Simulator Orchestrating Framework.

Page 7/38
ESA generic E2E simulator Interface Control Document ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

1.3 Acronyms and Abbreviations
The acronyms and abbreviations used in this document are the following ones:

Table 1-1: Acronyms and abbreviations

Acronym Description
AD Applicable Document

API Application Programming Interface

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

DBMS Database Management System

E2E End-to-End Simulator

ESA European Space Agency

GUI Graphical User Interface

HMI Human machine Interface

HW Hardware

I/F Interface

I/O Input/Output

ICD Interface Control Document

MoM Minutes of Meeting

RD Reference Document

SR Software Requirements

TBC To Be Confirmed

TBD To Be Defined / Decided

Page 8/38
ESA generic E2E simulator Interface Control Document ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

1.4 Definitions
The definitions of the specific terms used in this document are the following ones:

Table 1-2: Relevant definitions table

Definition Meaning
Module Executable entity that can take part in a simulation. A module can be understood, broadly speaking,

also as an “algorithm”. Basically, it contains the recipe to produce products function of inputs. A
module contains also several rules to define the input, output and associated formats. Furthermore,
its behaviour is controlled by two configuration files. Overall, the architecture of a module consists
of:

Ø The source code and its binary compiled counterpart
Ø A global configuration file with parameters common to several modules
Ø A local configuration file with module specific parameters
Ø An input file that characterizes its inputs
Ø An output file that characterizes its outputs

Modules are not considered part of the framework.

Simulation A simulation is understood as a list of modules (or even a module alone) that is run sequentially and
produces observable results.

Session A session is defined as an execution of a simulation, an ordered set of simulations or an iterative
execution of simulation(s) with different parameter values. There are no restrictions on how to
concatenate these simulations, they do not have to be compatible between them but, if necessary, the
final output files of a simulation can be used by the following simulation.

Framework Software infrastructures designed to support and control the simulation definition and execution. It
includes the GUI, domain and database capabilities that enable to perform all the functionality of the
simulator.

Configuration
File

An XML file that contains all the parameters necessary to execute a module. A configuration file
instance must comply with the corresponding XML schema defined at module creation time.

Parameter A constant whose value characterizes a given particularity of a module. Parameters are user-
configurable, they are fixed before launching a module and, for practical reasons, and not all of them
shall be accessible from the HMI.

Batch mode The capability of the simulator to perform consecutive runs without continuous interactions with the
user. Batch mode checks the agreement or not between the output of a given module and the input
by the next one in the sequence of the simulation. Several modes of executions can be performed:

Ø Iteratively, executing one or more simulations
Ø Iteratively, executing the same simulation several times depending on the parameters

configuration
Ø Same as above but by executing a batch script.

Page 9/38
ESA generic E2E simulator Interface Control Document ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

1.5 Applicable Documents
The following table specifies the applicable documents that were compiled during the
project development.

Table 1-3: Applicable Documents

Reference Code Title

1.6 Reference Documents
The following table specifies the reference documents that, while not binding, provide
additional information.

Table 1-4: Reference documents

Reference Code Title Issue
[OPENSF] openSF-DMS-SUM-001 OpenSF User Manual Document 3.10

[OSFI] openSF-DMS-OSFI-DM-013 OpenSF Integration Libraries
Developers Manual

1.12

[CFI_FS] PE-ID-ESA-GS-584-1.1 EO Mission SW File Format
Specification

1.1

[EO-CFI] (http://eop-cfi.esa.int/index.php/mission-
cfi-software/eocfi-software)

Earth Observation Mission SW CFI 4.13

1.7 Standards
The following table specifies the standards that are complied with during project
development.

Table 1-5: Standard

Reference Code Title Issue
[BNF] (see also en.wikipedia.org

/wiki /Backus-Naur_form)
Algol-60 Reference Manual 5, 1979

[XML] (www.w3.org/TR/xml11/) Extensible Markup Language (XML) 1.1 Second Edition,
Sep 29 2006

[XSD] (http://www.w3.org/TR/xmls
chema-2/)

XML Schema Definition Language Oct 28 2004

[T_CCSDS] CCSDS 301.0-B-4 CCSDS Blue Book,Time Code Formats B-4,Nov 2010

[EO-FFS] PE-TN-ESA-GS-0001 Earth Observation File Format Standard 3.0

Page 10/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

2 INTERFACE DEFINITION OF E2E MODULES

An E2E Simulator requires a series of software modules to be executed in order with the
output of some models used as input to others. To implement these operations an E2E
orchestrating infrastructure in charge of invoking the software modules and passing them
the appropriate inputs is needed.

This section defines the generic E2E Simulator Interface by giving a description of how to
integrate a module (e.g. simulators, processors, tool, etc.) into a compliant E2E
orchestrating framework and providing in particular harmonised requirements in 3 areas:

Ø Data I/O interface: read input files and write output files,
Ø Logging and Error Handling interface : provide common log/error messaging, and
Ø XML Configuration interface: use the XML files configuration interface,

A module is defined as an entity represented by a single executable program or script.
These executables represent the smallest component within a simulation chain, and can
perform a given scientific algorithm, instrument modelling, data processing or any desired
part of the processing chain to be simulated.
In order to integrate modules into an orchestrating framework, developers shall use an
interface convention as follows:
• A common calling format from the command line (shell, cmd), as per section 2.1.2.
• Logging messages format for user information and error handling described in sections

2.2.4 and 2.2.5.
• XML configuration files for user-configurable parameters described in section 2.2.6.

Below these lines Figure 2-1 shows the diagram of the module interfaces.

Page 11/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

Figure 2-1: Module Entity Interfaces

A compliant module has to adhere to the following:

• Environment variables – modules can make use of environment variables passed

from the platform to the execution environment.
• Command line arguments – module executables must accept a defined list of

arguments.
• Logging – module output messages must comply with a given format.
• Error handling – successful executions must return a zero code to the operating

system.
• Configuration files – modules can accept a specific XML format file if they want

users to access and control their parameter values.

