

Ref.: EOCFI-FTD-004 Issue: 1.2 Date: Page:

06/09/2010 1/10

CRYOSAT-2: TRANSPONDER PASS TOOLS - FILE TRANSFER DOCUMENT

1. INTRODUCTION

This is the File Transfer Document for the executable routines that compute ground-track points for a given set of visibility time windows over a zone or transponder location as well as information associated to the point of closest approach within each pass over a transponder.

1.1 Change History

lssue	Change Description
1.2	First issue of public distribution

1.2 **Distribution List**

Project/Unit	Name	Project/Unit	Name	Project/Unit	Name

2. ARCHIVE CONTENT

The following archive file has been delivered (generated with the zip utility): EOCFI-FTD-004_1_2.zip

The archive has the following MD5 checksum: 81c322c8b7163b0da73e1a87fbb4982c

The archive contains the following files:

Transponder_Pass_Routines_v1_2/INPUT/CS_OPER_MPL_ORBPRE_20100517T000000_20100617T000000 0001.EEF Transponder_Pass_Routines_v1_2/INPUT/SDF_ORBIT.CS Transponder_Pass_Routines_v1_2/INPUT/input_data_transponder.txt Transponder Pass Routines v1 2/INPUT/input_data_zone.txt Transponder Pass Routines v1 2/INPUT/zones.dbf Transponder_Pass_Routines_v1_2/LINUX/transponder_min_ground_distance Transponder Pass Routines v1 2/LINUX/transponder min satellite distance Transponder Pass Routines v1 2/LINUX/zone intersection lon lat Transponder_Pass_Routines_v1_2/MACINTEL/transponder_min_ground_distance Transponder_Pass_Routines_v1_2/MACINTEL/transponder_min_satellite_distance Transponder_Pass_Routines_v1_2/MACINTEL/zone_intersection_lon_lat Transponder_Pass_Routines_v1_2/OUTPUT/output_data_LLF_CRYOSAT.txt Transponder_Pass_Routines_v1_2/OUTPUT/output_data_TRANSPONDER_CRYOSAT_min_ground_distance.txt Transponder_Pass_Routines_v1_2/OUTPUT/output_data_TRANSPONDER_CRYOSAT_min_satellite_distance.txt Transponder_Pass_Routines_v1_2/README.txt

3. ARCHIVE CONTENT DESCRIPTION

File	Description
INPUT/	Cryosat-2 Predicted Orbit File
CS_OPER_MPL_ORBPRE_20100517T000000_20100617T000000_0001.EEF	example (input)
INPUT/SDF_ORBIT.CS	Cryosat-2 Swath Definition File
	(input)
INPUT/input_data_transponder.txt	Input configuration file for the
	executables
	transponder_min_ground_distance
	transponder_min_satellite_distance

 Ref.:
 EOCFI-FTD-004

 Issue:
 1.2

 Date:
 06/09/2010

 Page:
 2 / 10

INPUT/input_data_zone.txt	Input configuration file for the executable zone intersection lon lat
INPUT/zones.dbf	Zone Database File example (input)
LINUX/transponder min ground distance	Executable tools for Linux
LINUX/transponder_min_satellite_distance	
LINUX/zone_intersection_lon_lat	
MACINTEL/transponder_min_ground_distance	Executable tools for Mac Intel
MACINTEL/transponder_min_satellite_distance	
MACINTEL/zone_intersection_lon_lat	
OUTPUT/output_data_LLF_CRYOSAT.txt	Output file generated by the executable zone intersection lon lat
OUTPUT/output_data_TRANSPONDER_CRYOSAT_min_ground_distance.txt	Output file generated by the executable transponder_min_ground_distance
OUTPUT/output_data_TRANSPONDER_CRYOSAT_min_satellite_distance.txt	Output file generated by the executable transponder_min_satellite_distance
README.txt	Quick reference

4. INSTALLATION

The archive can be expanded with the command unzip (in Linux/Mac Intel).