For a better understanding of modules logic, Figure 2-2 shows the flow diagram that a
module shall nominally follow. The module execution flow can also be as complex as
module developer wants provided that the interface compatibility is ensured on the item
mentioned above.

Module Entity

Module BinaryInput Output

Configuration
Files

Log

Standard Output

XML Parsing

Read Write

Page 12/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

Figure 2-2: Normal Module Execution Flow Diagram

2.1 Module Execution

2.1.1 Environment variables
While users and modules can define a set of environment variables before the simulation
execution that will be active during the whole execution process and used by either the
orchestrating infrastructure or by the modules, one particular environment variable is set
by the orchestrating framework: E2E_HOME. The E2E_HOME environment variable
stores the location of the orchestrating framework software; the modules can therefore
assume it is defined and use it accordingly.

In addition, for each simulation session, a session folder is defined by the E2E
orchestrating framework as $E2E_HOME/sessions/<unique_session_id>

Alternatively, users can also use or define modules that do not use the E2E_HOME
environment variable.

Module

Command Line Module Invocation

Command Line
Parsing

Read Input File/s

Parse XML
Configuration Files

Write Output File/s

Module Algorithm

Log Messages

Start Execution

Finish Execution

Page 13/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

2.1.2 Command line arguments
The convention for invoking a module is via its command line arguments. The general
format of the calling command is a list of tokens grouped as:

• Two configuration files: one Global and one Local
• Input files
• Output files

Command line shall adhere to the following format (described here in Extended Backus-
Naur form [BNF]):

<command_line> ::= <executable_name> <whitespaces> <configuration_files>
<whitespaces> <input_files> <whitespaces> <output_files> <EOL>

<executable_name> ::= <file_name>

<whitespace> ::= (“ “)

<whitespaces> ::= <whitespace>+

<file_name> ::= (<alphanumeric>)+

<configuration_files> ::= <list_of_files>

<input_files> ::= <list_of_files>

<output_files> ::== <list_of_files>

<list_of_files> ::= <file_name>(“,” <file_name>)*

Examples of command line are:

> executable config_file_global.xml,config_file_local.xml input_file1
output_file_1

> executable config_file_global.xml,config_file_local.xml
input_file_1,input_file_2 output_file_1,output_file_2

The first argument is the name of the binary (or executable shell-script).

The second argument is the global configuration file and followed/comma-separated with
the module local configuration file. These files are XML format files that shall be provided
with a related schema. The syntax of a configuration file is specified in section 2.2.6.

The next group of command-line argument is a comma separated list of input data file
names (which may be of various different formats) while the last group of command-line
arguments is a comma separated list of output data files (which also may be of various
different formats).

Page 14/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

Files declared in the command line arguments will be managed by an orchestrating
framework as taking part of the simulation chain and to be used by other modules and
therefore stored in the dedicated session folder during the simulation execution.

Note that file names and paths shall not include blank spaces. Furthermore, file names
must be separated by commas only. For the configuration, input and output file names,
full-path names shall be given or path names relative to the shell environment variable
E2E_HOME. In case filenames without any path are used, the working directory is
considered to be the dedicated session folder as defined above.

2.2 Module Interface

2.2.1 Input/Output Files
There are no constraints imposed on modules for reading input files or writing output files.
Modules have the freedom to specify as input/output either a directory or a set of one or
more files. In case a directory name is used, it is responsibility of each module to select the
relevant/correct inputs from the directory. (legacy note)1

2.2.2 Auxiliary Files
A compliant E2E orchestrating framework makes use of one separate directory per each
session execution and the input files that support an execution are copied to this session
directory by the orchestrating framework. To avoid disk space over usage the user can have
large files be part of a simulation as “auxiliary files”. An “auxiliary file” is therefore a data
file that is used as input to the simulation/processing chain but that will not be duplicated
and stored in the session folder (e.g. a large orbit data file or a reference data file which
does not change). Any auxiliary files are not declared in the command line as inputs but
passed to the module as a parameter within the configuration file as explained in section
2.2.6.

2.2.3 Module interface file naming conventions
In order to:

a) facilitate the integration activities into a processing chain of several modules
developed separately using coherent naming

b) allow the orchestration infrastructure to identify interfaces and automatically detect
input/output data availability

each module is (logically) identified by a user defined ModuleID and shall use the naming
conventions described here below.

1 When the input file interface of a module is defined as a directory or a mask, this ICD does not define a syntax to allow
the orchestrating infrastructure to verify that all the needed inputs are available.

Page 15/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

• Global Configuration files shall be named Global_Configuration.xml;
• Local Configuration files shall be named with each (user defined) module identifier

ModuleID followed by suffix “_Local_Configuration.xml” (e.g.
Geo_Local_Configuration.xml);

• Timeline file shall be named with string “Timeline_” followed by a user defined variable
part, e.g. Timeline_Commissioning_20150712.xml

Input/Output Simplified convention:

• Input directories or files shall be named with the module identifier followed by suffix

“_Input” (e.g. Iono_Input);
• Output directories or files shall be named with the module identifier followed by suffix

“_Output” (e.g. Scene_Output).

Input/Output Advanced convention: 2

This convention supports the use and generation by modules of input/output files with
filename having a fixed part and a variable part (e.g. the timestamp or sensing time). Its
use is envisaged to support the generation/ingestion of realistically named data products.

• Names for Input/Output directories or files shall be identified by a fixed string and a

variable part (regular expression).

2Responsibility to generate and use the filenames according to the advanced convention resides with the module
developers noting that in case openSF is used it expands the regular expression and forwards the resulting file list to the
module.

Page 16/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

•

2.2.4 Logging
The E2E orchestrating framework offers logging services based on the capture of the
messages that each module triggers/launches. The requirement here is that the modules
must send the messages to a standard output for that language (e.g. default unit number 6
in FORTRAN codes, stdout in C codes) following the next formatting described here below
in Backus-Naur Form [BNF]:

<message> ::= (<progress> | <log>) <EOL>

<progress> ::= “Progress” <whitespace> <delimiter> <whitespace> <progress_body>

<delimiter> ::= “|”

<progress_body> ::= <integer> “ of “ <integer>

<log> ::= <type> <whitespaces> <delimiter> <whitespaces> <text> [<whitespaces>
<delimiter> <whitespaces> <version>]

<type> ::= “Error” | “Warning” | “Info” | “Debug”

<version> ::= <digit>(“.” <digit>)*

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

<whitespace> ::= (“ “)

<whitespaces> ::= <whitespace>+

This format defines five different types of messages:
• Information. This is an informative message raised by the module describing a

harmless event. Module execution should continue with no interruptions.
• Warning. The module has detected a non-fatal error or anomalous condition in data

or during the processing that may cause a fatal error or affect the outputs in format or
content. The execution should continue with no interruption.

• Error. A major error has happened in the module execution, the module has detected
it and has time to “graciously” close the execution or handle it in a module-specific way.

• Debug. Detailed information of the module execution given to the user. Information is
intended to lead the user (or module developer) to support fixing a problem. This is a
harmless event so module execution should continue with no interruptions.
Modules shall present debug messages only if the environment variables named
“DEBUG_MODE” is defined and set as “On” in the module execution context.

• Progress. Numerical information on the amount of module execution performed.

Examples of log messages provided by an executable are:

Info | Method “m” started | 3.2

Warning | Method “m” applied an approximation to this calculation

Page 17/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

Error | Method “m” could not converge to a solution

Debug | Method “m” obtaining error = 0.001

Progress | 5 of 25

It is important to recall that it is the responsibility of the developer to decide when a
condition shall be flagged as a Warning instead of an Error, or when and where a Debug
message is relevant. Therefore, it is not ensured that all “Warning” messages shown in the
orchestrating framework have the same severity and consequences, i.e. they are
qualitatively the same among the different modules.
All those pieces of information composing a message must be joined together by the
module that has to write the complete message as string of characters formatted according
to this ICD. The version component of the message is optional and represents the version
of the logging library used to issue the message.
If the message does not fulfil this requirement it will not be considered as information to be
stored, thus, when closing a session, it will be lost.

The time-stamping of each message with actual computer time is the responsibility of the
logging infrastructure implementing this ICD; any other time information relative to the
domain of the processing module (e.g. sensing time associated with a certain data causing
the message or scenario simulation time) has to be added as part of the message. Any such
time representation is recommended to abide to the ASCII format as described in section
2.5 of [T_CCSDS] with millisecond decimal part and without the optional Z terminator
‘YYYY-MM-DDThh:mm:ss:nnn’, e.g. 2015-06-04T12:53:48:021

2.2.5 Error handling
An orchestrating framework implementing this ICD will interrupt the execution of a
simulation once a module returns a non-zero code. This is used to detect module crashes
and can be adopted by module developers as another way to stop the simulation execution
in case of errors. There is a basic difference between the return codes and the Error string
message:
• When a non-zero code is detected, it means that an error condition has happened and

that the module has been unable to detect it, handle it or is intentionally returning a
non-zero code to signal to the E2E orchestration simulator that the whole session has to
be aborted.

• When a string message of category “Error” is returned, it means that the module has
found a non-nominal situation according to the flow and tests coded by the module
developer. Thus, after an Error message, all the subsequent actions will proceed with
what the module handling strategy foresees with no intervention by the E2E
orchestration framework. While one option is to stop the module it can also take
corrective actions so that the module proceeds with further processing. These
possibilities are fixed by the developer at the time of coding it.

Page 18/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

2.2.6 XML configuration files
The behaviour of a given module can be controlled using the two XML configuration files
as previously described. This section describes the rules and conventions that such
configuration files have to follow in addition to standard [XML] rules, e.g. the preamble
<?xml version=”1.0” encoding=”UTF-8”?>.

Note that, the choice has been made to limit the parameter representation in the
configuration files to a fix set of types in order to reduce complications.

The configuration files shall contain the following xml elements:

2.2.6.1 Element “<group_name>”
This type of element constitutes an informative name related to the scope of the elements it
encloses. In addition to the mandatory cases listed below, the string group_name can be
any user defined text.
An element of type <group_name> can contain nested groups that can in turn enclose
parameters. When a <group_name> tag encloses a set of parameters, it is used by the
orchestrating infrastructure as a label to identify them.

A mandatory <group_name> tag identifying the configuration logical file name shall be
used in each file as listed below. This element constitutes the root xml element and
encloses the whole file and it is a string identifying the configuration file logical name. For
a module called “ModuleID” the following logical names shall be used for the each of the 3
configuration files identified in this ICD:

o <Global_Configuration version=”XX.YY.ZZ”>, (for Global Configuration File)
o <ModuleID_Local_Configuration version=”XX.YY.ZZ”> (for Local

Configuration Files)
o <Timeline_UserDefinedString version=”XX.YY.ZZ”> (for Timeline Files as

described in section 2.3.2)

2.2.6.2 Element <parameter>
Sequence of one or more tag with fixed string “parameter”. This element can define the
following attributes:

• name. This is the parameter identifier. Names cannot contain spaces;
• description. Short definition or meaning for the parameter;

NB Even if the configuration filenames violate the file naming
requirements described in section 2.2.3, the Configuration File Logical
name shall still be as specified above

Page 19/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

• type. The data type of the parameter. Possible values are system-independent type
of values, only intended for formatting validations. The data types supported by
configuration files are the following:
- STRING. A string of alphanumeric characters with a size not greater than 255.
- INTEGER. Integer number (no decimal part) between -231 and 231-1
- FLOAT(legacy note);3. Decimal number between 5.0 × 10-324 and 1.7 × 10308