5. <u>USAGE</u>

5.1 <u>Executable program zone_intersection_lon_lat</u>

For a requested UTC time interval, the executable program *zone_intersection_lon_lat* computes the ground-track longitude and latitude pairs (with a given time step) corresponding to the passes obtained over a zone or transponder location.

5.1.1 Input configuration file description *input_data_zone.txt*

The executable program *zone_intersection_lon_lat* expects as input a configuration file named *input_data_zone.txt*. Note that the configuration file has to be placed in the same folder where the executable routine is located.

The configuration file *input_data_zone.txt* contains the following input parameters (provided in the order in which they have to be supplied):

INPUT PARAMETERS	Definition	Value
Satellite ID	Satellite identifier	CRYOSAT
Predicted or Restituted Orbit Filename	Filename (it may include	Given by the user
	the path to the file) of the	
	Predicted or Restituted	
	Orbit File	
Time Interval Type Flag	Flag to indicate the type of	0=orbit range
	time interval to use for the	1=UTC time range
	calculation	
Start Orbit	Start orbit	Given by the user
or	or	
UTC Start Time	UTC start time (in format	
	YYYY-MM-	
	DD_HH:mm:ss.sssss) of the	
	time interval	

 Ref.:
 EOCFI-FTD-004

 Issue:
 1.2

 Date:
 06/09/2010

 Page:
 3 / 10

Stop Orbit	Stop orbit	Given by the user
or	or	
UTC Stop Time	UTC stop time (in format	
	YYYY-MM-	
	DD_HH:mm:ss.sssss) of the	
	time interval	
Time Step [s]	Time step (in seconds) for	Given by the user
	the computation of	
	intermediate points	
Swath Definition Filename	Filename (it may include	SDF_ORBIT.CS
	the path to the file) of the	
	swath definition file.	
Zone Database Filename	Filename (it may include	zones.dbf
	the path to the file) of the	Two example zones are
	zone database file.	included.
Zone ID	Zone identifier	Given by the user. It has to
		match the value of one of the
		<zone_id> tags in Zone</zone_id>
		Database File.

5.1.2 Output file description *output_data_LLF_CRYOSAT.txt*

The executable program *zone_intersection_lon_lat* generates as output a file *output_data_LLF_CRYOSAT.txt*. The output file includes comments (starting with the symbol #) describing its contents. Note that it is created in the same folder where the executable routine is located.

5.1.3 Example

5.1.3.1 Input configuration file

The input configuration file and the executable tool have to be contained in the same directory.

```
An example of input configuration file input_data_zone.txt, with UTC start/stop times given as time interval is provided below:
```

```
CRYOSAT

./AUX_FILES/CS_OPER_MPL_ORBPRE_20100517T000000_20100617T000000_0001.EEF

1

2010-05-21_00:00:00.000000

2010-05-26_00:00:00.000000

1.0

./AUX_FILES /SDF_ORBIT.CS

./AUX_FILES /zones.dbf

cryosat transponder
```

An example of input configuration file *input_data_zone.txt*, with orbit start/stop given as time interval is provided below:

```
CRYOSAT
./AUX_FILES/CS_OPER_MPL_ORBPRE_20100517T000000_20100617T000000_0001.EEF
0
616
689
1.0
./AUX_FILES /SDF_ORBIT.CS
./AUX_FILES /zones.dbf
cryosat_transponder
```


 Ref.:
 EOCFI-FTD-004

 Issue:
 1.2

 Date:
 06/09/2010

 Page:
 4 / 10

In both examples, the Predicted Orbit file, the Swath Definition File and the Zone Database file are contained in a directory ${\rm AUX_FILES}/$

5.1.3.2 Running the executable

The executable program can be called in the following way:

- From Linux/Mac shell

./zone_intersection_lon_lat

The executable program shows the following messages:

```
Input data set by the user:
Satellite: CRYOSAT
Orbit Fie: ./CS_OPER_MPL_ORBPRE_20100517T000000_20100617T000000_0001.EEF
Start Time: 2010-05-21 00:00:00.000000
Stop Time: 2010-05-26_00:00:00.000000
     Step: 1.000000 <s>
Time
SDF filename: SDF ORBIT.CS
Zone filename: zones.dbf
Zone ID: cryosat transponder
Output Filename: output_data_LLF_CRYOSAT.txt
TIME INITIALIZATION: POF
ORBIT INITIALIZATION: POF
CALCULATION OF ZONE INTERSECTION TIME SEGMENTS
Inputs:
   Start/Stop Absolute Orbit: 615 / 688
Outputs:
   Number of segments: 2
   Segments: Start (Orbit, seconds, microseconds) -- Stop (Orbit, seconds, microseconds)
             ( 654, 1676, 561347) -- ( 654, 1678, 205201)
( 675, 1292, 201369) -- ( 675, 1293, 950184)
CALCULATION OF INTERMEDIATE POINTS, VISIBILITY SEGMENT #0
Inputs:
   Requested Orbit, Second, Microsecond: 654 1676 561347
Outputs:
   Pt #0:
            long = 15.342649, lat = 78.283221
Inputs:
   Requested Orbit, Second, Microsecond: 654 1677 561347
Outputs:
            long = 15.287218, lat = 78.223715
   Pt #0:
CALCULATION OF INTERMEDIATE POINTS, VISIBILITY SEGMENT #1
Inputs:
   Requested Orbit, Second, Microsecond: 675 1292 201375
Outputs:
   Pt #0:
            long = 15.486052, lat = 78.180188
Inputs:
   Requested Orbit, Second, Microsecond: 675 1293 201375
```


 Ref.:
 EOCFI-FTD-004

 Issue:
 1.2

 Date:
 06/09/2010

 Page:
 5 / 10

Outputs:

Pt #0: long = 15.431006, lat = 78.239673

Output file created successfully in output_data_LLF_CRYOSAT.txt

5.1.3.3 Output file

The output file *output_data_LLF_CRYOSAT.txt* is created:

Generated with executable tool zone intersection lon lat v1.2 # Data Block # Instrument: ORBIT # 1 Number of visibility segments | Number of points per instantaneous swath 2 1 # 2 Index of visibility segment | Orbit number start | Seconds since ANX start | UTC time start | {Longitude [deg] Latitude [deg],..} | Orbit number stop | Seconds since ANX stop | UTC time stop | {Longitude [deg] Latitude [deg],...} 0 654 +1676.561347 20100523 152406165470 +015.342649 +078.283221 654 +1678.205201 20100523 152407809324 +015.251820 +078.185396 # 3 Time step [s] | Number of intermediate points in visibility segment +001.000000 3 # 4 Index of intermediate point | Orbit number | Seconds since ANX | UTC time | {Longitude [deg] Latitude [deg],..} 0 654 +1676.561347 20100523 152406165470 +015.342649 +078.283221 1 654 +1677.561347 20100523 152407165470 +015.287218 +078.223715 $2 \ 654 \ +1678.205201 \ 20100523 \ 152407809324 \ +015.251820 \ +078.185396$ # 2 Index of visibility segment | Orbit number start | Seconds since ANX start | UTC time start | {Longitude [deg] Latitude [deg],..} | Orbit number stop | Seconds since ANX stop | UTC time stop | {Longitude [deg] Latitude [deg],...} 1 675 +1292.201369 20100525 020122355763 +015.486053 +078.180187 675 +1293.950184 20100525 020124104577 +015.389426 +078.284210 # 3 Time step [s] | Number of intermediate points in visibility segment +001.000000 3 # 4 Index of intermediate point | Orbit number | Seconds since ANX | UTC time | {Longitude [deg] Latitude [deg],..} 0 675 +1292.201375 20100525_020122355763 +015.486052 +078.180188 1 675 +1293.201375 20100525 020123355763 +015.431006 +078.239673 2 675 +1293.950184 20100525 020124104577 +015.389426 +078.284210

End Data_Block

5.2 <u>Executable program transponder_min_satellite_distance</u>

For a requested UTC time interval, the executable program *transponder_min_satellite_distance* computes

- the time of closest approach from satellite to transponder (in orbit relative time and UTC)
- the minimum distance between the satellite and the transponder

- the incidence angle of the line of sight with the ellipsoid normal at the time of closest approach

- the longitude and latitude of the sub-satellite point at the time of closest approach

corresponding to the passes obtained over a transponder location.

5.2.1 Input configuration file description input_data_transponder.txt

The executable program *transponder_min_satellite_distance* expects as input a configuration file named *input_data_transponder.txt*. Note that the configuration file has to be placed in the same folder where the executable routine is located.

The configuration file *input_data_transponder.txt* contains the following input parameters (provided in the order in which they have to be supplied):

INPUT PARAMETERS	Definition	Value
Satellite ID	Satellite identifier	CRYOSAT
Predicted or Restituted Orbit Filename	Filename (it may include the path to the file) of the	Given by the user

 Ref.:
 EOCFI-FTD-004

 Issue:
 1.2

 Date:
 06/09/2010

 Page:
 6 / 10

	Predicted or Restituted	
Time Interval Type Flag	Orbit File Flag to indicate the type of	0 orbit range
Time Interval Type Flag	time interval to use for the	0=orbit range 1=UTC time range
	calculation	T=OTC time range
Start Orbit	Start orbit	Given by the user
or	or	Given by the user
UTC Start Time	UTC start time (in format	
ore start time	YYYY-MM-	
	DD_HH:mm:ss.sssss) of the	
	time interval	
Stop Orbit	Stop orbit	Given by the user
or	or	
UTC Stop Time	UTC stop time (in format	
	YYYY-MM-	
	DD_HH:mm:ss.sssss) of the	
	time interval	
Time Step [s]	Time step (in seconds) used	0.001
	to compute the minimum	
	distance	
Swath Definition Filename	Filename (it may include	SDF_ORBIT.CS
	the path to the file) of the	
	swath definition file.	
Transponder Longitude [deg]	Transponder geocentric	Given by the user
	longitude (in degrees)	For the Svalbard Transponde
		+015.393777
Transponder Latitude [deg]	Transponder geodetic	Given by the user
	latitude (in degrees)	For the Svalbard Transponde
Transman dan Diamatan [1]	Diamatan ef a sineulu	+078.230514
Transponder Diameter [m]	Diameter of a circular zone	Given by the user
	with center the	15000.0
	transponder location (in	
	meters)	Civer by the user
Transponder Altitude [m]	Transponder geodetic	Given by the user
	altitude (in meters)	For the Svalbard Transponder
		487.96

5.2.2 Output file description output_data_TRANSPONDER_CRYOSAT_min_satellite_distance.txt

The executable program transponder_min_satellite_distance generates as output a file output_data_TRANSPONDER_CRYOSAT_min_satellite_distance.txt. The output file includes comments (starting with the symbol #) describing its contents. Note that it is created in the same folder where the executable routine is located.

5.2.3 Example

5.2.3.1 Input configuration file

The input configuration file and the executable tool have to be contained in the same directory.