(positive or negative)
- BOOLEAN. TRUE or FALSE.
- FILE. Absolute (or session folder -relative) pathname of a file in the file system.
- FOLDER. Absolute (or session folder -relative) pathname of a folder in the file

system.
- ARRAY. A generic array of elements (up to 3 dimensions), where each dimension

may have distinct sizes.
- MATRIX. A dedicated case of ARRAY of ARRAYs, with predefined dimensions

where the contained arrays must all use the same dimensions.
• elementType. Data type of the elements composing a complex type (ARRAY or

MATRIX). The data types supported by configuration files are the following:
- STRING. A string of alphanumeric characters with a size not greater than 255.
- INTEGER. Integer number (no decimal part) between -231 and 231-1
- FLOAT(legacy note);4. Decimal number between 5.0 × 10-324 and 1.7 × 10308

(positive or negative)
- BOOLEAN. TRUE or FALSE.
- FILE. Absolute (or session folder -relative) pathname of a file in the file system.

• value. (UNSUPPORTED) This is the numerical, string or file location value of the
parameter (legacy note);5

• units. Physical units of measurements if applicable. This attribute is optional;
• min. Numerical minimum value for the parameter. Only applicable for FLOAT and

INTEGER types. The out-of-range consistency checking is made by the framework.
• max. Numerical maximum value for the parameter. Only applicable for FLOAT and

INTEGER types. The out-of-range consistency checking is made by the framework.
• dims. Size of the dimensions. For example “1 3” is a vector of three elements and “3

3” is a square matrix of 3x3 elements. The first number refers to columns and the
second one to rows when describing a matrix.

For scalar variables, the “dims” attribute can be avoided.

3 The Java types “int” and “double” fix the range of values in INTEGER and FLOAT parameters
4 The Java types “int” and “double” fix the range of values in INTEGER and FLOAT parameters
5 Specification of the parameter values via the Value attribute is a legacy deprecated syntax used up to OpenSF version 3.3
and not supported by the present version of the ICD and by newer version of openSF.

Page 20/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

To support complex/structured parameters and matrices (or more generically arrays of
elements) the following syntax is prescribed (legacy note)6.

1. to represent a vector
<MyModule_Local_Configuration	version=“01.03.00”>	
	 <parameters>	
	 	 <parameter	name=”myV”	description=””	type=”ARRAY”	elementType=”INTEGER”	
dims=”5”>1	2	3	4	5</parameter>	
	 </parameters>	
</MyModule_Local_Configuration>	

2. to represent a (two-dimension) matrix
<MyModule_Local_Configuration	version=”01.03.00”>	
	 <parameters>	

		<parameter	name="Mz"	description=“example	2a"	type="MATRIX"	dims=“4	4“	>		
				<parameter	name="v1"	type="ARRAY"	elementType=“INTEGER”>	1	2	3	4</parameter>		
				<parameter	name="v2"	type="ARRAY"	elementType=“INTEGER”>	5	6	7	8</parameter>		
				<parameter	name="v3"	type="ARRAY"	elementType=“INTEGER”>	9	10	11	

12</parameter>		
				<parameter	name="v4"	type="ARRAY"	elementType=“INTEGER”>	13	14	15	

16</parameter>		
		</parameter>	

	 </parameters>	
</MyModule_Local_Configuration>	

3. to represent a two-dimension generic array
<MyModule_Local_Configuration	version=”01.03.00”>	
		<parameters>	
				<parameter	name="spectrum"	description=“example	3a"	type="ARRAY"	dims=“4“	>		
						<parameter	name=”v1”	type=”ARRAY”	elementType=”INTEGER”	dims=”3”>1	2	3	
</parameter>	
						<parameter	name=”v2”	type=”ARRAY”	elementType=”INTEGER”	dims=”6”>4	5	6	7	8	
9</parameter>	
						<parameter	name=”v3”	type=”ARRAY”	elementType=”INTEGER”	dims=”5”>10	11	12	13	
14</parameter>	
						<parameter	name=”v4”	type=”ARRAY”	elementType=”INTEGER”	
dims=”1”>15</parameter>	
				</parameters>	
		</parameters>	

6 The simplified format for vector/matrices (based on simple concatenation of types) defined in ICD version 1.1 and
accepted by openSF up to version 3.4 is deprecated by the current version of the ICD and not to be used.

Page 21/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

</MyModule_Local_Configuration>	

4. to represent a three-dimension generic array
<MyModule_Local_Configuration	version=”01.03.00”>	
		<parameters>	
				<parameter	name="Mx"	description=“example	3b"	type="ARRAY"	dims=“1“	>		
						<parameter	name="inner	Mx"	type="ARRAY"	dims=“4”	>		
								<parameter	name=”v1”	type=”ARRAY”	elementType=”INTEGER”	
dims=”1”>1</parameter>	
								<parameter	name=”v2”	type=”ARRAY”	elementType=”INTEGER”	dims=”3”>2	3	
4</parameter>	
								<parameter	name=”v3”	type=”ARRAY”	elementType=”INTEGER”	dims=”2”>5	
6</parameter>	
								<parameter	name=”v3”	type=”ARRAY”	elementType=”INTEGER”	
dims=”1”>7</parameter>	
						<parameter>	
				<parameter>	
		</parameters>	
</MyModule_Local_Configuration	>	

For vector/matrix types the values consists of blank-separated list of values by rows. To
fully describe a parameter of a complex type attribute elementType is used to define the
element type. Attribute elementType may have as value all currently supported parameter
simple types.