An example of input configuration file *input_data_transponder.txt*, with UTC start/stop times given as time interval is provided below:

 Ref.:
 EOCFI-FTD-004

 Issue:
 1.2

 Date:
 06/09/2010

 Page:
 7 / 10

CRYOSAT ./AUX_FILES/CS_OPER_MPL_ORBPRE_20100517T000000_20100617T000000_0001.EEF 1 2010-05-21_00:00:00.000000 2010-05-26_00:00:00.000000 0.001 ./AUX_FILES/SDF_ORBIT.CS +015.393777 +078.230514 15000.0 487.96

An example of input configuration file *input_data_transponder.txt*, with orbit start/stop given as time interval is provided below:

CRYOSAT ./AUX_FILES/CS_OPER_MPL_ORBPRE_20100517T000000_20100617T000000_0001.EEF 0 616 689 0.001 ./AUX_FILES/SDF_ORBIT.CS +015.393777 +078.230514 15000.0 487.96 In both examples, the Predicted Orbit file and the Swath Definition File are contained in a directory AUX_FILES/

5.2.3.2 Running the executable

The executable program can be called in the following way:

```
- From Linux/Mac shell
```

./transponder_min_satellite_distance

The executable program shows the following messages:

```
Input data set by the user:
Satellite: CRYOSAT
Orbit Fie: ./CS_OPER_MPL_ORBPRE_20100517T000000_20100617T000000_0001.EEF
Start Time: 2010-05-21_00:00:00.000000
Stop Time: 2010-05-26_00:00:00.000000
Time Step: 0.001000 <s>
SDF filename: SDF_ORBIT.CS
Transponder Longitude: 15.393777 <deg>
Transponder Longitude: 15.393777 <deg>
Transponder Latitude: 78.230514 <deg>
Transponder Diameter: 15000.00000< m>
Transponder Altitude: 487.960000< m>
Output Filename: output_data_TRANSPONDER_CRYOSAT_min_satellite_distance.txt
```

TIME INITIALIZATION: POF

ORBIT INITIALIZATION: POF

CALCULATION OF ZONE INTERSECTION TIME SEGMENTS

CALCULATION OF MINIMUM DISTANCE, VISIBILITY SEGMENT #1

Output file created successfully in output data TRANSPONDER CRYOSAT min satellite distance.txt

5.2.3.3 Output file

The output file *output_data_TRANSPONDER_CRYOSAT_min_satellite_distance.txt* is created:

Generated with executable tool transponder min satellite distance v1.2 # Data Block # Instrument: ORBIT # Predicted orbit file: ./CS_OPER_MPL_ORBPRE_20100517T000000 20100617T000000 0001.EEF # Transponder location: LON =+015.393777 [deg] LAT =+078.230514 [deg] ALT=+0487.960000 [m] # Transponder diameter: 15000.000000 [m] # 300 Number of visibility segments # 301 Index of visibility segment | Orbit number start | Seconds since ANX start | UTC time start Orbit number stop | Seconds since ANX stop | UTC time stop 0 654 +1676.325462 20100523 152405929585 654 +1678.441896 20100523 152408046019 # 302 Minimum distance from satellite to transponder # 303 Orbit number | Seconds since ANX | UTC time | Minimum distance [m] | LOS incidence angle (measured from local normal) [deg] | SSP Longitude [deg] | SSP Latitude [deg] 654 +1677.520478 20100523 152407124601 +00721433.822799 +000.214100 +015.289606 +078.226167 # 301 Index of visibility segment | Orbit number start | Seconds since ANX start | UTC time start | Orbit number stop | Seconds since ANX stop | UTC time stop 1 675 +1291.978227 20100525_020122132621 675 +1294.173398 20100525_020124327791 # 302 Minimum distance from satellite to transponder # 303 Orbit number | Seconds since ANX | UTC time | Minimum distance [m] | LOS incidence angle (measured from local normal) [deg] | SSP Longitude [deg] | SSP Latitude [deg]

675 +1293.087248 20100525_020123241636 +00723032.293449 +000.090153 +015.437006 +078.232969 # End Data_Block

5.3 <u>Executable program transponder_min_ground_distance</u>

For a requested UTC time interval, the executable program transponder_min_ground_distance computes

- the time of closest approach from ground-track to transponder (in orbit relative time and UTC)
- the minimum distance between the ground-track and the transponder

- the incidence angle of the line of sight with the ellipsoid normal at the time of closest approach

- the longitude and latitude of the ground-track point of closest approach

corresponding to the passes obtained over a transponder location.