String vectors must enclose each element in single quotes. For example “’a string’ ‘second
string’ ‘last string’”. The situation for an array of strings can be handled with generality, as
it is possible to manage strings that included blanks or commas. For example, for a case
with dims="1 3" (an array of three strings) these are the possible options:

• Value set to ’PMT’ ‘PMT’ ‘PMT’. OK. Three values
• Value set to P T P T P T-> Invalid. Six values in a vector of size three

2.2.6.3 Validation Schemas
An XSD schema can be used by the module to validate the module configuration files.
The freedom allowed in the use of group names in XML configuration files makes
impossible the creation of a unique XSD schema file valid to all of them. Note that module
developers are able to create as many groups as they desire and there are no restrictions in
the number of nesting levels.
The generic XSD schema of the parameter element is shown below. This piece of xml
schema can be used in the validation schemas of a configuration files as it includes the
description of the parameter structure and the constraints it involves.

Page 22/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

As from version 1.2 of this generic ICD the only way of specifying parameter values in
configuration files is as XML element content. The convention of previous version of this
ICD to use a “value” attribute is deprecated (legacy note)7.

An example of the convention can be seen in the following configuration parameter:

New convention, value as XML element content
<parameter	name=”param1”	description=”text”	type=”DOUBLE”>1.0</parameter>	

The parameter element XML schema supporting both conventions is:
<?xml	version="1.0"	encoding="UTF-8"?>	
<xs:schema	xmlns:xs="http://www.w3.org/2001/XMLSchema">	
	 <xs:element	name="parameter">	
	 	 <xs:complexType>	
	 	 	 <xs:attribute	name="units"	type="xs:string"/>	
	 	 	 <xs:attribute	name="type"	use="required"	type="TypeElement"/>	
	 	 	 <xs:attribute	name="name"	type="xs:string"	use="required"/>	
	 	 	 <xs:attribute	name="elementType"	type="TypeElement"/>	 	
	 <xs:attribute	name="min"	type="xs:string"/>	
	 	 	 <xs:attribute	name="max"	type="xs:string"/>	
	 	 	 <xs:attribute	name="dims"	type="xs:string"/>	
	 	 	 <xs:attribute	name="description"	type="xs:string"	use="required"/>	
	 	 </xs:complexType>	
	 </xs:element>	
	 <xs:simpleType	name="TypeElement">	
	 	 <xs:restriction	base="xs:string">	
	 	 	 <xs:enumeration	value="BOOLEAN"/>	
	 	 	 <xs:enumeration	value="FILE"/>	
	 	 	 <xs:enumeration	value="FLOAT"/>	
	 	 	 <xs:enumeration	value="INTEGER"/>	
	 	 	 <xs:enumeration	value="STRING"/>	
	 	 </xs:restriction>	
	 </xs:simpleType>	
</xs:schema>	

7 The orchestrating infrastructure [OPENSF] up to version 3.3 enables executing sessions with configuration files
containing parameters defined in either way. Starting from openSF v3.5 only version1.2 of the present ICD is supported.

Page 23/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

2.2.6.4 Adoption of Earth Observation File Format
The use of the Earth Observation File Format [EO-FFS] is oriented to ground segment
software in a near-operational environment. This format is not used for the XML
configuration files defined in this interface but its use is recommended as a standard,
harmonised format for the input/output files and data used by each module. This is
strongly recommended, in particular, for the elements that simulate the ground processing
(e.g. Level 1/Level 2 Processor Prototypes).

Note that if any of the software modules makes used of Earth Observation Mission SW CFI
libraries [EO-CFI] e.g. to support orbital propagation, visibility calculations and read/write
of XML files, then these files are fully compliant with the [EO-FFS].

Page 24/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

2.3 Designing E2E modules for Time Based orchestration

This section prescribes how to define the standard configuration interface of each module
in order to allow invocation in a time based fashion from any complaint orchestrating
framework.

In a real operational satellite system, the behaviour and stimuli presented to the satellite
are a function of time and a dynamic function of the operational control by the ground or
on-board. Depending on instrument mode, attitude, position different stimuli are available
and different on-board functions active (e.g. different observation modes, calibration,
downlink, attitude determination, etc). Being able to flexibly drive the modules of an E2E
simulation from the infrastructure as if flying the actual mission allows an efficient
execution of the simulation, the assessment of mission performance in representative
operational scenario, a quick way for test data generation and in general gives the freedom
to explore different operational concepts in an automated way and not restricted to feeding
static test stimuli to the simulation modules and avoiding the need to hardcode dynamic
behaviour inside static data.

The Time based scenario execution implements the notion of time driven execution of a
simulation whereby each simulation module is invoked in a sequence of time segment. The
implementation was designed to maintain interfaces compatibility with modules compliant
with previous orchestrating infrastructures operating mode (e.g. openSF up to version 3.3).
The interface described in this ICD therefore (a) keeps the previous approach for invoking
a module (as per section 2.1.2); (b) naturally extends existing configuration files (define in
section 2.2.6) to include additional time related parameters.

This section introduces the concepts and the definition in term of the interfaces also with
regards to the reference [OPENSF] orchestrating infrastructure that implements this ICD.

2.3.1 Concepts

2.3.1.1 E2E chain execution categories
To guide the time driven execution each module in an E2E chain are classified in one of
two execution categories: Simulation and Processing. A module of the “Simulation”
category can be run either in time-driven execution or in data-driven execution, while a
module of the “Processing” category is instead run only in data-driven execution.

Page 25/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

2.3.1.2 Time-driven vs. Data-driven execution
Each overall E2E chain/session may be performed either in time-driven or data-driven
execution (legacy note)8
When in time-driven execution the modules categorised as “Simulation” shall be executed
in time-driven fashion (iterating in time) while in data-driven execution the same modules
are executed in data-driven configuration (driven by data availability), on the other hand
the modules categorised as “Processing” are always executed in data-driven configuration
regardless of the overall session execution strategy therefore only for “Simulation”-type
modules can time-driven configuration be applied.

2.3.1.3 Module-execution modes
Each module may have several associated module-execution modes as identified by its
developer. Each module-execution mode is defined by a given set of parameters affecting
the functions of that module, as example a parameter could be used to set the module to
perform calibration simulation instead of measurements. For a given module with several
available modes there may be parameters which are mode-independent (so applicable to all
modes) and parameters, which are mode-specific. Nominally a mode is defined by a
specific assignment of values to their corresponding mode parameters and these shall be
passed by the orchestrating infrastructure to the module, it is however possible to manually
override via the infrastructure these pre-defined values in a given execution although this is
transparent to the module.

2.3.1.4 Timeline Segment
A timeline is composed by a time-ordered sequence of non-overlapping time segments,
each defined by:

a. a start time;
b. one of duration, number of steps and step size or end time;
c. a set of module-execution modes (one per each module of the E2E chain);
d. a status (active/inactive);
e. an (optional) set of overridden module execution mode parameters.

2.3.1.5 Session execution
In time-driven mode the orchestration framework invokes, for each timeline segment, the
(simulation) modules in the order defined by the setup, each time passing as input the
parameters of the selected mode defined by the timeline segment being executed. The
process is repeated until the end of the timeline.

8The “snapshot” execution strategy implemented in OpenSF up to version 3.2 where the whole processing chain is run
without time reference - “static” mode - is a special case of the data-driven execution

Page 26/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

The time driven related parameters are passed to the modules thru the global configuration
file grouped in an xml tag. The mode specific parameters are passed to each module thru
the local configuration file grouped in an xml tag with the mode name. If the mode specific
parameters were overridden in the timeline definitions this shall be signalled with an xml
attribute in the mode group tag.

The orchestrating framework shall manage a single working directory for a session in time-
driven execution (labelled with the execution timestamp). Within this working directory
there shall be a separate working folder for each timeline segment (labelled with the
simulation timestamp). A session in data-driven execution shall use a single working folder
were the several executions of each given module shall access their inputs and outputs.

Page 27/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

2.3.2 Timeline Configuration
The Timeline configuration is implemented via a file containing the information defining
the time-driven execution of a session in a self-contained manner, i.e., containing all
required parameterisation that allows the orchestrating infrastructure to execute and
replicate a given time based simulation.

This file is a standalone file whose
name/path is referred to from within the
global configuration file formatted as a
parameter. (legacy note)9

This approach enables the sharing the
timeline file between different
orchestrating infrastructure installations
with the same time based orchestration
configuration.

The timeline configuration file is an XML
file compliant with the configuration files
format (defined in section 2.2.6) and with
the logical structure shown in Figure 2-3.

This file is not needed/present if the
simulation is not time driven.

Figure 2-3 - E2E simulation with processing modules and
simulation modules driven in time

9 The approach to use a reference within the global configuration file rather than adding a new input in the interface to
each module has been selected to maintain backward interface compatibility with existing modules.

Page 28/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

The Timeline configuration file contains the following set of data:

a. the generic time parameters;
b. the list of time segments;
c. the set of module execution mode definitions along with their default

parameter values configuration.

These 3 elements are described here below:

A. The generic time parameters are the following:
- InitialEpoch. A Time indicated the start time of the entire time driven

execution;
- DefaultTimeSegmentDuration. An Integer with the default duration (in

seconds) to apply when adding a new time segment to the timeline.

B. A time segment is defined by the following parameters:
- TimeSegmentStartTime. A Time indicating the start time of the time

segment;
- TimeSegmentDuration. An Integer indicating the duration of the time

segment (in seconds);
- Active. An Boolean indicating whether the time segment is to be executed;
- A set of module execution modes, identifying the mode in which each

module shall execute during that time segment. It may optionally include a set of
parameters re-defining module execution mode parameters used when the user
intends to manually override the default values for a module execution mode.
Each module execution mode is defined by the set of specific parameters
grouped in an xml tag with the mode name.

C. A module execution mode definition is a sequence of module execution modes

grouped in an xml tag for each module name (module identifier as represented in
the orchestrating framework).

The root element of the timeline configuration files shall be <Timeline>.

An example of a timeline configuration file is here below:

timeline_scenario.xml

<?xml	version="1.0"	encoding="UTF-8"?>	
<Timeline	version=”00.15.33”>	
				<TimeConfiguration>	
								<parameter	name=”InitialEpoch”	description=”Time	Driven	Execution	Start	Time”	
type=”TIME”>20150101T00:00:00:000</parameter>	

Page 29/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

<parameter	name=”DefaultTimeSegmentDuration”	description=”Default	Duration	of	new	
Time	Segments”	type=”INTEGER”	units=”second”>300</parameter>	
				</TimeConfiguration>	
				<TimeSegments>	
								<TimeSegment>	

<parameter	name=”TimeSegmentStartTime”	description=”Time	Segment	Start	Time”	
type=”TIME”>20150101T00:00:00:000</parameter>	

<parameter	name=”TimeSegmentDuration”	description=”Time	Segment	Duration”	
type=”INTEGER”	units=”second”>300</parameter>	

<parameter	name=”Active”	description=”Time	Segment	Status”	type=”BOOLEAN”	
>TRUE</parameter>	

<ModuleExecutionModes>	
				<GeometryModule>	
								<Nominal/>	
				<GeometryModule>	
				<SceneGenerator>	
								<Nominal	status=”override”>	
												<parameter	name=”toa_factor”	type=”FLOAT”>1</parameter>	
												<parameter	name=”pol_factor”	type=”FLOAT”>0.02</parameter>	
								</Nominal>	
				<SceneGenerator>	
</ModuleExecutionModes>	

								</TimeSegment>	
								<TimeSegment>	

<parameter	name=”TimeSegmentStartTime”	description=”Time	Segment	Start	Time”	
type=”TIME”>	20150101T00:05:00:000</parameter>	

<parameter	name=”TimeSegmentDuration”	description=”Time	Segment	Duration”	
type=”INTEGER”	units=”second”>10</parameter>	