5.3.1 Input configuration file description input_data_transponder.txt

The executable program *transponder_min_ground_distance* expects as input a configuration file named *input_data_transponder.txt*. Note that the configuration file has to be placed in the same folder where the executable routine is located.

The configuration file *input_data_transponder.txt* has been already described in Section 5.2.1.

5.3.2 Output file description output_data_TRANSPONDER_CRYOSAT_min_ground_distance.txt

The executable program transponder_min_ground_distance generates as output a file output_data_TRANSPONDER_CRYOSAT_min_ground_distance.txt. The output file includes comments (starting with the symbol #) describing its contents. Note that it is created in the same folder where the executable routine is located.

5.3.3 Example

5.3.3.1 Input configuration file

The input configuration file and the executable tool have to be contained in the same directory.

Examples of input configuration files input_data_transponder.txt are already given in Section 5.2.3.1

5.3.3.2 Running the executable

The executable program can be called in the following way:

- From Linux/Mac shell

./transponder_min_ground_distance

The executable program shows the following messages:

```
Input data set by the user:
Satellite: CRYOSAT
Orbit Fie: ./CS_OPER_MPL_ORBPRE_20100517T000000_20100617T000000_0001.EEF
Start Time: 2010-05-21_00:00:00.000000
Stop Time: 2010-05-26_00:00:00.000000
Time Step: 0.001000 <s>
SDF filename: SDF_ORBIT.CS
Transponder Longitude: 15.393777 <deg>
Transponder Latitude: 78.230514 <deg>
Transponder Diameter: 15000.000000< m>
Output Filename: output_data_TRANSPONDER_CRYOSAT_min_ground_distance.txt
```

TIME INITIALIZATION: POF

ORBIT INITIALIZATION: POF

CALCULATION OF ZONE INTERSECTION TIME SEGMENTS

CALCULATION OF MINIMUM DISTANCE, VISIBILITY SEGMENT #0

CALCULATION OF MINIMUM DISTANCE, VISIBILITY SEGMENT #1

Output file created successfully in output_data_TRANSPONDER_CRYOSAT_min_ground_distance.txt

5.3.3.3 Output file

The output file output_data_TRANSPONDER_CRYOSAT_min_ground_distance.txt is created:

Generated with executable tool transponder_min_ground_distance v1.2 # Data_Block # Instrument: ORBIT # Predicted orbit file: ./CS_OPER_MPL_ORBPRE_20100517T000000_20100617T000000 0001.EEF # Transponder location: LON =+015.393777 [deg] LAT =+078.230514 [deg] # Transponder diameter: 15000.000000 [m] # 400 Number of visibility segments # 401 Index of visibility segment | Orbit number start | Seconds since ANX start | UTC time start | Orbit number stop | Seconds since ANX stop | UTC time stop 0 654 +1676.325462 20100523 152405929585 654 +1678.441896 20100523 152408046019 # 402 Minimum distance from ground-track to transponder # 403 Orbit number | Seconds since ANX | UTC time | Minimum distance [m] | LOS incidence angle (measured from local normal) [deg] | SSP Longitude [deg] | SSP Latitude [deg] 654 +1677.384476 20100523 152406988599 +00002240.719549 +000.197900 +015.297125 +078.234260 # 401 Index of visibility segment | Orbit number start | Seconds since ANX start | UTC time start | Orbit number stop | Seconds since ANX stop | UTC time stop 1 675 +1291.978227 20100525 020122132621 675 +1294.173398 20100525 020124327791 # 402 Minimum distance from ground-track to transponder # 403 Orbit number | Seconds since ANX | UTC time | Minimum distance [m] | LOS incidence angle (measured from local normal) [deg] | SSP Longitude [deg] | SSP Latitude [deg] 675 +1293.074248 20100525_020123228636 +00001018.506120 +000.089776 +015.437725 +078.232196 # End Data_Block