<parameter	name=”Active”	description=”Time	Segment	Status”	type=”BOOLEAN”	
>FALSE</parameter>	

<ModuleExecutionModes>	
				<GeometryModule>	
								<Manouvre/>	
				<GeometryModule>	
				<SceneGenerator>	
								<Nominal/>	
				<SceneGenerator>	
</ModuleExecutionModes>	

								</TimeSegment>	
				</TimeSegments>	
				<ModuleExecutionModeDefinitions>	
								<GeometryModule>	
												<ModelExecutionMode>	

				<Nominal>	

Page 30/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

								<parameter	name=”NBands”	description=”text”	type=”INTEGER”>3</parameter>	
				</Nominal>	

												</ModelExecutionMode>	
												<ModelExecutionMode>	
																	<Manouvre>	

								<parameter	name=”acceleration”	type=”FLOAT”>0.01</parameter>	
								<parameter	name=”duration”	description=”Duration”	

type=”INTEGER”>1</parameter>	
																	</Maneuver>	
												</ModelExecutionMode>	
								</GeometryModule>	
								<SceneGenerator>	
												<ModelExecutionMode>	

				<Nominal>	
								<parameter	name=”toa_factor”	type=”FLOAT”>2</parameter>	
								<parameter	name=”pol_factor”	type=”FLOAT”>0.1</parameter>	
				</Nominal>	

												</ModelExecutionMode>	
												<ModelExecutionMode>	

				<Off>	
								<parameter	name=”calibration”	type=”BOOLEAN”>TRUE</parameter>	
				</Off>	
</ModelExecutionMode>	

								</SceneGenerator>	
				</ModuleExecutionModeDefinitions>	
</Timeline>	

2.3.3 Module Configuration
The parameters related to the time driven execution mode are passed10 to the modules thru
the configuration file(s) grouped in the xml tag <TimeExecution>.

2.3.3.1 Global Configuration File
The fixed set of global time driven related parameters included in the global configuration
file are the following:

10 In openSF this the records related to time orchestration are automatically updated to the user Global Configuration file
by using the information of the Timeline File.

Page 31/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

- InitialEpoch. A Time indicated the start time of the entire time driven
execution scenario.

- TimelineFile. The path of the timeline configuration file.

global.xml
<?xml	version="1.0"	encoding="UTF-8"?>	
<Global_Configuration	version=”01.00.00”>	
				<TimeConfiguration>	

<parameter	name=”InitialEpoch”	description=”Time	Driven	Execution	Start	Time”	
type=”TIME”>20150101T00:00:00:000</parameter>	

<parameter	name=”TimelineFile”	description=”Time	Driven	Execution	Timeline	
Configuration	File”	type=”FILE”>timeline_scenario.xml</parameter>	
</TimeConfiguration>	
</Global_Configuration>	

Note that if time-driven execution is not implemented or supported by modules the
corresponding time-related entries in the Global Configuration file will not be present.

2.3.3.2 Local Configuration File
The fixed set of parameters related to the module-specific time driven execution and that
are included in each local configuration file are the following:

- ModuleExecutionMode. A String representing the module execution mode.
- TimeSegmentStartTime. A Time indicating the start time of the specific

timeline execution step for the given module.
- TimeSegmentDuration. The seconds that define the duration of the time step

to be executed by the module.

The mode specific parameters are passed to the module thru the existing local
configuration file grouped in an xml tag with the mode name. If the module specific
parameters were overridden in the timeline definitions this shall be signalled with an xml
attribute in the mode group tag.

localA.xml
<?xml	version="1.0"	encoding="UTF-8"?>	
<ModuleA_Local_Configuration	version=”04.15.33”>	
				<TimeConfiguration>	

<parameter	name=”ModuleExecutionMode”	description=”Module	Execution	Mode”	
type=”STRING”>Maintenance</parameter>	

<parameter	name=”	TimeSegmentStartTime”	description=”Time	Driven	Execution	Start	
Time”	type=”TIME”>20150101T00:00:00:000</parameter>	

Page 32/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

<parameter	name=”TimeSegmentDuration”	description=”Execution	Length	(seconds)”	
type=”INTEGER”	units=”second”>300</parameter>	
				</TimeConfiguration>	
				<parameter	name=”Lambda”	description=”Central	Wavelength”	type=”DOUBLE”	
units=”nm”>500.3</parameter>	
				<parameter	name=”ErrorThreshold”	description=”Threshold	of	the	output	RMS	error”	
type=”DOUBLE”	units=”Km”	dims=”1”>1.0</parameter>	
				<Off>	

<parameter	name=”calibration”	description=”text”	type=”BOOLEAN”>TRUE</parameter>	
				</Off>	
				<Maintenance	status=”override”>	

<parameter	name=”angle”	description=”text”	type=”FLOAT”>0.5</parameter>	
				</Maintenance>	
</ModuleA_Local_Configuration	version=”04.15.33”>	

Note that if time-driven execution is not implemented or supported by modules the
corresponding time-related entries in the Local Configuration file will not be present.

Page 33/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

3 GUIDELINES FOR DEVELOPMENT AND INTEGRATION OF
E2E SIMULATORS

3.1 Coding guidelines and potential pitfalls
 Developers should have in mind the following points when coding modules:
• Memory handling is responsibility of the module. This ICD does not require that a

compliant orchestrating framework manages the memory assignments and destroys
any data structure created by the module;

• A module can create child processes, but their management is responsibility of the
parent module and not of the orchestrating framework;

• This ICD does not require that a compliant orchestrating framework detects when a
module execution is “halted” or in an infinite loop unless a non-zero code is returned on
exit. It is therefore recommended that logging information (see section 2.2.4) are issued
around every two seconds to allows the orchestrating framework to update the progress
bar informing, the user that there is no problem and to provide a more user friendly
simulation environment.

3.2 E2E simulator development walkthrough
This section gives an example of the development process for a generic E2E simulation
using modules compliant with this ICD.

 The steps given in this section can be taken as guidelines for a correct integration of an
E2E simulator. The simulation chain used along this section is depicted in Figure 3-1.

Figure 3-1: Fictitious Simulation Scenario

Module A
moduleA.exe

Configuration
Interface

localA.xml global.xml

Input
input.txt

Intermediate
interm.txt Module B

moduleB.exe

Configuration
Interface

Output
output.txt

localB.xml global.xml

Log
Standard Output

Log
Standard Output

Page 34/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

There are a series of steps that a developer has to address in order to accomplish a
simulation goal and integrate all the system into a compliant orchestrating framework.

a) Identify the elements involved in the simulation scenario. In this example
are:

Ø Two modules – Module A and B (yellow boxes).
Ø Three product files – Input, Intermediate and Output (green boxes).
Ø Three XML configuration files – a global and two local files (blue boxes).

b) Provide a detailed description of the simulation logic. The one depicted in

the example is as follows:
Ø The input for the simulation chain is the file “input.txt”, it is also the input for

Module A.
Ø There are two modules, one after the other, in the simulation (Module A and Module

B). These modules execute a set of algorithms and are callable by command line
invocation.

Ø Module A generates an output file (“interm.txt”) that Module B accepts as input.
Ø The output of the simulation chain is the file generated “output.txt” and is

considered as the result product in the chain.
Ø Module A and Module B have a configuration interface requiring two files, one local

(“localA.xml” and “localB.xml”) and one global that is common to both modules
(“global.xml”). These configuration files contain the simulation parameters that
govern the internal functionality of modules. The ones relevant for all modules in
the simulation shall be identified and assigned to global configuration file.

Ø The log messages system provides information about the current state of the
modules during a simulation run.

c) Develop the modules following the architecture defined in the design

phase. The development process for the example shall be:
Ø Build the configuration files with the simulation parameters. Simplified example

configuration files are shown here below.

global.xml

<?xml	version="1.0"	encoding="UTF-8"?>	
<Global_Configuration	version=”01.03.07”>	
			 <parameter	name=”Nbands”	description=”Number	of	Bands”	
type=”INTEGER”>11</parameter>	
			 <parameter	name=”MissionID”	description=”Mission	Identifier”		
type=”STRING”>Sentinel3</parameter>	
</Global_Configuration>	

Page 35/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

localA.xml

<?xml	version="1.0"	encoding="UTF-8"?>	
<ModuleA_Local_Configuration	version=”04.15.33”>	
	 <parameter	name=”ErrorThreshold”	description=”Threshold	of	the	output	RMS	error”	
type=”DOUBLE”	units=”Km”>1.0</parameter>	
</ModuleA_Local_Configuration>	

localB.xml

<?xml	version="1.0"	encoding="UTF-8"?>	
<ModuleB_Local_Configuration	version=”6.15.00”>	
	 <parameter	name=”Lambda”	description=”Central	Wavelength”	type=”DOUBLE”	
units=”nm”>500.3</parameter>	
</ModuleB_Local_Configuration>	

Ø Implement the modules input/output interfaces. This step involves the reading of

input files and configuration files (XML parsing), write the output files and the
implementation of the command line calling interface.

Ø Implement the module logic, the algorithm.
Ø Perform Unit testing for the modules.

Once the development of the tasks above is completed, the test of manually running the
simulation chain is possible the following commands:

> moduleA.exe global.xml,localA.xml input.txt interm.txt

> moduleB.exe global.xml,localB.xml interm.txt output.txt

d) Define the simulation scenario within the orchestrating framework.

e) Verify the integration within the orchestrating framework by executing

the simulation using the framework.

Page 36/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

3.3 Example Use Cases (time-driven)

Use Case 1: E2E simulation including both simulation modules and processing modules,
when the simulation modules are driven in time-based synchronisation

From a conceptual point of view the expected behaviour of an execution in such scenario
corresponds to what is depicted in Figure 3-2.

Figure 3-2 - E2E simulation with processing modules and simulation modules driven in time

Note that it is outside the orchestrating framework’s orchestration scope to understand the
events of "Data available for processing" (the "stars" in the figure above). These events
depend on the processing chain definition as well as on the actual outputs of each module
or even the particular implementation of the modules. Therefore the emulation of this flow
can be performed in the following alternative ways:

Page 37/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

a) always execute the entire processing chain (S1 -> P2) at each time moment, but
P1+P2 shall only do "meaningful" computation if S3 has produced the consolidated
outputs (identifiable by P1 through a given mask);

b) Execute the simulation in two separate steps:
i. execute the time-driven execution, where the Simulation Module’s part of the

chain is executed, with one independent execution for each time moment;
ii. after concluding the above execution, trigger the data-driven execution,

where the Processing Modules part of the chain are executed, configured to
have as input the output of the previous time-driven execution;

Either way the underlying idea is that the responsibility for the "handover" between
Simulation modules and Processing modules is either on the modules implementation or
the operator, not on the orchestrating framework.

Page 38/38
ESA generic E2E simulator Interface Control Document
Date 21-08-2017 Issue 1 Rev 2.3

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED – For Official Use

Use case 2: Multi-Instrument E2E simulation including both simulation modules (in time-
driven execution) and processing modules, with different timelines for each instrument

In the example of Figure 3-3 consider that INSTR1 is in Nominal mode for 2 hours while
INSTR2 changes every 10 second between CAL and NOM_A, NOM_B, NOM_C modes.

Figure 3-3 - Multi-Instrument E2E simulation with different timelines for each instrument

The shown E2E chain shall be achieved by having three separate simulations (one for
Instr1, one for Instr2 and one for the "Processing" modules) executed separately and in
sequence by the operator.

NB: this is independent of having or not the time-driven orchestration: a "static" version of
the multi-instrument scenario depicted also requires separate simulation executions.

